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Abstract.   A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) 
analysis of functionally graded material (FGM) axisymmetric circular plates with simply-supported and clamped 
edges. The strong formulation of this 3D elasticity axisymmetric problem is derived on the basis of the Reissner 
mixed variational theorem (RMVT), which consists of the Euler-Lagrange equations of this problem and its 
associated boundary conditions. The primary field variables are naturally independent of the circumferential 
coordinate, then interpolated in the radial coordinate using the early proposed DRK interpolation functions, and 
finally the state space equations of this problem are obtained, which represent a system of ordinary differential 
equations in the thickness coordinate. The state space DRK solutions can then be obtained by means of the transfer 
matrix method. The accuracy and convergence of this method are examined by comparing their solutions with the 
accurate ones available in the literature. 
 

Keywords:    circular plates; functionally graded material; meshless methods; reproducing kernels; state 
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1. Introduction 
 

In recent years a new class of advanced composites, functionally graded materials (FGMs), has 
been produced by mixing two or more constituent phases with continuous and smoothly varying 
composition. FGMs possess a number of benefits, such as reduction of stress concentration at 
interfaces between adjacent layers, enhanced thermal properties and higher fracture toughness 
(Birman and Byrd 2007, Dai et al. 2016, Jha et al. 2013). FGMs are thus widely used as advanced 
structural materials in many engineering applications, such as dental and orthopedic implants 
(Watari et al. 1997), nuclear fusion reactors (Koizumi 1997), sensors and thermogenerators 
(Müller et al. 2003) and wear resistant coatings (Schulz et al. 2003). Because the material 
properties of FGM structures can be designed as inhomogeneous, and thus vary continuously and 
smoothly through the thickness coordinate of these, they have better performance than laminated 
composite ones, the material properties of which are layerwise constant distributions through the 
thickness coordinate, and change suddenly at the interfaces between adjacent layers. The 
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development of both the relevant theoretical methodologies and numerical modeling of FGM 
structures has thus attracted considerable attention. The literature survey in this work will focus on 
papers that have carried out the structural analyses of single-layered and sandwiched FGM circular 
plates under axisymmetric loads. 

Reddy et al. (1999) examined the axisymmetric bending and stretching of single-layered, 
functionally graded (FG) annular and circular plates with different boundary conditions on the 
basis of the classical plate theory (CPT) and first-order shear deformation theory (FSDT). The 
plate was considered to be composed of Titanium (metal) and Zirconia (ceramic) materials 
according to a power-law distribution of their volume fractions varying through the thickness 
coordinate, and the effective material properties of the plate were estimated by using the rule of 
mixtures (Lei et al. 2013, Zhu et al. 2012). The FSDT was also used to examine the free vibration 
characteristics of moderately thick FGM annular plates integrated with surface-bonding 
piezoelectric layers by Ebrahimi et al. (2009), and the static behavior of laminated composite 
rectangular and annular plates was investigated by Tornabene et al. (2012), in which the 
differential quadrature (DQ) method was used to obtain the numerical solutions of field variables, 
and their results were in good agreement with the three-dimensional (3D) finite element method. 
Based on the third-order shear deformation theory (TSDT), Ma and Wang (2004) and Saidi et al. 
(2009) undertook the axisymmetric bending and buckling analyses of FGM circular plates. In Ma 
and Wang, the relationships between their solutions for FGM circular plates and those for isotropic 
ones were examined and compared with each other, while in Saidi et al. the shear-free conditions 
on the top and bottom surfaces of the plate were released, which is particularly useful for cases 
when the plate is subjected to contact friction. A number of other studies related to the structural 
analyses of FGM circular plates using the two-dimensional (2D) plate theories can also be found, 
such as elastostatic (Civalek and Ulker 2004), vibration and mechanical buckling (Lal and Ahlawat 
2015), thermal buckling (Kiani and Eslami 2013), thermal bending (Hamzehkolaei et al. 2011) and 
nonlinear bending (Reddy and Berry 2012) analyses. 

