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1. Introduction 

 
Structures are subjected to wide variety of forces, which 

can be classified into two categories: (a) conservative 
forces; and (b) non-conservative forces. Stability of 
structures under deformation-dependent loads (follower 
forces) depending on the loading type, body attached or 
space attached, load distribution and shell boundary 
conditions can be categorized under conservative or non-
conservative title. In the case of conservative loads static 
criterion (divergence) can be used which finally produces 
symmetric global stiffness matrix. Non-conservativeness of 
loads can cause the system be divided into purely or hybrid 
non-conservative. The first group only fails by flutter and so 
the kinetic criterion which connects computing buckling 
loads to vibration equation of structure, governs. In the 
hybrid case both criteria, static or kinetic, can dominate the 
problem (Datta and Biswas, 2011 Argyris and Symeonidis, 
1981). 

Functionally Graded Material (FGM) belongs to a class 
of advanced material characterized by variation in pro-
perties as the dimension varies. Currently, FGMs have been 
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widely applied in aerospace and nuclear industries. The 
overall properties of FMG are unique and different from 
any of the individual material that forms it. There is a wide 
range of applications for FGM and it is expected to increase 
as the cost of material processing and fabrication processes 
are reduced by improving these processes. Pure metals are 
of little use in engineering applications because of the 
demand of conflicting property requirement (Rasheedat and 
Akinlabi 2012). 

Bolotin (1963) was one of the pioneering researches 
who extensively investigated the effects of load behavior on 
stability of structures. He divided the loads into dead and 
follower types. In another study on conservativeness of a 
normal pressure field acting on a shell, Cohen (1966) while 
confirming the Bolotin’s result for flat plates generalized 
the result to a non-uniform continuous normal pressure field 
acting on an arbitrary shell. Hibbitt (1979) derived the 
contribution of follower forces to the tangent stiffness 
matrix and called it load stiffness matrix. He showed that 
this matrix is in general un-symmetric but in special cases 
leads to symmetric one. Longanathan et al. (1979) 
investigated the effects of follower forces in the finite 
element analysis of stability problems. Schweizerhof and 
Ramm (1984) discussed on displacement dependent 
pressure loads in nonlinear finite element analysis. They 
discussed in detail the conditions when a pressure load is 
conservative and when it is not. The important part of their 
work was the classification of loads into body attached and 
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space attached loads. Poorveis and Kabir (2006) estimated 
buckling of discretely stringer-stiffened composite cylind-
rical shells under combined axial compression and external 
pressure in the form of live (follower) pressure. Cagdas and 
Adali (2011) investigated buckling of cross-ply cylinders 
under hydrostatic pressure by considering pressure stiffness 
by semi analytical finite element method. They estimated 
the effects of taking pressure stiffness into account for 
different shell lay-ups and geometries. Khayat et al. (2016) 
investigated the effect of pressure stiffness on buckling of 
thick deep shells. 

Many investigations have been carried out on the 
buckling analysis of FG rectangular plates shells from 
which some nearly published are reviewed here. Torki et al. 
(2014) investigated behavior of functionally graded 
cylindrical shells under an end axial follower force. The 
material properties were assumed to be graded along the 
thickness direction according to a simple power law. Shen 
(2002) studied a post  buckling analysis for a functionally 
graded cylindrical panel of finite length subjected to axial 
compression in thermal environment. Material properties 
were assumed to be temperature dependent, and graded in 
the thickness direction according to a simple power law 
distribution in terms of the volume fractions of the 
constituents. Na and Kim (2004) analyzed three-
dimensional thermal buckling of functionally graded 
materials. Lanhe (2004) presented a closed-form solution 
for the thermal buckling of a simply supported moderately 
thick rectangular plate made of functionally graded 
materials. Chi and Chung (2006) examined the mechanical 
behavior of FGM plates under transverse properties were 
assumed to be temperature dependent, and varied 
continuously in the thickness direction according to a 
simple power law distribution in terms of the volume 
fraction of a ceramic and metal. Reddy and Chin (2007) 
analyzed the dynamic thermo elastic response of 
functionally graded cylinders and plates. Thermo mechani-
cal coupling was included in the formulation, and a finite 
element model of the formulation was developed. 
Ganapathi (2007) studied the dynamic stability behavior of 
clamped FGM spherical shell structures subjected to 
external pressure. The material properties were graded in 
the thickness direction according to the power-law 
distribution in terms of volume fractions of the constituents 
of the material. Santos et al. (2008) used semi-analytical 
axisymmetric finite element model for thermo-elastic 
analysis of functionally graded cylindrical shells subjected 
to transient thermal shock loading. The three-dimensional 
equations of motion were reduced to two-dimensional ones 
by expanding the displacement field in Fourier series in the 
circumferential direction involving circumferential 
harmonics. Sofiyev (2010) investigated the elastic buckling 
of FGM truncated thin conical shells under combined axial 
tension and hydrostatic pressure. Tornabene et al. (2014) 
investigated free vibration of free-form doubly-curved 
shells made of functionally graded materials. They used 
higher-order equivalent single layer theories. Dung and Hoa 
(2015) investigated the nonlinear buckling and post-
buckling of functionally graded stiffened thin circular 
cylindrical shells surrounded by elastic foundations in 

