Steel and Composite Structures, *Vol. 22*, *No. 4* (2016) 713-732 DOI: http://dx.doi.org/10.12989/scs.2016.22.4.713

A novel four variable refined plate theory for laminated composite plates

Slimane Merdaci¹, Abdelouahed Tounsi^{*1,2} and Ahmed Bakora¹

¹ Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria ² Laboratoire de Modélisation et Simulation Multi-échelle, Département de Physique, Faculté des Sciences Exactes, Département de Physique, Université de Sidi Bel Abbés, Algeria

(Received April 19, 2016, Revised September 23, 2016, Accepted October 12, 2016)

Abstract. A novel four variable refined plate theory is proposed in this work for laminated composite plates. The theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. The obtained results from the present model are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.

Keywords: laminated composite plates; refined plate theory; navier solution

1. Introduction

The composite materials are widely utilized in civil, aerospace, automobile and other engineering industries because of their advantage of high stiffness and strength to weight ratio. With the ever-increasing use of laminated composites in engineering structures, a variety of laminated models have been proposed to predict its behavior. A critical review of more recent studies on the development of laminated models can be found in Refs. (Ghugal and Shimpi 2002, Khandan *et al.* 2012). These theories can be classified as equivalent single layer (ESL), layer-wise and zig-zag theories. The ESL theories can be divided into three main categories: classical laminated plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theories (HSDTs).

The classical laminated plate theory (CLPT), which ignores the transverse normal and shear stresses, predicts acceptable results for thin plates. However, it underestimates deflections and overestimates frequencies as well as buckling loads with moderately thick laminates (Reddy 1997). The first-order shear deformation theory (FSDT) based on Reissner (1945) and Mindlin (1951) is simple to implement and applied for moderately thick plates and provides acceptable results but

http://www.techno-press.org/?journal=scs&subpage=6

^{*}Corresponding author, Professor, E-mail: tou_abdel@yahoo.com

depends on a shear correction factor which is hard to compute as it depends on many parameters (Whitney and Pagano 1970, Noor and Burton 1989, Khdeir 1989, Chakraborty et al. 2003, Li 2008, Sina et al. 2009, Wei et al. 2012, Bellifa et al. 2016, Bouderba et al. 2016). However, there is no requiring of shear correction coefficients when employing higher-order shear deformation theories (HSDTs). Among these models we can cite the third-order theory of Reddy (Reddy 1984, Yesilce 2010, Yesilce and Catal 2009 and 2011, Zidi et al. 2014, Ait Atmane et al. 2015, Ait Yahia et al. 2015, Boukhari et al. 2016, Bounouara et al. 2016, Bourada et al. 2016), the sinusoidal theories (Touratier 1991, Tounsi et al. 2013, Bouderba et al. 2013, Ait Amar Meziane et al. 2014, Draiche et al. 2014, Al-Basyouni et al. 2015, Hamidi et al. 2015, Beldjelili et al. 2016, Houari et al. 2016), the hyperbolic models (Soldatos 1992, Belabed et al. 2014, Akavci 2014, Bousahla et al. 2014, 2016, Hebali et al. 2014, Mahi et al. 2015, Bourada et al. 2015, Attia et al. 2015, Bouchafa et al. 2015, Belkorissat et al. 2015, Bennoun et al. 2016, Tounsi et al. 2016), the inverse hyperbolic theories (Sahoo and Singh 2013, Grover et al. 2013), and the exponential theory of Karama et al. (2003). Xiang et al. (2011) presented a n-order shear deformation theory in which Reddy's theory comes out as special case. Kant and Pandya (1988), Mallikarjuna and Kant (1989) and Kant and Khare (1997) proposed also polynomial HSDTs with cubic variations for axial displacements as in the article by Reddy (1984). To consider the thickness stretching effect (i.e., $\varepsilon_z \neq 0$), Lo *et al.* (1977) and Kant et al. (1988) proposed HSDTs in which axial and transverse displacements are supposed as cubic and parabolic distributions within the thickness, respectively. A review of various shear deformation models for the investigation of laminated composite plates is available in references (Reddy 1990, Mallikarjuna and Kant 1993).

It is worth indicating that some of the above cited HSDTs are computational costly due to additional unknowns introduced to the theory (e.g., theories by Kant and Pandya (1988) and Mallikarjuna and Kant (1989) with seven unknowns, Kant and Khare (1997) with nine unknowns, Lo *et al.* (1977) and Kant *et al.* (1988) with 11 unknowns). Although some well-known HSDTs contain five unknowns as in the case of FSDT (e.g., theories by Reddy (1984), Xiang *et al.* (2009, 2011), Touratier (1991), Ferreira *et al.* (2005), Soldatos (1992), Akavci (2010), Grover *et al.* (2013) and Karama *et al.* (2003)), their equations of motion are much more complicated than those of FSDT. Thus, needs exist for the development of shear deformation theory which is simple to use.

Recently, a new FSDT with four variables is proposed by Mantari and Ore (2015). The aim of this work is to improve the novel FSDT developed by Mantari and Ore (2015) by considering higher-order variations of axial displacements across the plate thickness and studying the bending and buckling behavior of laminated composite plates. Navier solution is employed to determine the analytical solutions for simply supported antisymmetric cross-ply and angle-ply laminates. To demonstrate the accuracy of the present formulation, the computed results are compared with three-dimensional elasticity solutions and results of the FSDT and HSDTs.

2. Theory and formulation

Consider a rectangular plate of total thickness h composed of n orthotropic layers with the coordinate system as indicated in Fig. 1.

2.1 Kinematics

In this work, further simplifying assumptions are considered to the existing HSDT so that the number of variables is diminished. The displacement field of the existing HSDT is given by

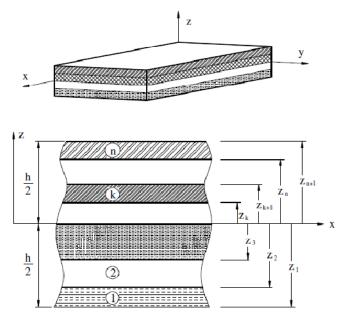


Fig. 1 Coordinate system and layer numbering used for a typical laminated plate

$$u(x, y, z) = u_0(x, y) - z \frac{\partial w_0}{\partial x} + f(z)\varphi_x(x, y)$$
(1a)

$$v(x, y, z) = v_0(x, y) - z \frac{\partial w_0}{\partial y} + f(z)\varphi_y(x, y)$$
(1b)

$$w(x, y, z) = w_0(x, y)$$
 (1c)

where u_0 , v_0 , w_0 , φ_x and φ_y are five generalized displacements, f(z) is the shape function representing the distribution of the transverse shear strains and stresses across the thickness. By supposing that $\varphi_x = \int \theta(x, y) dx$ and $\varphi_y = \int \theta(x, y) dy$, the kinematic of the present theory can be written in a simpler form as

$$u(x, y, z) = u_0(x, y) - z \frac{\partial w_0}{\partial x} + k_1 f(z) \int \theta(x, y) dx$$
(2a)

$$v(x, y, z) = v_0(x, y) - z \frac{\partial w_0}{\partial y} + k_2 f(z) \int \theta(x, y) dy$$
(2b)

$$w(x, y, z) = w_0(x, y) \tag{2c}$$

where $u_0(x, y)$, $v_0(x, y)$, $w_0(x, y)$ and $\theta(x, y)$ are the four unknown displacement functions of middle surface of the plate. The constants k_1 and k_2 depends on the geometry. The integrals

employed are undetermined.