However, there are relatively few articles with regard to 3D analyses of axisymmetric bending 
problems of FGM circular plates in the open literature, as compared with those examined by 
various 2D plate theories. This is mainly due to the fact that the mathematical derivation of 3D 
approaches is considerably more complicated and difficult to apply in engineering applications, 
even though the results of such methods can be useful in realizing the true structural characteristics 
of plates. Within the framework of 3D elasticity theory, Li et al. (2008) presented the analytical 
solutions of transversely isotropic FGM circular plates subjected to an axisymmetric transverse 
load, in which the material properties are considered to obey an exponent-law exponentially 
varying through the thickness coordinate. The above-mentioned problem was also analyzed by 
Wang et al. (2010a) using the direct displacement method and by Lu et al. (2016) using Plevako’s 
approach (Plevako 1971). 

As mentioned above, the 3D approaches involve complicated mathematical derivations, while 
the 2D ones might not accurately capture the true structural characteristics. A compromise between 
these two approaches, the so-called semi-analytical numerical method, has thus been developed for 
the structural analysis of single- and multi-layered FGM plates and shells. A comprehensive 
literature survey with regard to the 3D semi-analytical numerical methods for the analysis of FGM 
plates and shells was carried out by Wu and Liu (2016), in which assorted combinations of 
analytical methods, such as the state space (SS) (Chen et al. 2001, Chen and Wang 2002, Pan 2003, 
Pan and Heyliger 2003, Wu and Liu 2007) and perturbation (Wu and Jiang 2015a, b) methods, and 
numerical methods, such as the finite element (Wu and Chang 2012, Wu and Li 2010, 2013a, b), 
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meshless (Wang et al. 2010a, Chen et al. 2011) and differential quadrature (DQ) (Liang et al. 2014, 
2015, Nie and Zhong 2007, 2010) methods, were introduced. Among these semi-analytical 
numerical methods, the SS meshless method using the differential reproducing kernel (DRK) 
seems to function well for the FGM sandwich circular hollow cylinders (Wu and Jiang 2012, 
2014), and it is thus adopted in this work. 

In the formulation of this work, the Euler-Lagrange equations, related to the 3D axisymmetric 
bending problems of FGM circular plates, and their associated possible boundary conditions, are 
derived using Reissner’s mixed variational theorem (RMVT) (Reissner 1984, 1986). The DRK 
interpolation functions (Wang et al. 2010a) are used to interpolate the primary field variables in 
the axial coordinate, and two different edge conditions, simply-supported and clamped ones, are 
considered. By substituting these DRK interpolants into the strong formulation of this problem, we 
thus obtain the system SS equations of the plates with simply-supported and clamped edges. 
Finally, the through-thickness distributions of these field variables can be determined using a 
transfer matrix method (Wu and Li 2016, Wu and Tsai 2012), in which the general solutions of the 
system equations can be calculated layer-by-layer, which is significantly less time-consuming than 
the usual approach. Moreover, a parametric study with regard to the influence of the boundary 
conditions, thickness-to-radius ratio, and material-property gradient index on the assorted field 
variables induced in the FGM sandwich circulate plates is undertaken. Some physical observations 
for the plates with regard to the reduction of transverse stress at the face sheet-core interfaces and 
smooth distributions of the interlaminar stresses across these interfaces are also reported. 
 
 
2. RMVT-based state space equations 
 

2.1 Reissner’s energy functional 
 
We consider a multilayered FGM axisymmetric circular plate with simply-supported and 

clamped edges, and subjected to a uniformly distributed load on the top surface, as shown in Fig. 1. 
A global polar coordinate system (r, θ and ζ coordinates) is adopted and located at the center of the 
plate. A set of local thickness coordinates, zm (m = 1, 2, ..., Nl), is located at the middle surface of 
each individual layer, respectively, where Nl denotes the total number of layers constituting the 
plate. The radius of the plate is defined as a. The thicknesses of each individual layer and the plate 

are hm (m = 1, 2, ..., Nl) and h, respectively, while .
1




lN

m
mhh The relationship between the global 

and local thickness coordinates in the mth-layer is ,mm z   in which   ,2/1 mmm   
and ζm and ζm‒1 are the global thickness coordinates measured from the middle surface of the plate 
to the top and bottom surfaces of the mth-layer, respectively. 

For an axisymmetric circular plate, the field variables must be independent of the 
circumferential coordinate (θ), such that their derivatives with respect to this are zeroes, and the 
displacement component in the θ direction (uθ) remains zero when the plate is subjected to an 
axisymmetric load. In addition, the strain components γrθ and γζθ are zeroes, and the stress 
components τrθ and τζθ are thus zeroes for an orthotropic material plate. 