thermal environment and under torsional load by analytical 
approach. Bich et al. (2016) presented an analytical 
approach to investigate non-linear buckling analysis and 
post-buckling behavior of FGM toroidal shell segments 
filled inside by an elastic medium under external pressure 
loads including temperature effects. Chaht et al. (2015) 
investigated the bending and buckling behaviors of size-
dependent nanobeams made of functionally graded 
materials (FGMs) including the thickness stretching effect. 
The size-dependent FGM nanobeam was investigated on 
the basis of the nonlocal continuum model. Duc et al. 
(2015) presented an analytical approach on the nonlinear 
response of thick functionally graded circular cylindrical 
shells with temperature independent material property 
surrounded on elastic foundations subjected to mechanical 
and thermal loads. Material properties were graded in the 
thickness direction according to a sigmoid power law 
distribution in terms of the volume fractions of constituents 
(S-FGM). Zhang et al. (2015) studied buckling of elasto-
plastic FGM cylindrical shells under combined axial 
compression and external pressure with classical shell 
theory. Viola et al. (2016) investigated the static behavior of 
functionally graded spherical shells and panels subjected to 
uniform loadings at the extreme surfaces. The free vibration 
analysis was performed by Fantuzzi et al. (2016) for 
spherical and cylindrical shells with one-layered FGM 
structures and sandwich structures embedding an internal 
FGM core. 

In a word, most of the previous studies on the buckling 
of FGM shells have been performed under non-follower 
pressure. Nearly most of researches related to considering 
pressure stiffness effects on stability problems were 
restricted to laminated composite cylindrical shells or 
panels and no investigations have been carried out on the 
buckling behavior of functionally graded shells under 
external follower pressure. So, the authors of this paper 
intend to study the behavior of functionally graded conical 
shells subjected to follower load by semi-analytical finite 
strip method. The important points of the present study are 
summarized as follows: 

 
 To demonstrate the accuracy and validity of the 

proposed method, the buckling load for the shell has 
been compared with other published researches. 

 The exact expression for calculating the stiffness 
matrix due to the follower pressure for general shell 
of revolution is derived. 

 The effects of considering pressure stiffness matrix 
on the magnitude of the buckling pressure for 
various shells are investigated. 

 The effects of various parameters such as power-law 
index of functionally graded material, length and 
thickness of shell and shell boundary conditions 
interacting with loading type on shell buckling 
pressure are examined. 

 The regions of divergence and flutter criteria 
applicability for truncated conical shell are detected. 

 Despite existing un-symmetric global stiffness 
matrix in some cases, all analyses are based on static 
(divergence) criterion. 
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2. Theoretical development 

 
2.1 Formulation of the problem 
 
The geometry of the system is defined in Fig. 1. We 

consider a FG truncated conical shell with generator length 
L, radii R1 of the smaller end and R2 of the larger end, the 
total thickness h and semi-vertex angle γ of the generator to 
the height of cone. The coordinate system (s, θ, z) is also 
shown in Fig. 1, where the s-axis in the direction of the 
generator of the cone, the z-axis in the direction normal to 
the reference surface of the cone, and θ-axis in the normal 
direction to the s-z plane, form an orthogonal curvilinear 
coordinates system. The displacement components of the 
middle surface are u, v and w along the meridian, tangential 
and lateral directions and βs, βθ are the rotations around the 
θ and s axes, respectively. 

It is assumed that the FGM conical shell is made of a 
mixture of a metal phase (denoted by m) and a ceramic 
phase (denoted by c), with the material composition varying 
smoothly along its thickness direction only. Thus, the 
material properties of FGMs, like Young’s modulus E or 
Poisson’s ratio v, can be expressed as (Sofiyev 2010) 

 

eff m m c cF (z) F V (z) F V (z)= +  (1) 
 

where Feff is the effective mechanical or physical property 
and Fm and Fc are the material properties of the ceramic and 
metal, respectively, and may be expressed as a function of 
temperature 

 
1 2 3

eff 0 1 1 2 3F (T) F (F T 1 FT F T F T )−
−= + + + + +  (2) 

 
in which T = 300 K (room temperature), F0, F-1, F1, F2 and 
F3 are the coefficients of temperature T(K) expressed in 
Kelvin and are unique to the constituent materials (Sofiyev 
2010). Also, Vm and Vc stand for the volume fractions of 
metal and ceramic, respectively that are related by 

 
 

m cV (z) V (z) 1+ =  (3) 
 
The ceramic phase has greater elasticity modulus and 

lower density and Poisso’s ratio compared to the metal 
phase (Viola et al. 2016). Vm can be expressed by the power 
law 

N

m
z 1V , N 0
h 2

 = + ≥ 
 

 (4) 

 
where N is the power law exponent, which is a critical 
parameter to control the distribution of the constituents. The 
variations of the volume fraction of metal in the thickness 
direction for a FGM shell with different volume fraction 
functions have been drawn in Fig. 2. The vertical-axis 
stands for the volume fraction while horizontal-axis 
represents the position along the thickness of an FGM 
conical shell. In this study, the temperature has been 
assumed to be equal to the reference temperature (the 
environment temperature), i.e., 300 K. 

The vector of stress resultants is defined as 
 

{ }TT
ss s ss s sz zN   N  N  M   M   M  Q  Qθθ θ θθ θ θσ =  (5) 

 
Nss, Nθθ, Nsθ are the in-plane meridional, circumferential 

and shearing force resultants per unit length, respectively. 
Mss, Mθθ, Msθ are the analogous couples, while Qsz, Qθz are 
the transverse shear force resultants per unit length. The 
constitutive equation relates internal stress resultants and 
couples to generalized strain components on the middle 
surface 
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σ ε     
     σ ε     
     τ γ

      
σ      = =      σ            τ

     
τ γ     

     τ γ     

∫  (6) 

 
Fig. 1 Geometry of the FG truncated conical shell 

 

Fig. 2 Variation of volume fraction through shell thickness for 
various values of the power-law index N 
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Aij is extensional stiffness, Dij is bending stiffness and Bij 
is bending-extensional coupling stiffness and are defined as 
(Torki et al. 2014) 
 

 

44 55 66

       

       

E(z)S S S
2(1 (z))

= = =
+ υ  

(7) 

 
where Ks is the shear correction factor. E(z) and v(z) must 
be determined using Eqs. (1) and (4). 