In this article, the current higher-order shear deformation plate theory is obtained by putting

$$f(z) = z \left(\frac{5}{4} - \frac{5z^2}{3h^2}\right)$$
(3)

The strains associated with the displacements in Eq. (2) are

$$\begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases} = \begin{cases} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{cases} + z \begin{cases} k_{x}^{b} \\ k_{y}^{b} \\ k_{xy}^{b} \end{cases} + f(z) \begin{cases} k_{x}^{s} \\ k_{y}^{s} \\ k_{xy}^{s} \end{cases}, \qquad \begin{cases} \gamma_{yz} \\ \gamma_{xz} \end{cases} = g(z) \begin{cases} \gamma_{yz}^{0} \\ \gamma_{xz}^{0} \end{cases},$$
(4)

where

$$\begin{cases} \mathcal{E}_{x}^{0} \\ \mathcal{E}_{y}^{0} \\ \mathcal{Y}_{xy}^{0} \end{cases} = \begin{cases} \frac{\partial u_{0}}{\partial x} \\ \frac{\partial v_{0}}{\partial x} \\ \frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \end{cases}, \qquad \begin{cases} k_{x}^{b} \\ k_{y}^{b} \\ k_{xy}^{b} \end{cases} = \begin{cases} -\frac{\partial^{2} w_{0}}{\partial x^{2}} \\ -\frac{\partial^{2} w_{0}}{\partial y^{2}} \\ -2\frac{\partial^{2} w_{0}}{\partial x\partial y} \end{cases}, \qquad (5a)$$

$$\begin{cases} k_{x}^{s} \\ k_{y}^{s} \\ k_{xy}^{s} \end{cases} = \begin{cases} k_{1}\theta \\ k_{2}\theta \\ k_{1}\frac{\partial}{\partial y}\int \theta \, dx + k_{2}\frac{\partial}{\partial x}\int \theta \, dy \end{cases}, \qquad \begin{cases} \gamma_{yz}^{0} \\ \gamma_{xz}^{0} \end{bmatrix} = \begin{cases} k_{1}\int \theta \, dy \\ k_{2}\int \theta \, dx \end{cases},$$

and

$$g(z) = \frac{df(z)}{dz}$$
(5b)

The integrals used in the above relations shall be resolved by a Navier solution and can be expressed by

$$\frac{\partial}{\partial y}\int\theta\,dx = A'\frac{\partial^2\theta}{\partial x\partial y}, \qquad \frac{\partial}{\partial x}\int\theta\,dy = B'\frac{\partial^2\theta}{\partial x\partial y}, \qquad \int\theta\,dx = A'\frac{\partial\theta}{\partial x}, \qquad \int\theta\,dy = B'\frac{\partial\theta}{\partial y} \tag{6}$$

where the parameters A' and B' are defined according to the type of solution employed, in this case via Navier. Hence, A' and B' are expressed by

$$A' = -\frac{1}{\alpha^2}, \quad B' = -\frac{1}{\beta^2}, \quad k_1 = \alpha^2, \quad k_2 = \beta^2$$
 (7)

where α and β are defined in expression (22).

2.2 Constitutive equations

Under the supposition that each layer contains a plane of elastic symmetry parallel to the x-y plane, the constitutive equations for a layer can be expressed as

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{xz} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 & 0 & 0 \\ Q_{12} & Q_{22} & 0 & 0 & 0 \\ 0 & 0 & Q_{66} & 0 & 0 \\ 0 & 0 & 0 & Q_{44} & 0 \\ 0 & 0 & 0 & 0 & Q_{55} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{xz} \end{bmatrix}$$
(8)

where Q_{ij} are the plane stress-reduced stiffnesses, and are expressed in terms of the engineering constants in the material axes of the layer

$$Q_{11} = \frac{E_1}{1 - v_{12}v_{21}}; \quad Q_{12} = \frac{v_{12}E_2}{1 - v_{12}v_{21}}; \quad Q_{22} = \frac{E_2}{1 - v_{12}v_{21}}; \quad Q_{66} = G_{12}; \quad Q_{44} = G_{23}; \quad Q_{55} = G_{13}$$
(9)

The constitutive equations of each lamina must be transformed to the laminate coordinates (x, y, z). The stress-strain relations in the laminate coordinates of the *k*th layer are expressed as

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{xz} \end{cases}^{(k)} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} & 0 & 0 \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} & 0 & 0 \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} & 0 & 0 \\ 0 & 0 & 0 & \overline{Q}_{44} & \overline{Q}_{45} \\ 0 & 0 & 0 & \overline{Q}_{45} & \overline{Q}_{55} \end{bmatrix}^{(k)} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{xz} \end{cases}^{(k)}$$
(10)

where \overline{Q}_{ij} are the transformed material constants given in Reddy (1997).