The linear constitutive equations valid for the nature of the symmetry class of elastic materials 
are given by (Reddy et al. 1999, Li et al. 2008). 
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(a) 
 

(b) 
 

(c) 

Fig. 1 An FGM circular plate with simply-supported and clamped edges and under uniform loads. 
(a) The configuration and polar coordinate system; (b) A simply-supported circular plate; (c) 
A clamped circular plate 
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r    are the nonzero stress and strain 

components of a certain material point in the mth-layer, respectively. )(m
ijc  (i, j = 1 ‒ 4) are the 

elastic coefficients which are constants through the thickness coordinate in the homogeneous 
elastic layers, and are variable through the thickness coordinate in the FGM layers (i.e.,  )(m

ijc  
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m
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where )(m
ru  and )(mu  denote the elastic displacement components in the radial (r) and thickness 

(ζ) directions, respectively, and ∂k = ∂ / ∂k (k = r and ζ). 
The Reissner energy functional related to this 3D analysis of multilayered FGM axisymmetric 

circular plates is written in the form of (Reissner 1984, 1986) 
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where 


u  denotes the displacement components at the top and bottom surfaces of the plate, in 

which the transverse loads 
q  are applied, the positive directions of which are defined to be 

upward. Either the surface tractions )(m
iT  (i = r and ζ) or surface displacements )(m

iu  (i = r and ζ) 
are prescribed along the edge boundary, respectively. )( )(m

ijB   is the complementary energy 
density function. 

In the present formulation, we take the elastic displacement )(( m
ru  and ))(mu  and transverse 

stress 
)(( m

r  and ))(m
  components as the primary variables subject to variation, and the in- and 

out-of-plane strain and the in-plane stress components are the dependent variables, which can be 
expressed in terms of the primary variables using Eqs. (1)-(2) as follows 
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2.2 Euler-Lagrange equations 
 
Substituting Eqs. (4)-(8) into Eq. (3), then imposing the stationary principle of the Reissner 
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energy functional (i.e., δΠR = 0) and performing the Green theorem, we finally obtain 
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where commas denote the derivatives of the suffix variables. 

Because variations of primary variables are arbitrary, their coefficients in Eq. (9) must vanish 
identically over the plate domain and along its boundary surfaces. We thus obtain the Euler-
Lagrange equations of FGM axisymmetric circular plates from the domain integral terms and the 
admissible boundary conditions from the boundary integral terms, which are written as follows: 

The Euler-Lagrange equations are 
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where m = 1, 2, ..., Nl. 

The top and bottom boundary conditions are 
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where m = 1, 2, ..., Nl. 
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The set of Euler-Lagrange Equations (Eqs. (10)-(13)) associated with a set of appropriate 
boundary conditions (Eqs. (15a) and (15b)) is composed of a well-posed boundary value problem, 
which is the so-called strong formulation of this axisymmetric problem. 
 
 
3. The DRK interpolation 
 

In this article, an SS DRK method will be developed on the basis of the above-mentioned 
strong formulation in combination with the DRK interpolation (Wang et al. 2010a) for the analysis 
of multilayered FGM axisymmetric circular plates with simply-supported and clamped edges and 
under axisymmetric mechanical loads. 

The DRK interpolation functions and their relevant derivatives are briefly described, as follows. 
 
3.1 DRK interpolation functions 
 
It is assumed that there are np discrete nodes randomly selected and located at r = r1, r2, ..., rnp, 

respectively, in the r direction of the mth-layer, in which a function F (r, zm) is interpolated as Fa (r, 
zm) and defined as 
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Eq. (17) represents (n + 1) reproducing conditions, and the matrix form of these is given as 
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where   .0001)( T
0P  

According to these conditions, we may obtain the undetermined function vector  rb  in the 
following form 
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where        .
1
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l
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T
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Substituting Eq. (19) into Eq. (16) yields the shape functions of Fa (r, zm) in the form of 
 

     rrr lll  ˆ       pni ,,2,1  , (20)
 

where     .ˆ)()()()()(
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It is noted that if we select a set of primitive functions satisfying the Kronecker delta properties 
(i.e.,   ),ˆ

lkkl r    a priori, then a set of the shape functions with these properties will be 
obtained (i.e., ))( lkkl r    due to the fact that the enrichment functions vanish at all the nodes 
(i.e.,   ).0kl r  In this article, a quartic spline function with its support size not covering any 
neighboring nodes, as suggested by Wang et al. (2010a), is assigned to be the primitive function 
for each sampling node. 