 
2.2 Semi analytical Finite strip method 
 
To approximate displacements and rotations in the shell 

middle surface, two types of interpolation functions are 
used in this method. In the circumferential direction which 
geometry and material properties of the shell are constant, 
Fourier series are taken into account, while in meridional 
direction Lagrangian functions which may have two or 
more nodes have been used. The circumferential variation 
of the global displacements u, v, w, βs and βθ can be 
described by a suitable Fourier series expansion which in 
general consists of both sine and cosine terms 

 

( ) ( ) ( ) ( )n nc so
NH

k 1

s, (s) s cos kn s sin(kn )
=

 ∆ θ = ∆ + θ + ∆ θ ∆∑  (8) 

 
with 

 
T

s[u v w ]θ∆ = β β  (9) 
 

where k represent an integer number varying from 1 to 
number of harmonics, NH. Also n is circumferential wave 
number which minimize buckling load. Discretization of 
Δ(s) in the meridional direction is carried out by using 
Lagrangian interpolation functions of different orders 

 
NN

i i
i 1

(s) N (s)
=

∆ = ∆∑  (10) 

 
In which, Ni(s) stands for Lagrangian shape function and 

Δi contains displacement and rotation components of ith 
node. Also, NN, represents number of nodes in each strip in 
the meridional direction. Combining Eqs. (8) and (10) gives 

 
NN

o
i i

i 1
(s, ) N (s)

=

∆ θ = ∆∑
 

NH NN
cn sn
i i i i

k 1 i 1
[ N (s)cos(kn ) N (s)sin(kn )]

= =

+ ∆ θ + ∆ θ∑ ∑  
(11) 

 
in Eq. (11), Δo

i, Δcn
i and Δsn

i are unknown coefficients vectors 

related to nodal i of each closed strip. 
 

2.3 Strain-displacement relationships 
 
The strain in an arbitrary point and with distance z from 

mid-surface can be expressed in terms of mid-surface 
strains εss, εθθ and γsθ and also mid-surface changes of 
curvatures kss, kθθ and ksθ 

 
ss ss s s ssszk zk zkθθ θθθ θθ θ θε = ε + = ε + = γ +ε γ  (12) 
 
The generalized strain vector which plays an important 

role in the stress-strain relationships is 
 

ss s ss s z sz{ k k k }θθ θ θθ θ θε = ε ε γ γ γ  (13) 
 

in which linear strains of mid-surface, εss, εθθ and γsθ are 
defined in terms of displacements as 

 

ss

s

u     
s

1 v( u cos w sin )

v 1 u cos
R

R Rs
v

θθ

θ

∂
ε =

∂
∂

ε = + ϕ+ ϕ
∂θ

∂ ∂ ϕ
γ = + −

∂ ∂θ

 (14) 

 
The non-linear part of mid-surface strains based on 

Sanders’s (1963) non-linear shell theory is as follows 
 

NL 2 2
ss

1 w 1 1 v u( ) ( vcos ))
2 s 2 2R s

(R∂ ∂ ∂
ε = + ϕ−

∂ ∂ ∂θ
+

 
NL 21 w( vsin ))

2R
(θθ

∂
ε − ϕ

∂θ
=

 
21 1 v u( vcos ))

2 2R s
(R ∂ ∂

+ + ϕ−
∂ ∂θ  

NL
s

1 ( )( vsin )
R

w w
sθ

∂ ∂
−

∂ ∂θ
γ = ϕ

 

(15) 

 
Bending curvatures strains, kss and kθθ and torsional 

curvature, ksθ are 
 

s
ss

s

s s
s

cos )
R

sincos cos

k          
s

1k (

1 1 v vk ( )(
s R 2 R

)
R Rs

θ
θθ

θ
θ

∂β
=

∂
∂β

= +β
∂θ

∂β β ∂β ∂
= − + +

∂ ∂
ϕ

ϕ+
∂θ

ϕ

ϕ

 (16) 

 
and based on first order shear deformation theory, trans-
verse shear strains are 

 

sz s

z

w
s
1 w v sin
R Rθ θ

∂
γ = β +

∂
∂

γ = β + − ϕ
∂θ

 (17) 

( ) ( )2
ij ij ij ij

h

ij s ij
h

11 22 12 212 2

A ,B ,D 1, z, z S (z)dz     i , j=1,2,6

H K S (z)dz     i , j=4,5

E(z) (z)E(z)S S S S
1 (z) 1 (z)

=

=

υ
= = = =

− υ − υ

∫

∫
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2.4 Linear elastic and geometric stiffness matrices 
 
The linear part of internal virtual work of shell is as 

follows 
 

( ss ss s s
L
int

ts

W θθ θθ θ
θ

θσ δε + σ δε + τ δγδ = ∫ ∫ ∫
 

  )sz sz zz Rdzd dsθ θ+ τ δγ τ δγ θ+  

(18) 

 
integration of Eq. (18) in the thickness direction and by 
using Eq. (6), the internal virtual work can be written 

 
o

s ssss

l 2
L
int ss s ss

0 0

W  (N N N M k  
θθ θ

π

θθ θδ = δε + δε + δγ + δ∫ ∫
 

s ss sz z zz M k M k  Q Q Rd s) d
θθ θθθ θ θ θ+ δ + δ + δγ + δγ θ

 
(19) 

 
in which lo is the length of shell generator. Discretization of 
δWL

int by using Eq., (19) gives 
 

int

nstrip
T

j ej j
j 1

LW  ( ) K
=

δ = δ∆ ∆∑  (20) 

 
in this equation, j∆̂ contains all unknown coefficients of 
displacements and rotations of jth strip and j∆̂δ represents 
its virtual counterpart, also Kej is the linear stiffness matrix 
of jth strip. 