2.3 Governing equations

The governing equations will be determined by employing principle of the minimum total potential energy as follows

$$\delta \Pi = \delta (U - V) = 0 \tag{11}$$

where Π is the total potential energy. δU is the virtual variation of the strain energy; and δV is the variation of work done by external forces. The first variation of the strain energy is given as

$$\delta U = \int_{V} \left[\sigma_x \delta \varepsilon_x + \sigma_y \delta \varepsilon_y + \tau_{xy} \delta \gamma_{xy} + \tau_{yz} \delta \gamma_{yz} + \tau_{xz} \delta \gamma_{xz} \right] dV$$

$$= \int_{A} \left[N_x \delta \varepsilon_x^0 + N_y \delta \varepsilon_y^0 + N_{xy} \delta \gamma_{xy}^0 + M_x^b \delta k_x^b + M_y^b \delta k_y^b + M_{xy}^b \delta k_{xy}^b \right]$$

$$+ M_x^s \delta k_x^s + M_y^s \delta k_y^s + M_{xy}^s \delta k_{xy}^s + S_{yz}^s \delta \gamma_{yz}^s + S_{xz}^s \delta \gamma_{xz}^0 \right] dA = 0$$
 (12)

where A is the top surface and the stress resultants N, M, and S are expressed by

$$(N_i, M_i^b, M_i^s) = \int_{-h/2}^{h/2} (1, z, f) \sigma_i dz, \quad (i = x, y, xy) \quad \text{and} \quad (S_{xz}^s, S_{yz}^s) = \int_{-h/2}^{h/2} g(\tau_{xz}, \tau_{yz}) dz$$
(13)

The variation of the external work can be expressed as

$$\delta V = -\int_{A} q \delta w_0 dA - \int_{A} \left(N_x^0 \frac{\partial w_0}{\partial x} \frac{\partial \delta w_0}{\partial x} + 2N_{xy}^0 \frac{\partial w_0}{\partial x} \frac{\partial \delta w_0}{\partial y} + N_y^0 \frac{\partial w_0}{\partial y} \frac{\partial \delta w_0}{\partial y} \right) dA$$
(14)

where q and (N_x^0, N_y^0, N_{xy}^0) are transverse and in-plane applied loads, respectively. Substituting the relations for δU , and δV from Eqs. (12) and (14) into Eq. (11) and integrating by parts, and collecting the coefficients of δu_0 , δv_0 , δw_0 , and $\delta \theta$, the following governing equations for the laminate plate are obtained as follows

$$\delta u_{0} : \frac{\partial N_{x}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = 0$$

$$\delta v_{0} : \frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{y}}{\partial y} = 0$$

$$\delta w_{0} : \frac{\partial^{2} M_{x}^{b}}{\partial x^{2}} + 2 \frac{\partial^{2} M_{xy}^{b}}{\partial x \partial y} + \frac{\partial^{2} M_{y}^{b}}{\partial y^{2}} + q + N_{x}^{0} \frac{\partial^{2} w_{0}}{\partial x^{2}} + 2 N_{xy}^{0} \frac{\partial^{2} w_{0}}{\partial x \partial y} + N_{y}^{0} \frac{\partial^{2} w_{0}}{\partial y^{2}} = 0$$

$$\delta \theta : -k_{1} M_{x}^{s} - k_{2} M_{y}^{s} - (k_{1} A' + k_{2} B') \frac{\partial^{2} M_{xy}^{s}}{\partial x \partial y} + k_{1} A' \frac{\partial S_{xz}^{s}}{\partial x} + k_{2} B' \frac{\partial S_{yz}^{s}}{\partial y} = 0$$
(15)

Substituting Eq. (10) into Eq. (13) and integrating within the thickness of the plate, the stress resultants are written as

$$\begin{cases} \begin{cases} N_{x} \\ N_{y} \\ N_{xy} \end{pmatrix} \\ \begin{cases} M_{x} \\ N_{y} \\ N_{xy} \end{pmatrix} \\ \begin{cases} M_{x}^{b} \\ M_{xy}^{b} \\ M_{xy}^{b} \end{pmatrix} \\ \begin{cases} M_{x}^{b} \\ M_{y}^{b} \\ M_{xy}^{b} \end{pmatrix} \\ \begin{cases} M_{x}^{b} \\ M_{y}^{b} \\ M_{xy}^{b} \end{pmatrix} \\ \begin{cases} M_{x}^{s} \\ M_{xy}^{b} \\ M_{xy}^{b} \end{pmatrix} \\ \begin{cases} M_{x}^{s} \\ M_{xy}^{s} \\ M_{xy}^{s} \end{pmatrix} \end{pmatrix} \\ = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} D_{11}^{s} & D_{12}^{s} & D_{16}^{s} \\ D_{16}^{s} & D_{26}^{s} & D_{66}^{s} \end{bmatrix} \begin{bmatrix} A_{x}^{s} & A_{55}^{s} \\ B_{16}^{s} & B_{26}^{s} & B_{66}^{s} \end{bmatrix} \begin{bmatrix} D_{11}^{s} & D_{12}^{s} & D_{16}^{s} \\ D_{12}^{s} & D_{22}^{s} & D_{26}^{s} \\ D_{16}^{s} & D_{26}^{s} & D_{66}^{s} \end{bmatrix} \begin{bmatrix} H_{11}^{s} & H_{12}^{s} & H_{16}^{s} \\ D_{16}^{s} & D_{26}^{s} & D_{66}^{s} \end{bmatrix} \begin{bmatrix} H_{11}^{s} & H_{12}^{s} & H_{16}^{s} \\ H_{12}^{s} & H_{22}^{s} & H_{26}^{s} \\ H_{16}^{s} & H_{26}^{s} & H_{66}^{s} \end{bmatrix} \end{bmatrix} \begin{bmatrix} A_{x}^{s} \\ A_{x}^{s} \\ A_{x}^{s} \\ A_{x}^{s} \\ B_{16}^{s} & B_{26}^{s} & B_{66}^{s} \end{bmatrix} \begin{bmatrix} D_{10}^{s} & D_{12}^{s} & D_{16}^{s} \\ D_{12}^{s} & D_{22}^{s} & D_{26}^{s} \\ D_{16}^{s} & D_{26}^{s} & D_{66}^{s} \end{bmatrix} \begin{bmatrix} H_{11}^{s} & H_{12}^{s} & H_{16}^{s} \\ H_{12}^{s} & H_{22}^{s} & H_{26}^{s} \\ H_{16}^{s} & H_{26}^{s} & H_{66}^{s} \end{bmatrix} \end{bmatrix} \begin{bmatrix} A_{x}^{s} \\ A_{x}$$

and stiffness components are given as

$$(A_{ij}, B_{ij}, B_{ij}^{s}, D_{ij}, D_{ij}^{s}, H_{ij}^{s}) = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k+1}} \overline{Q}_{ij}^{(k)}(1, z, f(z), z^{2}, zf(z), f(z)^{2}) dz , (i, j = 1, 2, 6),$$
(17a)

$$A_{ij}^{s} = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k+1}} \overline{Q}_{ij}^{(k)} (g(z))^{2} dz, \ (i, j = 4, 5)$$
(17b)