It is realized from Eq. (20) that ψl (r) vanishes when r is not in the support of the node at r = rl. 
The influence of the shape functions in the support of the referred node monotonically decreases 
when the relative distance to the node increases, and this preserves the local character of the 
present scheme. The derivatives of these DRK interpolation functions may be found in Wang et al. 
(2010a), and thus are not repeated here. 

 
3.2 Weight functions 
 
In implementing the present scheme, the weight and primitive functions (i.e., w(s) and  )ˆ s  

must be selected in advance. According to Wang et al. (2010a), the normalized Gaussian function 
is selected as the weight function at each sampling node, and this is given as 
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where wa (r ‒ rl) = w(s) and s = |r ‒ rl| / ar, in which ar is the radius of the influence zone (or the 
support size), and α is set as 0.3. 

The quartic spline function is selected as the primitive function at each sampling node and 
given as 

,
1sfor                         0

1for1683
)(ˆ
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4. A state space DRK method 
 

In conjunction with the DRK interpolation and state space method, we develop a state space 
DRK method to study the 3D axisymmetric bending behaviors of FGM circular plates with 
simply-supported and clamped edges. The loading conditions on the top and bottom surfaces and 
edge boundary conditions of the circular plate are given as follows. 

In this analysis, only the transverse normal loads applied on the top surface of the plate are 
considered, other tractions are free, and given by 

 

 ,rqq     (23a)

 
and     .0

q  (23b)
 
The symmetric conditions at r = 0 are given by 
 

0)()(  m
r

m
ru        ,,,2,1 lNm   (24)

 
The edge boundary conditions of the plates are considered as simply-supported and clamped 

edges and are written as follows: 
Case 1. Simply-supported edge 

 

0)()(  m
r

mu       at     ar  , (25)
 
Case 2. Clamped edge 

 

0)()(  m
r

m uu      at     ar  , (26)
 

where m = 1, 2, ..., Nl in the above-mentioned cases. 
 
4.1 The state space equations 
 
Substituting the DRK formula (Eq. (16)) and those of their derivatives in the strong formulation 

of this axisymmetric problem, that consists of the Euler-Lagrange Equations (i.e., Eqs. (10)-(13)) 
associated with the symmetric conditions at r = 0 (i.e., Eq. (24)) and appropriate boundary 
conditions of Cases 1 and 2 given in Eqs. (25)-(26), we obtain the following sets of ordinary 
differential equations: 

Case 1. Simply-supported edge 
Satisfying the symmetric conditions at r = 0 (Eq. (24) and edge conditions at r = a (Eq. (25)) 

yields 
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Using Eqs. (27a) and (27b), we write the Euler-Lagrange equations as follows 
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where δkl is the Dirac delta function, in which δkl = 0 when k ≠ l, and δkl = 1 when k = l. 

Case 2. Clamped edge 
Satisfying the symmetric conditions at r = 0 (Eq. (24) and edge conditions at r = a (Eq. (26)) 

yields 
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Using Eqs. (32a) and (32b), we write the Euler-Lagrange equations as follows 
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Eqs. (28)-(31) and (33)-(36) represent the systems of SS equations for the mth-layer of the FGM 

axisymmetric circular plates with edge conditions of Cases 1 and 2, respectively, in which each 
system consists of (4np ‒ 4) simultaneously linear ordinary differential equations (ODEs) in terms 
of (4np ‒ 4) primary variables. These SS equations for Cases 1 and 2 are rewritten in the matrix 
form as follows 
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in which )(mF  and )(mK  denote the state space variables and the corresponding coefficient 
matrix of the mth-layer of the circular plate, respectively. For Case 1 
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4.2 Theories of the homogeneous linear systems 
 
The general solution of Eq. (37) is 
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m
m

m zz LF  , (38)
 

where )(mL  is a (4np ‒ 4) × 1 matrix of arbitrary constants; )(m  is a fundamental matrix of Eq. 
(37), and is formed by (4np ‒ 4) linearly independent solutions in the form of )(m

],,,,[ )(
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i e )( ))44(,,2,1(  pni  ; λi and Λi are the eigenvalues 
and their corresponding eigenvectors of the coefficient matrix )(mK  in Eq. (37), respectively. 