To form geometric or initial stress stiffness matrix, it is 
required to carry out a pre-buckling static analysis to obtain 
in-plane forces, No

ss, No
θθ and No

sθ for each strip in the gauss 
points. Then the internal works of these real membrane 
forces in non-linear virtual strains are in the form 

 

( )int s

NL NL NLo o o
ss ss s

N

s

LW  N N N Rd ds
θθ θθθ θ

θ

δ = δε + δε + δγ θ∫ ∫  (21) 
 

discretization of δWL
int by using Eq., (21) gives 

 

int

nstrip
T

j Gj j
j 1

NLW  ( ) K
=

δ = δ∆ ∆∑  (22) 

 
in which KGj represents the geometric stiffness matrix of jth 
strip. Assembling of Kej and KGj of all strips result in global 
linear elastic stiffness matrix, Ke and global geometric 
stiffness matrix, KG for the shell. 

 
 
2.5 Load-dependent stiffness 
 
Schweizerhof and Ramm (1984) divided Loads in two 

groups, body attached and space attached.  In the space 
attached category both direction and magnitude of the loads 
change during acting on structure but in the body attached 
group only direction of loading action changes (Fig. 3), the 
following assumption are have been made: 

 
 The direction of applied loads before and after 

deformation is perpendicular to the shell 
 Loading acts on the middle surface 
 Strains of the shell are small 
 Pressures are body attached 
 
In Fig. 4, position vector of an arbitrary point in the 

middle surface of conical shell denoted by ,r  and U


 
represents displacement vector of the point. So, the position 
vector in the deformed state is 

 
*r r U= +

   (23) 
 
The components of r  and U


 in terms of orthogonal 

curvilinear system (s, θ, z) are as follows 
 

r (R sin Zcos )s (R cos Zsin )n

U u(s, )s v(s, ) t w(s, )n

= γ − γ + γ − γ

= θ + θ + θ

  

    (24) 

 
 

 
Undeformed         Deformed           Deformed 

Body attached load     Space attached load 
Fig. 3 Loads definition 

 
Fig. 4 Deformation of an elemental area 

 
Fig. 5 Tangential and normal vectors to the un-deformed and 

deformed surfaces 
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In which R and Z are defined in Fig. 4, and γ is semi 
apex angle of cone, n  represents unit normal vector to the 
shell un-deformed middle surface, t


 is unit vector in the 

circumferential direction and s  shows unit vector in the 
meridianal direction, both in un-deformed states. 

The external virtual work of distributed follower 
external pressure, q1 (s, θ), is 

 
ql l *

S

*
ext (q (s,W n)dS ). U= − θδ δ∫ ∫

  (25) 

 
In which, q1 (s, θ) can be non-uniform in both 

directions, s and θ, but it is assumed to be continuous 
function of s and θ. dS* is elemental area in the deformed 
state and 

*n  defines unit normal vector to the deformed 
shell middle surface. Also, U


δ  reflects infinitesimal virtual 

displacement vector of shell middle surface. According to 
vector analysis the product of normal vector and differential 
element of deformed mid-surface area can be written as 

 
* *

* * r rdS n ds d
s

∂ ∂
= × θ
∂ ∂θ


 

 (26) 

 
in which, the notation ‘x’ stands for vector product. 
Expansion of Eq. (26) gives 

 

* * *
s z* *

* * *
s z

s t n
r r r

dsd
s s s

r

S n

r r

d θ

θ

∂ ∂ ∂
= θ

∂ ∂ ∂
∂ ∂ ∂
∂θ ∂θ ∂θ

 


 (27) 

 
To concise the relation 27, the following derivatives can 

be utilized 
 

Z Rcos sin
s s

∂ ∂
= − γ = γ

∂ ∂  

1 1

n 1 s 1s n
s R s R

∂ ∂
= = −

∂ ∂

 
 

 
t sn cos s sin sin t∂ ∂
= − γ − γ = γ

∂θ ∂θ

   

 

1

n 1cos t
s R

∂ ∂ ∂
= γ =

∂θ ∂ ∂ϕ

 

 

(28) 

 
in which γ is semi apex angle of cone as illustrated in Fig. 1. 
Finally by using the above relations, the virtual work 
generated by distributed follower external pressure is 

 

ext
qlWδ =  

0l2
l

0 0

u v w
u v wq (s, ) 1 dS
s s s

1 u 1 v u w 1 w( vsin ) 1 sin cos ( vcos )
R R R R R

π

δ δ δ
∂ ∂ ∂

− θ +
∂ ∂ ∂

∂ ∂ ∂
− γ + + γ + γ − γ

∂θ ∂θ ∂θ

∫ ∫

 

(29) 

 
The external virtual work of displacement-dependent 

non-uniform pressure includes expressions of first, second 
and third order of displacements and their derivatives. The 
first order terms directly form external load vector which 
can be used in the pre-buckling analysis and the higher 
order terms incorporate in the geometrical nonlinear 
analysis. To form pressure stiffness matrix due to arbitrary 
non-uniform continuous follower pressure, q(s, t), which is 
suitable for linearized buckling analysis only quadratic 
terms of deformations should be kept. Then integrate by 
parts Eq. (29) to reach the following subdivided symmetric 
and skew-symmetric expressions 