Eq. (15) can be written in terms of displacements (u_0, v_0, w_0, θ) by substituting for the stress resultants from Eq. (16). For homogeneous laminates, the governing Eq. (15) take the form

$$A_{11}d_{11}u_0 + 2A_{16}d_{12}u_0 + A_{66}d_{22}u_0 + (A_{12} + A_{66})d_{12}v_0 + A_{26}d_{22}v_0 + A_{16}d_{11}v_0 - (B_{11}d_{111}w_0 + 3B_{16}d_{112}w_0 + (B_{12} + 2B_{66})d_{122}w_0 + B_{26}d_{222}w_0) + (k_1A' + k_2B')B_{66}^s d_{122}\theta + (k_1B_{11}^s + k_2B_{12}^s)d_1\theta + (k_1A' + k_2B')B_{16}^s d_{112}\theta - (k_1B_{16}^s + k_2B_{26}^s)d_2\theta = 0,$$
(18a)

$$A_{11}d_{16}u_{0} + (A_{12} + A_{66})d_{12}u_{0} + A_{26}d_{22}u_{0} + A_{66}d_{22}v_{0} + 2A_{26}d_{12}v_{0} + A_{22}d_{22}v_{0} - (B_{16}d_{111}w_{0} + 3B_{26}d_{122}w_{0} + (B_{12} + 2B_{66})d_{112}w_{0} + B_{22}d_{222}w_{0}) + (k_{1}A' + k_{2}B')B_{66}^{s}d_{112}\theta + (k_{2}B_{22}^{s} + k_{1}B_{12}^{s})d_{2}\theta + (k_{1}A' + k_{2}B')B_{26}^{s}d_{122}\theta + (k_{1}B_{16}^{s} + k_{2}B_{26}^{s})d_{1}\theta = 0,$$
(18b)

$$\begin{pmatrix} B_{11}d_{111}u_0 + 3B_{16}d_{112}u_0 + (B_{12} + 2B_{66})d_{122}u_0 + B_{26}d_{222}u_0 \end{pmatrix} + (B_{16}d_{111}v_0 + 3B_{26}d_{122}v_0 + (B_{12} + 2B_{66})d_{112}v_0 + B_{22}d_{222}v_0) \\ - D_{11}d_{1111}w_0 - 2(D_{12} + 2D_{66})d_{1122}w_0 - D_{22}d_{2222}w_0 - 4D_{16}d_{1112}w_0 - 4D_{26}d_{1222}w_0 \\ + (k_1D_{11}^s + k_2D_{12}^s)d_{11}\theta + 2(k_1A' + k_2B')D_{66}^s d_{1122}\theta + (k_1D_{12}^s + k_2D_{22}^s)d_{22}\theta + 2(k_1D_{16}^s + k_2D_{26}^s)d_{12}\theta \\ + (k_1A' + k_2B')D_{16}^s d_{1112}\theta + (k_1A' + k_2B')D_{26}^s d_{1222}\theta + N_x^0 d_{11}w_0 + 2N_{xy}^0 d_{12}w_0 + N_y^0 d_{22}w_0 + q = 0$$
(18c)

$$- \begin{pmatrix} (k_{1}A' + k_{2}B')B_{66}^{s} d_{122}u_{0} + (k_{1}B_{11}^{s} + k_{2}B_{12}^{s})d_{1}u_{0} \\ + (k_{1}A' + k_{2}B')B'B_{16}^{s} d_{112}u_{0} - (k_{1}B_{16}^{s} + k_{2}B_{26}^{s})d_{2}u_{0} \end{pmatrix} \\ - \begin{pmatrix} (k_{1}A' + k_{2}B')B_{66}^{s} d_{112}v_{0} + (k_{2}B_{22}^{s} + k_{1}B_{12}^{s})d_{2}v_{0} \\ + (k_{1}A' + k_{2}B')B_{26}^{s} d_{122}v_{0} + (k_{1}B_{16}^{s} + k_{2}B_{26}^{s})d_{1}v_{0} \end{pmatrix} \\ + (k_{1}D_{11}^{s} + k_{2}D_{12}^{s})d_{11}w_{0} + 2(k_{1}A' + k_{2}B')D_{66}^{s} d_{1122}w_{0} + (k_{1}D_{12}^{s} + k_{2}D_{22}^{s})d_{22}w_{0} \\ + 2(k_{1}D_{16}^{s} + k_{2}D_{26}^{s})d_{12}w_{0} + (k_{1}A' + k_{2}B')D_{66}^{s} d_{1122}w_{0} + (k_{1}A' + k_{2}B')D_{26}^{s} d_{1222}w_{0} \\ - H_{11}^{s}k_{1}\theta - H_{22}^{s}k_{2}\theta - 2H_{12}^{s}k_{1}k_{2}\theta - (k_{1}A' + k_{2}B')^{2}H_{66}^{s} d_{1122}\theta - 2(k_{1}A' + k_{2}B')(H_{16}^{s} + H_{26}^{s})d_{12}\theta \\ + A_{44}^{s}(k_{2}B')^{2} d_{22}\theta + A_{55}^{s}(k_{1}A')^{2} d_{11}\theta + 2A_{45}^{s}k_{1}k_{2}A'B' d_{12}\theta = 0 \end{cases}$$

$$(18d)$$

where d_{ij} , d_{ijl} and d_{ijlm} are the following differential operators

$$d_{ij} = \frac{\partial^2}{\partial x_i \partial x_j}, \quad d_{ijl} = \frac{\partial^3}{\partial x_i \partial x_j \partial x_l}, \quad d_{ijlm} = \frac{\partial^4}{\partial x_i \partial x_j \partial x_l \partial x_m}, \quad d_i = \frac{\partial}{\partial x_i}, \quad (i, j, l, m = 1, 2).$$
(19)

3. Analytical solutions for anti-symmetric cross-ply laminates

The Navier procedure is utilized to determine the closed-form solutions of the partial differential equations in Eq. (18) for simply supported rectangular plates. For anti-symmetric cross-ply laminated plates, the following stiffness components are identically zero

$$A_{16} = A_{26} = D_{16} = D_{26} = B_{16}^s = B_{26}^s = D_{16} = D_{26} = D_{16}^s = D_{26}^s = H_{16}^s = H_{26}^s = A_{45}^s = 0$$

$$B_{12} = B_{66} = B_{12}^s = B_{66}^s = 0$$
(20)

Based on the Navier method, the following expansions of displacements are adopted to automatically respect the simply supported boundary conditions of plate

where U_{mn} , V_{mn} , W_{mn} and X_{mn} are coefficients, and α and β are expressed as

$$\alpha = m\pi/a$$
 and $\beta = n\pi/b$ (22)

The transverse load q is also expanded in the double-Fourier sine series as

$$q(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_{mn} \sin(\alpha x) \sin(\beta y), \qquad (23)$$