On the basis of the previous set of linearly independent real-valued solutions, a transfer matrix 
method can be developed for the analysis of FGM axisymmetric circular plates using the 
successive integration method (Soldatos and Hadjigeorgiou 1990), where each FGM layer of the 
circular plate is artificially divided into a finite number of individual layers with an equal and 
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small thickness for each layer, compared with the radius (a), as well as with constant material 
properties, determined in an average thickness sense. The exact solutions of the assorted field 
variables induced in the FGM axisymmetric circular plate with simply-supported and clamped 
edge conditions can thus be gradually approached by increasing the number of individual layers. It 
is noted that this solution process can be performed layer-by-layer, and the computational 
performance is independent of the total number of individual layers. Consequently, the 
implementation of the present approach is much less time-consuming than usual. 

 
4.3 The transfer matrix method 

 
A transfer matrix method for the 3D analysis of FGM axisymmetric circular plates with simply-

supported and clamped edges is then developed as follows, in which the FGM cylinder is 
artificially divided into an Nl-layered ccircular plate with an equal and small thickness compared 
with its radius. According to Eq. (38), we may obtain the general solution for the state space 
equations of the mth-layer (m = 1, 2, ..., Nl). 

When zm = ‒hm / 2, we thus obtain 
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where )1( mF  denotes the vector of state space variables at the interface between the (m-1)th- and 
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Using Eqs. (38) and (39), we obtain 
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By analogy, the vectors of state space variables between the top and bottom surfaces of the 

cylinder (i.e., )( lNF  and ))0(F  are linked by 
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Eq. (41) represents a set of (4np ‒ 4) simultaneous algebraic equations. Imposing the prescribed 
loading conditions on the top and buttom surfaces, we may determine the other unknown state 
space variables on these surfaces. The values of these primary variables through the thickness 
coordinate of the circular plate can then be obtained by 
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where )2()1()1(   mmm FRF  and m = 2, 3, ..., Nl. 
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Once the state space variables varying through the thickness of the circular plate are determined, 
the corresponding set of through-thickness distributions of dependent variables can then be 
obtained using Eqs. (42)-(43). 
 
 

5. Illustrative examples 
 

5.1 Single-layered FGM circular plates 
 

Reddy et al. (1999) presented the accurate solutions for single-layered, isotropic FGM circular 
plates with simply-supported and clamped edges, and subjected to the uniformly distributed load 

0( qq 
  and )0

q  by using the CPT and FSDT, in which the shear correction factor was 
taken to be 5/6. These accurate 2D solutions are used to validate the accuracy and convergence of 
this SS DRK method. The circular plates are composed of ceramic and metal materials according 
to a power-law distribution of volume fractions of constituents through the thickness coordinate. 
The effective material properties are estimated by using the rule of mixtures, in which the 
Poisson’s ratio υ remains a constant (i.e., υ = 0.288), while Young’s modulus is in the form of 

 
    mcmc EEEE  )( , (44)

 

where  m  denotes the volume fraction of the metal material, and        ./2/1 ˆ phm
   

Em and Ec stand for Young’s moduli of the metal and ceramic materials, respectively, and the ratio 
of Em / Ec is taken to be 0.396 in the following examples. The superscript, ,ˆp  denotes the 

material-property gradient index. When 0ˆ p  and p̂ , the FGM plate will reduce to the 

homogeneous metal and ceramic plates, respectively, while in the cases of other values of ,ˆp  the 

top and bottom surfaces of the FGM plate are ceramic- and metal-rich, respectively, and its 
Young’s modulus is dependent upon the thickness coordinate of the plate, as shown in Fig. 2. 

Table 1 shows the convergence studies for the SS DRK solutions of the displacement 
components at the center of single-layered homogeneous ceramic circular plates (i.e., )0ˆ p  

with clamped boundary conditions and under a uniform load, and this problem was also examined 
by Sahraee and Saidi (2009) using the fourth-order shear deformation theory (FOSDT) and 
Reddy’s third-order shear deformation theory (TSDT) (Reddy 1984a, b). The dimensionless 
displacement is defined as ,)/64( 4