 
2 2

domain l
sym

S

1 v wq (s, )( cos cos
2 R R

Wδ = −δ θ γ + γ∫∫
 

       

w v v w w w(R.u) u )Rdsd
R R R s s
∂ ∂ ∂ ∂

+ − + − θ
∂θ ∂θ ∂ ∂  

(30) 

 
l

load
skew sym

S

1 q (s, )w v dsd
2

W −

∂ θ
= − δ θ+

∂θ
δ ∫∫

 
l

S

1 q (s, )v w dsd
2

∂ θ
+ δ θ

∂θ∫∫
l

S

1 q (s, )w u dsd
2 s

∂ θ
− δ θ

∂∫∫
 

l

S

1 q (s, )u w dsd
2 s

∂ θ
+ δ θ

∂∫∫
 

(31) 

 
0

2
lboundary l

skew sym 0
0

1 Ru wq (s, ) d
2

W
π
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0
0
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l 2l l

0 0
0 0

1 1Rw uq (s, ) d w vq (s, ) ds
2 2

π
π

   + δ θ θ+ δ θ   ∫ ∫
 

0l 2l

0
0

1 v wq (s, ) ds
2

π
 − δ θ ∫

 
(32) 

 
in which Eq. (30) represents symmetric part of external 
virtual work. Also, the other two parts, Eqs. (31) and (32) 
are related to load non-uniformity and boundaries of the 
shell, respectively. They are anti-symmetric bi-linear forms 
and upon discretization lead to skew-symmetric matrices 
which bring about un-symmetry of total load stiffness 
matrix. In the present study both types of un-symmetry are 
present and loading can be non-uniform in meridional and 
circumferential directions. It should be noted that for 
conical shell due to closed shape in circumferential 
direction and continuity of loading, the two last terms in the 
Eq. (32) are omitted. 

Discretization of Eq. (32) for each closed strip causing 
the related stiffness matrix be un-symmetric due to 
boundaries of the strip, but continuity of displacements and 
loading in the common lines of adjacent strips leads to 
omitting this un-symmetry upon assembling process and 
forming global matrix. It is to be noted that only in the 
boundary nodal lines the aforementioned un-symmetry 
remains and as noted in previous researches, in special 
boundary conditions this un-symmetry is also disappeared. 

Fig. 6 describes the physical meaning of different 
boundary and load conditions and their effects on the 
categorization of the related system. The system in Fig. 6(a) 
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is non-conservative because load is non-uniform and end of 
shell can move along horizontal direction. In the second 
structure, Fig. 6(b), despite uniformity of applied loading, 
lateral or axial, the free end causes the system to be non-
conservative. Despite the structure in Fig. 6(c), has support 
conditions leading to vanishing boundary terms according 
to Eq. (32) but It is non-conservative still because load 
distribution is non-uniform. Fig. 6(d) represents conser-
vative systems, loading is uniform and the boundaries have 
been sufficiently restrained. 

If the pressure stiffness matrix is symmetric, the 
corresponding is called conservative. Otherwise, if pressure 
is un-symmetric, the system is termed as non-conservative. 
In the case of conservative which finally leads to symmetric 
global stiffness matrix, static criterion (divergence) can be 
used. Non-conservativeness of loads can cause the system 
be divided into purely or hybrid non-conservative. The first 
group only fails by flutter and so the kinetic criterion which 
connects computing buckling loads to vibration equation of 
structure, governs. In the hybrid case both criteria, static or 
kinetic, can dominate the problem. In commercial programs 
such as Abaqus pressure stiffness matrix stored symmetric 
(Goyal and Kapania 2008, Abaqus/standard user’s manual 
1998). 

 
2.6 Linearized buckling analysis 
 
Having been formed global linear elastic stiffness 

matrix, Ke, global geometric stiffness KG, and global load or 
pressure stiffness matrix KP, the static criterion (divergence) 
for estimating load parameter λcr may be established 
through a linear eigenvalue analysis as follows 

 
[ ]e cr G PK (K K ) 0−λ + Φ =  (33) 

 
 
λcr is the lowest eigenvalue and Φ is its associated 

eigenmode. As stated earlier, KP is generally un-symmetric 
due to non-uniformity of loading and insufficient 
constraints in shell boundaries. In the sequel two types of 
eigenvalue analyses have been carried out, with pressure 
stiffness and without pressure stiffness. Comparison of the 
results of these two analyses to clarify the effects of 
considering or omitting KP has been performed. 

 
 

3. Numerical results and discussion 
 
Based on the above derivations, lateral buckling 

pressure of different FGM conical shells with various 
geometries, boundary conditions, material properties are 
estimated. Specific attention has been paid on the effect of 
considering pressure stiffness matrix which stems in the 
follower action of pressure, on the buckling load. In all 
analyses, despite the un-symmetry of load stiffness matrix 
in some cases divergence-type failure mode has dominated 
in all cases. 

 
3.1 Comparison results 
 
In order to demonstrate the accuracy of present 

approach, Table 2 compares the static critical load for FGM 
conical shell and under lateral pressure with the results 
given by Sofiyev (2010). It is assumed that FGM shells are 
made of a mixture zirconium (ZrO2) and titanium (Ti-6Al-
4V). The properties of constituents, including the Young’s 
modulus and Poisson’s ratio are given in Table 1. Unless 
otherwise specified, the properties of the constituents are 
given at room temperature: T = 300 K. 

According to the results in Table 2, the comparisons 

  
(a) Non-conservative (Boundary conditions+ load distribution) (b) Non-conservative (Boundary-condition) 

 

 

 

 
(c) Non-conservative (Load distribution) (d) Conservative 

Fig. 6 Boundary and load conditions 
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show that the present results are in good agreement with 
those Sofiyev (2010). 