Substituting Eqs. (23), (21) and (20) into Eq. (18), the Navier solution of anti-symmetric crossply laminates can be deduced from equations

$$\begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{23} & S_{24} \\ S_{13} & S_{23} & S_{33} + k & S_{34} \\ S_{14} & S_{24} & S_{34} & S_{44} \end{bmatrix} \begin{bmatrix} U_{mn} \\ V_{mn} \\ W_{mn} \\ X_{mn} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ q_{mn} \\ 0 \end{bmatrix}$$
(24)

where

$$S_{11} = -(A_{11}\alpha^2 + A_{66}\beta^2), \quad S_{12} = -\alpha\beta (A_{12} + A_{66}), \quad S_{13} = \alpha (B_{11}\alpha^2), \quad S_{14} = \alpha (k_1 B_{11}^s), \quad (25)$$

A novel four variable refined plate theory for laminated composite plates

$$S_{22} = -(A_{66}\alpha^{2} + A_{22}\beta^{2}), \quad S_{23} = \beta(B_{22}\beta^{2}), \quad S_{24} = \beta(k_{2}B_{22}^{s}),$$

$$S_{33} = -(D_{11}\alpha^{4} + 2(D_{12} + 2D_{66})\alpha^{2}\beta^{2} + D_{22}\beta^{4}),$$

$$S_{34} = -(k_{1}D_{11}^{s}\alpha^{2} + k_{2}D_{12}^{s}\beta^{2}) + 2(k_{1}A' + k_{2}B')D_{66}^{s}\alpha^{2}\beta^{2} - (k_{2}D_{22}^{s}\beta^{2} + k_{1}D_{12}^{s}\alpha^{2})$$

$$S_{44} = -k_{1}(k_{1}H_{11}^{s} + k_{2}H_{12}^{s}) - (k_{1}A' + k_{2}B')((k_{1}A' + k_{2}B')H_{66}^{s}\alpha^{2}\beta^{2}) - k_{2}(k_{1}H_{12}^{s} + k_{2}H_{22}^{s})$$

$$-(k_{1}A')^{2}A_{55}^{s}\alpha^{2} - (k_{2}B')^{2}A_{44}^{s}\beta^{2}$$

$$k = N_{x}^{0}\alpha^{2} + N_{y}^{0}\beta^{2}$$
(25)

4. Analytical solutions for anti-symmetric angle-ply laminates

For anti-symmetric angle-ply laminated plates, the following stiffness components are identically zero

$$A_{16} = A_{26} = D_{16} = D_{26} = B_{16}^s = B_{26}^s = D_{16} = D_{26} = D_{16}^s = D_{26}^s = H_{16}^s = H_{26}^s = H_{45}^s = 0$$

$$B_{11} = B_{12} = B_{22} = B_{66} = B_{11}^s = B_{12}^s = B_{22}^s = B_{66}^s = 0$$
(26)

The following expansions of displacements are adopted to automatically respect the simply supported boundary conditions of anti-symmetric angle-ply laminated plate

Substituting Eqs. (23), (26) and (27) into Eq. (18), the equations of the form in Eq. (24) are obtained with the following coefficients

$$S_{11} = -(A_{11}\alpha^{2} + A_{66}\beta^{2}), \quad S_{12} = -\alpha\beta (A_{12} + A_{66}), \quad S_{13} = 3B_{16}\alpha^{2}\beta + B_{26}\beta^{3}, \\S_{14} = -(k_{1}A' + k_{2}B')B_{16}^{s}\alpha^{2}\beta + \beta (k_{1}B_{16}^{s} + k_{2}B_{26}^{s}), \\S_{22} = -(A_{66}\alpha^{2} + A_{22}\beta^{2}), \quad S_{23} = 3B_{26}\alpha\beta^{2} + B_{16}\alpha^{3}, \\S_{24} = -(k_{1}A' + k_{2}B')B_{26}^{s}\alpha\beta^{2} + \alpha (k_{1}B_{16}^{s} + k_{2}B_{26}^{s}), \\S_{33} = -(D_{11}\alpha^{4} + 2(D_{12} + 2D_{66})\alpha^{2}\beta^{2} + D_{22}\beta^{4}), \\S_{34} = -(k_{1}D_{11}^{s}\alpha^{2} + k_{2}D_{12}^{s}\beta^{2}) + 2(k_{1}A' + k_{2}B')D_{66}^{s}\alpha^{2}\beta^{2} - (k_{2}D_{22}^{s}\beta^{2} + k_{1}D_{12}^{s}\alpha^{2}), \\S_{44} = -k_{1}(k_{1}H_{11}^{s} + k_{2}H_{12}^{s}) - (k_{1}A' + k_{2}B')((k_{1}A' + k_{2}B')H_{66}^{s}\alpha^{2}\beta^{2}), \\-k_{2}(k_{1}H_{12}^{s} + k_{2}H_{22}^{s}) - (k_{1}A')^{2}A_{55}^{s}\alpha^{2} - (k_{2}B')^{2}A_{44}^{s}\beta^{2}, \\k = N_{x}^{0}\alpha^{2} + N_{y}^{0}\beta^{2}$$

$$(28)$$

5. Numerical results and discussion

In this section, various numerical examples are proposed for checking the exactitude and efficiency of the present model in predicting the bending and buckling responses of simply supported antisymmetric cross-ply and angle-ply laminated plates. For the checking purpose, the results computed using the present four variable refined plate theory are compared with those of the CLPT, FSDT, HSDT, RPT and exact solution of 3D elasticity. The presentation of various displacement models is shown in Table 1. In all examined examples, a shear correction factor of 5/6 is utilized for FSDT. The following lamina characteristics are employed:

• Material 1 (Pagano 1970)

$$E_1 = 25 E_2, \quad G_{12} = G_{13} = 0.5 E_2, \quad G_{23} = 0.2 E_2, \quad v_{12} = 0.25$$
 (29a)

• Material 2 (Ren 1990)

$$E_1 = 40 E_2, \quad G_{12} = G_{13} = 0.5 E_2, \quad G_{23} = 0.6 E_2, \quad v_{12} = 0.25$$
 (29b)

• Material 2 (Ren 1990)

$$E_1 = 40 E_2, \quad G_{12} = G_{13} = 0.6 E_2, \quad G_{23} = 0.5 E_2, \quad v_{12} = 0.25$$
 (29c)