0  uaqDu c  in which  ].112/[)( 23  hED cc  hen using 

the SS DRK method, the total number of artificial layers (Nl) is taken to be Nl = 2 and 10, the 
uniform distribution of nodes (np) along the radial direction of the plate is np = 9, 13, 17, 19 and 21, 
and the highest order of the base functions (n) and radius of the influence zone for each sampling 
node (ar) are (n, ar) = (3, 3.1 Δr), (3, 3.6 Δr), (4, 4.1 Δr) and (4, 4.6 Δr), in which Δr = a / (np‒ 1). 
It can be seen in Table 1 that the SS DRK solutions are accurate and converge rapidly, and the 
solutions obtained using (n, ar) = (3, 3.1 Δr) and (4, 4.1 Δr) are slightly more accurate than those 
obtained using (n, ar) = (3, 3.6 Δr) and (4, 4.6 Δr), when we compare these SS DRK solutions with 
those obtained using the TSDT and FOSDT. (n, ar) = (3, 3.1 Δr) is thus used in the following 
examples. In addition, because the circular plate is a homogeneous one in Table 1, the SS DRK 
solutions obtained using different values of Nl should remain the same as each other, and this is 
found in our results. 
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Fig. 2 The through-thickness distributions of material properties for a single-layered FGM circular plate with 
different values of the material-property gradient index 

 
 

Table 1 Convergence studies for state space DRK solutions of the displacement components 
at the center of single-layered homogeneous circular plates with clamped boundary conditions 
and under a uniformly distributed load, in which p̂ = 0 

(n, ar) Theories N1
 np h/a = 0.05 h/a = 0.1 h/a = 0.15 h/a = 0.2 h/a = 0.3 

(3, 3.1Δr) Present 

2 

9 2.590 2.681 2.831 3.038 3.618 

13 2.571 2.659 2.805 3.006 3.574 

17 2.564 6.651 2.794 2.991 3.545 

19 2.562 2.648 2.790 2.985 3.529 

21 2.560 2.646 2.786 2.979 3.510 

10 

9 2.590 2.681 2.831 3.038 3.618 

13 2.571 2.659 2.805 3.006 3.574 

17 2.564 6.651 2.794 2.991 3.545 

19 2.562 2.648 2.790 2.985 3.529 

21 2.560 2.646 2.786 2.979 3.510 

(3, 3.6Δr) Present 

2 

9 2.590 2.680 2.830 3.040 3.627 

13 2.571 2.660 2.807 3.010 3.577 

17 2.564 2.652 2.795 2.993 3.551 

19 2.562 2.649 2.791 2.987 3.539 

21 2.560 2.647 2.787 2.982 3.525 

10 

9 2.590 2.680 2.830 3.040 3.627 

13 2.571 2.660 2.807 3.010 3.577 

17 2.564 2.652 2.795 2.993 3.551 

19 2.562 2.649 2.791 2.987 3.539 

21 2.560 2.647 2.787 2.982 3.525 
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Table 1 Continued 

(n, ar) Theories N1
 np h/a = 0.05 h/a = 0.1 h/a = 0.15 h/a = 0.2 h/a = 0.3 

(4, 4.1Δr) Present 

2 

9 2.606 2.697 2.848 3.058 3.640 

13 2.579 2.668 2.816 3.017 3.586 

17 2.568 2.657 2.799 2.996 3.548 

19 2.565 2.653 2.793 2.988 3.528 

21 2.563 2.650 2.788 2.980 3.507 

10 

9 2.606 2.697 2.848 3.058 3.640 

13 2.579 2.668 2.816 3.017 3.586 

17 2.568 2.657 2.799 2.996 3.548 

19 2.565 2.653 2.793 2.988 3.528 

21 2.563 2.650 2.788 2.980 3.507 

(4, 4.6Δr) Present 

2 

9 2.607 2.698 2.848 3.056 3.645 

13 2.581 2.671 2.819 3.024 3.600 

17 2.570 2.659 2.805 3.009 3.601 

19 2.567 2.655 2.801 3.007 3.585 

21 2.564 2.652 2.799 3.010 3.548 

10 

9 2.607 2.698 2.848 3.056 3.645 

13 2.581 2.671 2.819 3.024 3.600 

17 2.570 2.659 2.805 3.009 3.601 

19 2.567 2.655 2.801 3.007 3.585 

21 2.564 2.652 2.799 3.010 3.548 

CPT (Reddy et al. 1999) 2.525 2.525 2.525 2.525 NA 

FSDT (Reddy et al. 1999) 2.554 2.639 2.781 2.979 NA 

TSDT (Sahraee and Saidi 2009) 2.525 2.638 NA 2.969 3.511 

FOSDT (Sahraee and Saidi 2009) 2.525 2.638 NA 2.969 3.511 

 
 