 
3.2 Buckling results of FG cylindrical shells 
 
In this problem the effects of considering pressure 

stiffness on buckling pressure in the clamped-clamped 
laminated cylindrical shell under uniform lateral pressure 
have been investigated. In this study the un-symmetry of 
pressure stiffness matrix due to shell boundaries and non-
uniform loading effects disappears and apart from shell 
geometry static stability criterion dominates the problem. In 
addition, five different length to radius ratios which are 2, 4, 
6, 8 and 10 as well as different thicknesses including 3.175, 
6.35, 9.525 and 12.7 mm have been considered. Radius of 
the cylinder is 190.5 mm. The properties of constituents, 
including the Young’s modulus and Poisson’s ratio are 

 
 

 
 

Table 3 Mechanical properties of nickel and alumina in T = 300 K 

Material E (MPa)  v 

Nickel 2.051×105 0.31 
Alumina 3.20235×105 0.26 

 
 
given in Table 3. 

The relative difference of the buckling pressure for two 
states, without PS and with PS is estimated by Eq. (34). 

 

cr(without  PS) cr(with  PS)

cr(with  PS)

q q
(%) *100

q
−

µ =  (34) 

 
The buckling pressure against variation of power-law 

index of functionally graded material and geometry of the 
shell for follower forces, have been presented in Table 4. 

Table 1 Material properties of FGMs from Reddy and Chin (2007) 

Coefficients ZrO2 Ti-6Al-4V 
 Ec (MPa) vc Em (MPa) vm 

F0 2.4424×105 0.2882 1.2256×105 0.2884 
F-1 0 0 0 0 
F1 ‒1.371×10-3 ‒1.133×10-4 ‒4.586×10-3 1.121×10-4 
F2 1.214×10-6 0 0 0 
F3 ‒3.681×10-9 0 0 0 
F 1.68063×105 0.298 1.056982×105 0.2981 

 

Table 2 Variations of the values of critical load (MPa) for FGM conical shells with difference compositional profile, γ = 45°, 2
1

=
R
L  

Materials Uniform lateral pressure Axial tension Hydrostatic pressure Hydrostatic pressure 
and axial tension 

N Sofiev (2010) Present study Sofiev (2010) Present study Sofiev (2010) Present study Sofiev (2010) Presentstudy 
R1/h = 100 

ZrO2 0.3169 0.2975 2.4412 2.3890 0.2993 0.2929 0.3047 0.3023 
1 0.1761 0.1643 1.3594 1.3567 0.1663 0.1573 0.1693 0.1668 
2 0.1665 0.1607 1.2778 1.2266 0.1573 0.1483 0.1601 0.1574 
3 0.175 0.1712 1.3535 1.3245 0.1653 0.1582 0.1683 0.1650 

Ti-6Al-4V 0.15903 0.1508 1.2249 1.1628 0.1502 0.1442 0.1529 0.1497 
R1/h = 200 

ZrO2 0.0554 0.0532 0.6132 0.5879 0.0534 0.0508 0.054 0.0527 
1 0.0308 0.0305 0.3419 0.3315 0.0297 0.0287 0.03 0.0297 
2 0.02914 0.0288 0.3203 0.3136 0.0281 0.0270 0.0284 0.0279 
3 0.0306 0.0297 0.3407 0.3324 0.0295 0.0284 0.0298 0.0291 

Ti-6Al-4V 0.0278 0.0266 0.3077 0.2993 0.0268 0.0257 0.0271 0.0264 
R1/h = 300 

ZrO2 0.0199 0.0191 0.2739 0.2650 0.0193 0.0185 0.0195 0.0189 
1 0.011 0.0105 0.1527 0.1476 0.0107 0.0104 0.0108 0.0105 
2 0.0104 0.0098 0.1431 0.1417 0.0101 0.0096 0.0102 0.0100 
3 0.011 0.0105 0.1521 0.1491 0.0106 0.0104 0.0107 0.0105 

Ti-6Al-4V 0.01 0.0095 0.1374 0.1350 0.0097 0.0096 0.0098 0.0095 
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It is found that, the critical buckling load increases with 

the increasing of N. As L/R ratio is increased, the values of 
critical load and corresponding circumferential wave 
number decrease for pure isotropic and FGM cylindrical 
shells with all compositional profiles. As L/R ratio 
increases, the estimated effects on the critical loads for the 
homogeneous and FG conical shells are nearly equal. When 
the values of critical loads of FGM cylindrical shells are 

 
 

 
 

compared with those of a homogeneous ceramic cylindrical 
shell, the least effect is encountered in N = 100 case, being 
59% and the highest effect is encountered in N = 0.5, being 
l84%. The value of critical load with N = 100 (Alumina) is 
the greatest. The effects of N and length to radius ratios 
(L/R) on follower reduction coefficient (μ) for different 
thicknesses have been demonstrated in Figs. 7-10. 