For convenience, the following dimensionless quantities are utilized in investigating the numerical results

$$\overline{w} = \frac{100E_ch^3}{q_0a^4}w\left(\frac{a}{2},\frac{b}{2}\right), \quad \left(\overline{\sigma}_x,\overline{\sigma}_y\left(\frac{a}{2},\frac{b}{2},\frac{z}{h}\right) = \frac{h^2}{qa^2}\left(\sigma_x,\sigma_y\right), \quad \overline{\tau}_{xy}\left(\frac{a}{2},\frac{b}{2},\frac{z}{h}\right) = \frac{h^2}{qa^2}\tau_{xy},$$

$$\overline{\tau}_{xz}\left(0,\frac{b}{2},\frac{z}{h}\right) = \frac{h}{qa}\tau_{xz}, \quad \overline{\tau}_{yz}\left(\frac{b}{2},0,\frac{z}{h}\right) = \frac{h}{qa}\tau_{yz}, \quad \overline{N} = \frac{N_{cr}a^2}{E_mh^3}$$
(30)

Table 1 Displacement models

Model	Theory	Unknown variables
CLPT	Classical laminate plate theory	3
FSDT	First-order shear deformation theory ^(a)	5
HSDT	Higher-order shear deformation theory ^(b)	5
Ren	Higher-order shear deformation theory ^(c)	5
RPT	Refined plate theory ^(d)	4
Present	Present higher-order shear deformation theory	4

^(a) Whitney and Pagano (1970)

^(b) Reddy (1980)

^(c) Ren (1990)

^(d) Kim *et al.* (2009)

5.1 Bending problem

The bending solution can be deduced from Eq. (24) by setting the in-plane loads to zero

٦ /

$$\begin{vmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{23} & S_{24} \\ S_{13} & S_{23} & S_{33} & S_{34} \\ S_{14} & S_{24} & S_{34} & S_{44} \end{vmatrix} \begin{vmatrix} U_{mn} \\ V_{mn} \\ W_{mn} \\ X_{mn} \end{vmatrix} = \begin{cases} 0 \\ 0 \\ q_{mn} \\ 0 \end{cases}$$
(31)

Example 1: A simply supported two-layer anti-symmetric cross-ply (0/90) square plate subjected to sinusoidal transverse force is examined using Material 1. The obtained numerical values of the non-dimensional transverse displacement are presented in Table 2. From this example, it can be observed that the results determined by employing HSDT, RPT and the present theory are identical. Compared to the elasticity solution (Pagano 1970), the present model underpredicts deflection by 3.57% for a/h ratio equal to 5. This small difference is due to the thickness stretching effect which is neglected in the present model ($\varepsilon_z = 0$). Table 3 shows comparison of displacement and stresses for the (0/90) laminated plate subjected to single sine load. The deflection and stresses predicted by the present model are identical with those of HSDT of Reddy. The maximum deflections computed by present theory are also in good agreement with those of exact solution (Pagano 1970) and other solutions of Sayyad and Ghugal (2014) whereas CLPT underestimates the results for all slenderness ratios. The axial normal stress $\overline{\sigma}_{r}$ calculated by the present model is in good agreement with that of Sayyad and Ghugal (2014) and in tune with exact solution whereas FSDT and CLPT underestimate this stress for all slenderness ratios when compared with the values of other refined theories. Both the present theory and the theory proposed by Sayyad and Ghugal (2014), give the same values of the axial normal stress $\overline{\sigma}_{y}$ and shear stress $\bar{\tau}_{\rm rw}$. These results are also in good agreement with those of exact solution (Pagano 1970). The proposed theory predicts more accurate transverse shear stresses than those reported by other refined theories as compared to exact values. Fig. 2 demonstrates the variation of nondimensional transverse displacement versus thickness ratios a/h by employing all displacement models. It can be confirmed that the curves of present theory and HSDT are identical, and the CLPT underestimates the deflection of composite plate. Since the transverse shear deformation effects are not considered in CLPT, the non-dimensional transverse displacement \overline{w} calculated by CLPT are not influenced by the variation of thickness ratio a/h. Thus, in general, the proposed theory is successfully verified.

	150 10dd	
a / h	Source	\overline{w}
	Pagano (1970)	4.9362
	HSDT	4.5619
2	FSDT	5.4103
	RPT	4.5619
	Present	4.5619

Table 2 Non-dimensional deflections of simply supported two-layer (0/90) square laminates under sinusoidal transverse load

a / h	Source	\overline{w}
	Pagano (1970)	1.7287
	HSDT	1.6670
5	FSDT	1.7627
	RPT	1.6670
	Present	1.6670
	Pagano (1970)	1.2318
	HSDT	1.2161
10	FSDT	1.2416
	RPT	1.2161
	Present	1.2161
	Pagano (1970)	1.1060
	HSDT	1.1018
20	FSDT	1.1113
	RPT	1.1018
	Present	1.1018
	Pagano (1970)	1.0742
	HSDT	1.0651
100	FSDT	1.0653
100	RPT	1.0651
	Present	1.0651
	CLPT	1.0636

Table 2 Continued

 Table 3 Comparison of transverse displacement and stresses for simply supported two-layer (0/90) square laminated plate subjected to single sine load

0.3128 0.3189
0.3189
0 2128
0.3128
0.2274
_
0.3130
0.3190
0.3261
0.3190
0.2274
_
0.3310

^(a) Results taken from reference Sayyad and Ghugal (2014)

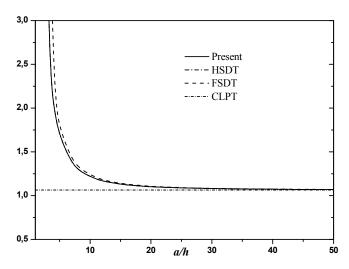


Fig. 2 The effect of thickness ratio on non-dimensional deflection of simply supported two-layer (0/90) square laminates under sinusoidal transverse load

Example 2: A simply supported two-layer anti-symmetric angle-ply (45/-45) laminate subjected to sinusoidal transverse force is investigated by considering Material 2. Dimensionless deflections for the square and rectangular plates are presented in Table 4 for various values of thickness ratio *a* / *h*. The computed results are compared with those generated via HSDT, RPT, and FSDT. It can be confirmed that a good agreement is demonstrated for all values of thickness ratio *a* / *h*. The dimensionless deflections of two-layer (45/-45) square laminates under sinusoidal transverse force

a / h	Course		\overline{w}
	Source -	Square plate $(a = b)$	Rectangular plate $(a = 3b)$
	HSDT	1.0203	3.1560
4	FSDT	1.1576	3.3814
4	RPT	1.0203	3.0971
	Present	1.0203	3.0971
10	HSDT	0.5581	2.2439
	FSDT	0.5773	2.2784
	RPT	0.5581	2.2325
	Present	0.5581	2.2325
100	HSDT	0.4676	2.0671
	FSDT	0.4678	2.0674
	RPT	0.4676	2.0670
	CLPT	0.4667	2.0653
	Present	0.4676	2.0670