Table 2 shows the SS DRK solutions of the displacement parameters at the center of the FGM 

circular plates with clamped edges, in which different values of thickness-to-radius ratios (h/a), 
material-property gradient index )ˆ( p  and total number of divided layers (Nl) are considered. It 

can be seen that the relative errors between the displacement parameters obtained by using Nl = 40 
and Nl = 80 are less than 0.6%, and the 40-layer solutions closely agree with those of FSDT, TSDT 
and FOSDT available in the literature. By converting the dimensionless deflection parameter to its 
dimensional form, the results show that the center deflection of the plate decreases when the plate 
becomes thicker and the material-property gradient becomes greater, which means that the gross 
stiffness of the plate also increase. 

 
5.2 Sandwich FGM circular plates 
 
In this section, we consider the static behavior of sandwich FGM circular plates with simply-

supported edges and under a uniform load. The face-sheets are homogeneous ceramic layers, and 
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Table 2 The state space DRK and DQ solutions of the displacement components at the center of FGM 
circular plates with clamped edges and under a uniformly distributed load (n = 3, ar = 3.1Δr, np = 21) 

p̂  Theories h/a = 0.05 h/a = 0.1 h/a = 0.15 h/a = 0.2 

2 

SS DRK (Nl = 10) 1.399 1.440 1.506 1.597 

SS DRK (Nl = 20) 1.404 1.445 1.511 1.602 

SS DRK (Nl = 40) 1.405 1.446 1.512 1.603 

SS DRK (Nl = 80) 1.405 1.447 1.513 1.603 

CPT (Reddy et al. 1999) 1.388 1.388 1.388 1.388 

FSDT (Reddy et al. 1999) 1.402 1.444 1.515 1.613 

TSDT (Sahraee and Saidi 2009) 1.388 1.443 NA 1.603 

FOSDT (Sahraee and Saidi 2009) 1.388 1.443 NA 1.603 

4 

SS DRK (Nl = 10) 1.276 1.312 1.372 1.455 

SS DRK (Nl = 20) 1.282 1.319 1.379 1.462 

SS DRK (Nl = 40) 1.284 1.321 1.381 1.463 

SS DRK (Nl = 80) 1.284 1.321 1.381 1.464 

CPT (Reddy et al. 1999) 1.269 1.269 1.269 1.269 

FSDT (Reddy et al. 1999) 1.282 1.320 1.384 1.473 

8 

SS DRK (Nl = 10) 1.172 1.207 1.264 1.343 

SS DRK (Nl = 20) 1.181 1.216 1.274 1.352 

SS DRK (Nl = 40) 1.183 1.219 1.276 1.355 

SS DRK (Nl = 80) 1.184 1.219 1.277 1.356 

CPT (Reddy et al. 1999) 1.169 1.169 1.169 1.169 

FSDT (Reddy et al. 1999) 1.181 1.217 1.278 1.362 

20 

SS DRK (Nl = 10) 1.076 1.110 1.166 1.243 

SS DRK (Nl = 20) 1.089 1.124 1.180 1.257 

SS DRK (Nl = 40) 1.093 1.128 1.184 1.262 

SS DRK (Nl = 80) 1.094 1.129 1.185 1.263 

CPT (Reddy et al. 1999) 1.080 1.080 1.080 1.080 

FSDT (Reddy et al. 1999) 1.092 1.126 1.184 1.265 

105 

SS DRK (Nl = 10) 1.014 1.048 1.103 1.180 

SS DRK (Nl = 20) 1.014 1.048 1.103 1.180 

SS DRK (Nl = 40) 1.014 1.048 1.103 1.180 

SS DRK (Nl = 80) 1.014 1.048 1.103 1.180 

CPT (Reddy et al. 1999) 1.000 1.000 1.000 1.000 

FSDT (Reddy et al. 1999) 1.011 1.145 1.101 1.180 
 
 

the core is an FGM layer, the top and bottom planes of which are ceramic-rich, while its mid-plane 
is metal-rich, as shown in Fig. 3. The Poisson’s ratio is assumed to remain a constant through the 
thickness direction of the plate, and is taken to be 0.288, while the through-thickness distributions 
of the Young’s modulus are assumed in the following form 
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Fig. 3 The through-thickness distributions of material properties for a sandwich FGM circular plate with
different values of the material-property gradient index 