Table 4 Buckling pressure (MPa) of cylindrical shell 

 h = 3.175 mm 
L/R N = 0 N = 0.5 N = 1 N = 5 N = 10 N = 30 N = 100 
1 10.6440 11.0010 11.6900 12.2640 14.0600 15.2260 18.1360 
2 5.1926 5.3615 5.6907 5.9712 6.8701 7.4423 8.8521 
4 2.7393 2.8371 3.0217 3.1686 3.6039 3.9000 4.6612 
6 1.8156 1.8788 1.9991 2.0966 2.3925 2.5899 3.0911 
8 1.4926 1.5360 1.6242 1.7056 1.9869 2.1547 2.5495 
10 1.1143 1.1512 1.2226 1.2827 1.4728 1.5952 1.8990 
 h = 6.35 mm 
1 63.9810 66.3180 70.7060 74.1500 84.1430 91.0180 108.8200 
2 28.7740 29.7420 31.6110 33.1690 38.0280 41.1740 49.0200 
4 14.8450 15.3670 16.3580 17.1590 19.5630 21.1720 25.2690 
6 10.2670 10.5910 11.2320 11.7920 13.6230 14.7590 17.5120 
8 7.8247 8.1033 8.6301 9.0513 10.3030 11.1490 13.3160 
10 7.0108 7.2737 7.7621 8.1370 9.1973 9.9467 11.9180 
 h = 9.525 mm 
1 192.6600 199.9000 213.4000 223.8100 253.1800 273.7300 327.4900 
2 82.4690 85.4610 91.0870 95.5330 108.5200 117.3900 140.2900 
4 43.8230 45.1250 47.7650 50.1870 58.4130 63.1730 74.8330 
6 27.7610 28.7370 30.5930 32.0950 36.6110 39.6170 47.2560 
8 23.7730 24.6660 26.3240 27.5980 31.1940 33.7330 40.4110 
10 21.0990 21.6850 22.9070 24.0830 28.2550 30.6350 36.0700 
 h = 12.7 mm 
1 442.2200 459.7500 491.9100 515.7600 579.4000 625.9500 750.8500 
2 165.3700 170.9700 181.8000 190.8500 218.9100 236.9200 281.7100 
4 83.3470 86.0700 91.4030 95.9850 110.6000 119.7400 142.0800 
6 59.9080 62.1100 66.2340 69.4620 78.7740 85.1980 101.8800 
8 53.9940 56.0590 59.8720 62.7590 70.7530 76.4960 91.7420 
10 38.2110 39.3950 41.7650 43.8840 50.8970 55.1240 65.2000 

 

 
Fig. 7 The effect of follower force (μ) for h = 3.175 mm 

 
Fig. 8 The effect of follower force (μ) for h = 6.35 mm 
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By considering the presented results, it has been 

concluded when the loading is follower in the cylindrical 
 
 

shells, the calculated buckling load decreases rather than the 
state which the pressure is independent of deformations. 
The comparison of the results reveals that for both follower 
and non-follower states, the difference between calculated 
buckling loads depends on different factors such as shell 
geometry so that if the thickness or length to radius ratio 
increases, the differences escalate. According to Figs. 7-10 
for all shell thickness variations, the minimum difference 
(μ) between follower and non-follower buckling pressure 
occurs at L/R = 1, while the maximum difference takes 
place at L/R = 10. Also, the obtained maximum difference 
happens when power-law index of functionally graded 
material, N, tends to 100. According to Figs. 7-10, it has 
been concluded that the maximum effect of follower force 
on the buckling load is nearly 35.73%. In other words, if the 
pressure stiffness matrix is neglected, shell is designed for a 
pressure nearly 35.73% smaller than the pressure which 
causes buckling. 

 
3.3 Buckling results of FG conical shells 
 
In this problem, the effects of follower action of loading 

on lateral buckling pressure of conical shell with different 
geometries and material properties are to be investigated. 
The boundary nodal line is fixed in the large base and free 
in the small base. Various apex angles and different shell 
thicknesses have been considered in the analyses. In this 
problem, we examined four pressure patterns (uniform 
lateral pressure, non-uniform longitudinal loading, non- 

 
 

 

 
Fig. 9 The effect of follower force (μ) for h = 9.525 mm 

 
Fig. 10 The effect of follower force (μ) for h = 12.7 mm 

  
(a) (b) 

 

 

 

 
(c) (d) 

Fig. 11 Pressure patterns: (a) uniform lateral pressure; (b) non-uniform longitudinal loading; (c) non-uniform circumferential loading; 
(d) non-uniform longitudinal-circumferential loading) 
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Table 5 Mechanical properties of nickel and alumina in T = 300 K 

Material E (MPa)  v 

Stainless steel 2.07788×105 0.3176 
Alumina 3.20235×105 0.26 

 
 
uniform circumferential loading and non-uniform loading in 
both directions). The loading patterns have been depicted in 
Fig. 11. 

Due to un-symmetry of pressure stiffness in the case of 
the loaded free boundary and non-uniform loading patterns 
and possibility of dominating either of divergence or flutter 
criteria, a primary analysis has been carried out to recognize 
the area of applicability of each method, especially static or 
divergence ones for three apex angles (γ = 30°, 45° and 
60°). Figs. 12-14 show the transition curves from flutter 
instability to divergence instability for various shells. In 
these diagrams, horizontal axis shows the power-law index 
of functionally graded material, N, while thickness of the 
shell is measured on the vertical axis. The region of the 
flutter instability was determined by using the dynamic 
stability analysis. The boundary between flutter and 
divergence instability passes always through a double 
critical point, where the first and second static (buckling) 
eigenmodes coincide (Zuo and Schreyer 1996). The 
properties of constituents, including the Young’s modulus 
and Poisson’s ratio are given in Table 5. 

The geometric properties of the shell are L/R1 = 3 and R1 

 
 

= 100 mm. 
For the given shell subject to uniform and non-uniform 

distributed non-conservative forces, the boundary curves 
which separates divergence and flutter instability zones, 
have been found. The boundary curve has been created by a 
combination of power-law index of functionally graded 
material, N and shell thickness variation. For a specified N, 
thickness of the shell is varied until eigenvalue of the shell 
under follower lateral pressure based on static stability 
criterion becomes complex. Then this point, (N, h), is a 
point on the boundary curve. According to Figs. 12-14, the 
regions of flutter and divergence instability change by 
loading patterns. The largest and smallest regions of flutter 
instability have been induced by non-uniformity of loading 
in both directions, (P(s, θ) = P(s) × cos(θ)) and uniform 
pressure, respectively. The pattern of regions of instability 
changes by changing of semi-apex angle of truncated 
conical shell. Based on the results of primary analysis and 
the governing zones by the divergence criterion, several 
power-law indexes of FGM, N and three semi-apex angles 
of cone, γ, have been selected for the analyses. Thickness of 
the shell is 5 mm. The influences of aforementioned 
parameters on increasing or decreasing effect of follower 
action of lateral pressure on buckling capacity are shown in 
Figs. 15-18. 