Table 4 Non-dimensional deflections of simply supported two-layer (45/-45) laminates under sinusoidal transverse load

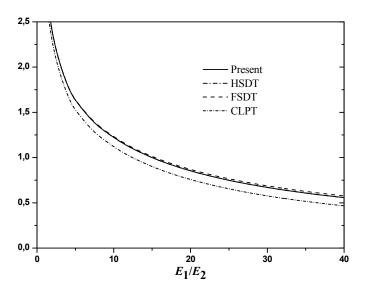


Fig. 3 The effect of modulus ratio on non-dimensional deflection of simply supported two-layer (45/-45) square laminates under sinusoidal transverse load (a / h = 10)

are illustrated in Fig. 3 for various ratio of modulus E_1 / E_2 . Again, it can be concluded that the results predicted by the present theory, HSDT and RPT are in excellent agreement for a wide range of values of modulus ratio.

5.2 Buckling problem

For buckling investigation, the applied loads are supposed to be in-plane forces

$$N_x^0 = -N_0, \quad N_x^0 = \gamma N_0, \quad \gamma = \frac{N_x^0}{N_y^0}, \quad N_{xy}^0 = 0$$
 (32)

The buckling solution can be determined from Eq. (24) by setting the transverse loads to zero

$$\begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{23} & S_{24} \\ S_{13} & S_{23} & S_{33} - N_0 (\alpha^2 + \gamma \beta^2) & S_{34} \\ S_{14} & S_{24} & S_{34} & S_{44} \end{bmatrix} \begin{bmatrix} U_{mn} \\ V_{mn} \\ W_{mn} \\ X_{mn} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(33)

Example 3: A simply supported anti-symmetric cross-ply $(0/90)_n$ (n = 2, 3,5) square plate subjected under uniaxial compressive force on sides x = 0, a is examined by considering Material 3. Table 5 demonstrates a comparison between the results computed by employing the various models and the 3D elasticity solutions reported by Noor (1975). The examination of presented results clearly shows that both the present theory and HSDT predict identical values of the buckling load and these results are in good agreement also with those given by 3D elasticity solutions (Noor and Burton 1990). Compared to the 3 D elasticity solution, the buckling loads

predicted by the present model, HSDT, and FSDT are 6.11%, and 7.17%, respectively, for fourlayer antisymmetric cross-ply (0/90/0/90) square laminates. The observed difference is due to the thickness stretching effect which is neglected in the present model ($\varepsilon_z = 0$). The influence of thickness ratio a / h on buckling force of simply supported four-layer (0/90/0/90) square plates is also shown in Fig. 4. Again, it can be confirmed that the curves of present theory and HSDT are identical, and the CLPT overestimates the buckling load of composite plate.

a / h	Source	\overline{N}
	Exact ^(a)	21.2796
	HSDT	22.5790
4	FSDT	22.8060
	Present	22.5790
	CLPT	30.3591
	Exact ^(a)	23.6689
	HSDT	24.4596
10	FSDT	24.5777
	Present	24.4596
	CLPT	33.5817
	Exact ^(a)	24.9636
	HSDT	25.4225
100	FSDT	25.4500
	Present	25.4225
	CLPT	35.4225

Table 5 Non-dimensional uniaxial buckling load of simply supported anti-symmetric cross-ply (0/90/...) square laminates (a / h = 10)

^(a) Noor (1975)

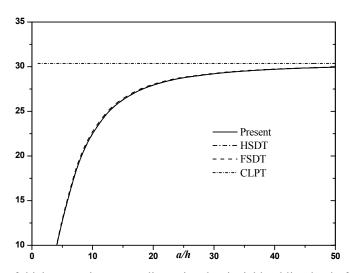


Fig. 4 The effect of thickness ratio on non-dimensional uniaxial buckling load of simply supported four-layer (0/90/0/90) square laminates

- / 1-	Source –	\overline{N}	
a / h		$\theta = 30^{\circ}$	$\theta = 45^{\circ}$
	Ren (1990)	9.5368	9.8200
	HSDT	9.3391	8.2377
4	FSDT	7.5450	6.7858
	RPT	9.3518	8.3963
	Present	9.3518	8. 3963
	Ren (1990)	15.7517	16.4558
	HSDT	17.1269	18.1544
10	FSDT	16.6132	17.5522
	RPT	17.2795	18.1544
	Present	17.2795	18.1544
	Ren (1990)	20.4793	21.6384
	HSDT	20.5017	21.6663
100	FSDT	20.4944	21.6576
100	RPT	20.5040	21.6663
	Present	20.5040	21.6663
	CLPT	20.5026	21.6643

Table 6 Non-dimensional uniaxial buckling load of simply supported two-layer ($\theta / -\theta$) square laminates

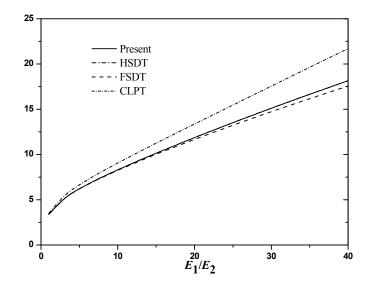


Fig. 5 The effect of modulus ratio on non-dimensional uniaxial buckling load of simply supported two-layer (45/-45) square laminates (a/h = 10)

Example 4: A simply supported two-layer anti-symmetric angle-ply $(\theta/-\theta)$ square plate under an uniaxial compressive force on sides x = 0, a, a is investigated by considering Material 3. The numerical values of dimensionless buckling load are reported in Table 6. The computed results are compared with those predicted by Ren (1990). For all values of thickness ratio and fiber orientation, the buckling forces determined by the present theory, RPT and HSDT are almost identical. For a / h ratio equal to 4 and the fiber orientation equal to 30°, the buckling force values computed by FSDT, HSDT, and the present theory are 20.88 %, 2.07 %, and 1.94 % lower as compared to the results determined by Ren (1990). The buckling force values calculated by employing the five models are in an excellent agreement with those given by Ren (1990) for thin plates (a / h = 100). The influence of modulus ratio on dimensionless uniaxial buckling force of simply supported two-layer (45/-45) square plate is demonstrated in Fig. 5. It can be concluded that increasing the modular ratio makes the plate stiffer because the buckling load is reduced.