 
 

    )()( )( k
cmcm

k EEEE  , (45)
 

where the superscript k denotes the kth-layer, as counted from the bottom layer, and  )(k
c  (k = 1 

‒ 3) denotes the volume fractions of the ceramic material of the kth-layer. 
The volume fraction for each layer is given by 
 

    1)3()1(   cc   either  fhhh  5.05.0    or  hhh f 5.05.0   , (46a)

 

    p

cc h
 5.0/)2(       cc hh 5.05.0   , (46b)

 
where hf and hc denote the thickness of face sheets and core, respectively, and 2hf + hc = h. The 
distributions of the effective Young’s modulus through the thickness direction of the circular plate 
with 321 :: hhh = hhh 1.0:8.0:1.0  are shown in Fig. 3. When ,p  the sandwich FGM circular 

plate will reduce to a sandwich homogeneous one, in which the face sheets are ceramic-rich layers, 
while the core is a metal-rich one. When κp = 0, the sandwich FGM circular plate will reduce to a 
single-layered homogeneous ceramic circular plate. In this case, the gross stiffness of this plate 
will increase, when the value of κp becomes smaller. 

A set of dimensionless variables is given as follows 
 

     uuaqDuu rcr ,/64, 4
0 , (47a)

 
    0/,,,,,, qrrrr    . (47b)

 
Fig. 4 shows the through-thickness distributions of assorted field variables induced in the 

sandwich FGM circular plates with different values of the material-property gradient index. It can 
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(a) (b) 
  

 
(c) (d) 
  

 
(e) (f) 

Fig. 4 The through-thickness distributions of assorted field variables induced in a simply-supported, 
sandwich FGM circular plate under a uniform load 
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be seen in Fig. 4 that for a single-layered homogeneous circular plate (κp = 0) these distributions of 
the in-plane displacement and stress components appear to be global linear functions, while they 
are parabolic and cubic functions for the transverse shear and normal stress components. For a 
sandwich homogeneous circular plate (κp = ∞) these distributions of the in-plane displacement and 
stress components appear to be layerwise linear functions, while they are layerwise parabolic and 
cubic functions for the transverse shear and normal stress components. The results also show that 
these distributions for sandwich FGM circular plates appear to be layerwise higher-order functions. 
These observations may provide a reference for the kinematic and kinetic assumptions when an 
advanced theory of sandwich FGM circular plates is to be developed. 

It can be seen in Figs. 4(c) and 4(d) that the in-plane stress components induced in sandwich 
homogeneous circular plates (κp = ∞) are discontinuous when they cross the face sheet-core 
interfaces due to the mismatched material properties, while these are continuous for sandwich 
FGM ones (κp ≠ ∞ and 0). The transverse shear stress components induced at the face sheet-core 
interfaces of sandwich homogeneous circular plates will be reduced for sandwich FGM ones. This 
might be helpful for preventing the delamination failure of sandwich FGM circular plates, which 
often occurs at the interfaces between adjacent layers in laminated composite structures. 

 
 

6. Conclusions 
 
On the basis of the RMVT, in this article we have developed a state space meshless method 

using the DRK interpolations for the 3D analysis of axisymmetric sandwich FGM circular plates 
with simply-supported and clamped edges. In the illustrative examples, it is shown that these state 
space DRK solutions converge rapidly, and are in excellent agreement with the accurate solutions 
available in the literature. The following guidelines were also derived with regard to the 
implementation of this method, such as the highest order of base functions (n) is suggested to be n 
= 3; the number of uniformly-distributed nodes (np) to be np = 21; and the radius of the influence 
zone (ar) to be 3.1 times the spacing between the adjacent nodes (i.e., ar = 3.1 Δr) when n = 3 is 
used, and ar = 4.1 Δr when n = 4 is used. It is also seen in the illustrative examples that the 
through-thickness distributions of the in- and out-of-surface variables of sandwich FGM circular 
plates appear to the layerwise linear and layerwise higher-order polynomial variations, 
respectively. Moreover, the transverse shear stresses induced at the interfaces between the face-
sheet and core layers for sandwich FGM circular plates are reduced in comparison with those for 
sandwich homogeneous ones, which may prevent the delamination failure that often occurs at the 
interfaces between adjacent layers of sandwich homogeneous ones. 
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