As the semi-vertex angle, γ, increases, the values of 
critical loads decrease for pure isotropic and FGM truncated 
conical shells with all compositional profiles. It is observed 
that for all loading patterns increasing in γ, decreases the 

  
(a) Uniform loading P(s, θ) = P (b) Non-uniform loading P(s, θ) = P(s) 

 

 

 

 
(c) Non-uniform loading P(s, θ) = Pcos(θ) (d) Non-uniform loading P(s, θ) = P(s)cos(θ) 

Fig. 12 The transition curves from flutter to divergence for the FGM conical shell with γ = 30° 

11



 
Majid Khayat, Davood Poorveis and Shapour Moradi 

 
 

 

 
 

  
(a) Uniform loading P(s, θ) = P (b) Non-uniform loading P(s, θ) = P(s) 

 

 

 

 
(c) Non-uniform loading P(s, θ) = Pcos(θ) (d) Non-uniform loading P(s, θ) = P(s)cos(θ) 

Fig. 13 The transition curves from flutter to divergence for the conical γ = 45° 

  
(a) Uniform loading P(s, θ) = P (b) Non-uniform loading P(s, θ) = P(s) 

 

 

 

 
(c) Non-uniform loading P(s, θ) = Pcos(θ) (d) Non-uniform loading P(s, θ) = P(s)cos(θ) 

Fig. 14 The transition curves from flutter to divergence for the conical γ = 60° 
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influence of follower action. For all N, thickness and γ 
angle, non-uniform pressure causes more reducing effect on 
buckling pressure due to follower action than uniform 
pressure. It is seen that critical loads of pressure 
distribution,  P(s, θ) = P(s)cos(θ) are higher than those of 
P(s,θ) = Pcos(θ), P(s, θ) = P(s) and uniform pressures, 
whereas, the buckling pressures of P(s, θ) = P(s) are higher 
than the values of critical uniform pressures of the truncated 
conical shell. Furthermore, the uniform buckling pressures, 

 

 
 
follower and non-follower are lower than those of patterns 
P(s, θ) = Pcos(θ) for the truncated conical FGM shell. The 
maximum differences between uniform buckling pressure 
and those of other patterns, (P(s), P(θ) and P(s, θ)) are 9% , 
12% and 14%, respectively. Also, it can be concluded that 
thickness escalation in the case of γ < 45, has the most 
effect on buckling load reduction due to taking follower 
effect into account. As the semi-vertex angle, γ, increases, 
the differences between follower and non-follower lateral 

  
(a) γ = 30° (b) γ = 45° 

 

 
(c) γ = 60° 

Fig. 15 Variations of uniform lateral buckling pressure for FGM conical shell 

  
(a) γ = 30° (b) γ = 45° 

 

 
(c) γ = 60° 

Fig. 16 Variations of non-uniform (P(s, θ) = P(s)) lateral buckling pressure for FGM conical shell 
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buckling pressures for metal, ceramic and FGM conical 
shells with all compositional profiles decrease. 

 
 

4. Conclusions 
 
In this study, the eign buckling analysis of FGM 

truncated conical shells under lateral pressure follower have 

 
 

 
 
been investigated. The effects of various pressures patterns 
including follower and non-follower types and uniform and 
non-uniform distributions on the shell buckling have been 
estimated. The pressure stiffness matrix induced by the 
follower pressure was derived and categorized into three 
parts, a symmetric and two skew-symmetric matrices. The 
symmetric part reflects the shell domain integral and the 

  
(a) γ = 30° (b) γ = 45° 

 

 
(c) γ = 60° 

Fig. 17 Variations of non-uniform (P(s, θ) = Pcos(θ)) lateral buckling pressure for FGM conical shell 

  
(a) γ = 30° (b) γ = 45° 

 

 
(c) γ = 60° 

Fig. 18 Variations of non-uniform (P(s, θ) = P(s)cos(θ)) lateral buckling pressure for FGM conical shell 
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other two skew-symmetric matrices involve the uncon- 
strained boundaries and load non-uniformity effects. In the 
present study uniform and non-uniform lateral pressures, 
follower and non-follower types were taken into account. 
So, un-symmetry due to unconstrained boundaries and 
loading patterns can present in the analyses. Despite un-
symmetry of pressure stiffness matrix in some cases, all 
analyses were based on divergence criterion and so only 
static stability analysis was carried out. A parametric study 
including various shell shapes, different boundary 
conditions, several shell geometries and various function-
ally graded materials with follower action of lateral pressure 
were carried out. The numerical results support the 
following conclusions: 

 

 All of the assumptions in this paper result in a 
reasonable accuracy for different shells, loadings, 
materials in presence or absence of the pressure 
stiffness effect. 

 The results for functionally graded material 
truncated conical shells show, when the pressure 
stiffness effect is included, this effect can result in 
reduction of the critical load as calculated without 
this effect. Therefore, it is considered that the 
assumption of loads which remain constant direction 
during deformations can lead to inaccurate results. 

 Apart from any geometry, boundary conditions and 
material properties the effect of follower action of 
lateral pressure on buckling load diminishes with 
increasing in cone apex angle. 

 The circumferential wave number can be a sign for 
considerable or negligible effect of follower action 
of lateral pressure. The maximum influence is along 
with small circumferential wave number which 
definitely the shell geometry, boundary conditions 
and material properties play essential role in it. 

 The regions of flutter and divergence dominant 
stability criteria have been formed combination of 
power-law index of functionally graded material, N 
and shell thickness variations. These regions change 
with the assumed loading patterns. 
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