6. Conclusions

A simplified HSDT is developed for laminated composite plates. By proposing some additional simplifying assumptions to the existing HSDT, with the consideration of an undetermined integral term, the number of variables and governing equations of the proposed HSDT are reduced by one, and thus, make this formulation simple and efficient to utilize. The theory provides parabolic variable of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficients. Verification investigations demonstrate that the predictions by the proposed HSDT and existing HSDT for anti-symmetric cross-ply and angle- ply laminates are close to each other. In conclusion, the present model can improve the numerical computational cost because of their diminished degrees of freedom

References

- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318.
- Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", *Steel Compos. Struct.*, *Int. J.*, 19(2), 369-384.
- Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", *Struct. Eng. Mech.*, *Int. J.*, 53(6), 1143-1165.
- Akavci, S. (2010), "Two new hyperbolic shear displacement models for orthotropic laminated composite plates", Mech. Compos. Mater., 46(2), 215-226.
- Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", *Compos. Struct.*, **108**, 667-676.
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", *Compos. Struct.*, **125**, 621-630.
- Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", *Steel Compos. Struct., Int. J.*, **18**(1), 187-212.
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Bég, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", *Compos.: Part B*, 60, 274-283.
- Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", *Smart Struct*.

Syst., Int. J., 18(4), 755-786.

- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275.
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", *Steel Compos. Struct.*, *Int. J.*, 18(4), 1063-1081.
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", *Mech. Adv. Mater. Struct.*, **23**(4), 423-431.
- Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", *Steel Compos. Struct.*, *Int. J.*, **18**(6), 1493-1515.
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", *Steel Compos. Struct.*, *Int. J.*, **14**(1), 85-104.
- Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", *Struct. Eng. Mech., Int. J.*, **58**(3), 397-422.
- Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", *Struct. Eng. Mech., Int.* J., 57(5), 837-859.
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", *Steel Compos. Struct.*, *Int. J.*, 20(2), 227-249.
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", *Steel Compos. Struct.*, *Int. J.*, 18(2), 409-423.
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", *Steel Compos. Struct.*, *Int. J.*, 21(6), 1287-1306.
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", *Int. J. Computat. Method.*, 11(6), 1350082.
- Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", *Struct. Eng. Mech.*, Int. J., 60(2), 313-335.
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", *Int. J. Mech. Sci.*, 45(3), 519-539.
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Analysis of composite plates by trigonometric shear deformation theory and multiquadrics", *Comput. Struct.*, 83(27), 2225-2237.
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories of isotropic and anisotropic laminated plates", J. Reinf. Plast Compos., 21(9), 775-813.
- Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", *Compos. Struct.*, **95**, 667-675.
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", *Steel Compos. Struct.*, *Int. J.*, 18(1), 235-253.
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383.
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three -unknown sinusoidal shear deformation theory for functionally graded plates", *Steel Compos. Struct., Int. J.*, (Accepted).
- Kant, T. and Khare, R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40(24), 4477-4499.

- Kant, T. and Pandya, B.N. (1988), "A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates", *Compos. Struct.*, **9**(3), 215-246.
- Kant, T., Ravichandran, R., Pandya, B. and Mallikarjuna, B. (1988), "Finite element transient dynamic analysis of isotropic and fibre reinforced composite plates using a higher-order theory", *Compos. Struct.*, 9(4), 319-342.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", *Int. J. Solids Struct.*, 40(6), 1525-1546.
- Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: a review", J. Mater. Sci., 47(16), 5901-5910.
- Khdeir, A.A. (1989), "Comparison between shear deformable and Kirchhoff theories for bending, buckling and vibration of antisymmetric angle-ply laminated plates", *Compos. Struct.*, **13**(3), 159-172.
- Kim, S.E., Thai, H.T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89, 197-205.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams", J. Sound Vib., **318**(4-5), 1210-1229.
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A higher-order theory of plate deformation, part 2: laminated plates", J. Appl. Mech., 44(4), 669-676.
- Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", *Appl. Math. Model.*, 39, 2489-2508.
- Mallikarjuna, M. and Kant, T. (1989), "A higher-order theory for free vibration of unsymmetrically laminated composite and sandwich plates-finite element evaluations", *Comput. Struct.*, **32**(5), 1125-1132.
- Mallikarjuna, M. and Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", *Compos. Struct.*, **23**(4), 293-312.
- Mantari, J.L. and Ore, M. (2015), "Free vibration of single and sandwich laminated composite plates by using a simplified FSDT", *Compos. Struct.*, **132**, 952-959.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., Trans. ASME, 18(1), 31-38.
- Noor, A.K. (1990), "Stability of multilayered composite plate", Fibre. Sci. Technol., 8, 81-89.
- Noor, A.K. and Burton, W.S. (1989), "Stress and free vibration analyses of multilayered composite plates", *Compos. Struct.*, **11**(3), 183-204.
- Pagano, N.J. (1970), "Exact solution for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752.
- Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", *Shock Vib. Dig.*, **22**(7), 3-17.
- Reddy, J.N. (1997), *Mechanics of Laminated Composite Plate: Theory and Analysis*, CRC Press, New York, NY, USA.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., Trans. ASME, 12(2), 69-77.
- Ren, J.G. (1990), "Bending, vibration and buckling of laminated plates", (Cheremisinoff N.P. Editor), Handbook of Ceramics and Composites, (Vol. 1), Marcel Dekker, New York, NY, USA, pp. 413-450.
- Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", *Compos. Struct.*, 105, 385-397.
- Sayyad, A.S. and Ghugal, Y.M. (2014), "Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory", *Struct. Eng. Mech., Int. J.*, **51**(5), 867-891.
- Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of

functionally graded beams", Mater. Des., 30(3), 741-747.

- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220.
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", *Aerosp. Sci. Technol.*, 24(1), 209-220.
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", *Struct. Eng. Mech., Int. J.*, (Accepted).
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916.
- Wei, D., Liu, Y. and Xiang, Z. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700.
- Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., Trans. ASME, 37(4), 1031-1036.
- Xiang, S., Wang, K., Ai, Y., Sha, Y. and Shi, H. (2009), "Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories", *Compos. Struct.*, 91(1), 31-37.
- Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", *Compos. Struct.*, 93(11), 2826-2832.
- Yesilce, Y. (2010), "Effect of axial force on the free vibration of Reddy–Bickford multi- span beam carrying multiple spring-mass systems", J. Vib. Control, 16(1), 11-32.
- Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", *Struct. Eng. Mech.*, *Int. J.*, **31**(4), 453-476.
- Yesilce, Y. and Catal, H.H. (2011), "Solution of free vibration equations of semi-rigid connected Reddy-Bickford beams resting on elastic soil using the differential transform method", *Arch. Appl. Mech.*, **81**(2), 199-213.
- Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Bég, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", *Aerosp. Sci. Technol.*, 34, 24-34.

CC