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Abstract.    In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply 
laminated plates including curvature effects is presented. The equilibrium equations are derived according to the 
refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on 
assumption that the in-plane and transverse displacements consist of bending and shear components, in which the 
bending components do not contribute toward shear forces and, likewise, the shear components do not contribute 
toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the 
transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom 
surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial 
inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and 
the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects 
of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in 
the literature. 
 

Keywords:    symmetrically cross-ply laminated; refined nth-order shear deformation theory; buckling; 
curvature terms 

 
 
 
1. Introduction 
 

Laminated composite plates are widely used in the aerospace, automotive, marine and other 
structural applications because of advantageous features such as high ratio of stiffness and strength 
to weight and low maintenance cost. In company with the increase in the application of laminates 
in engineering structures. In addition, Plate elements are commonly used in civil, mechanical, 
aeronautical and marine structures. The considerations of natural frequencies and buckling loads 
for rectangular plates are essential to have an efficient and reliable design. In the past three 
decades, researches on composite laminated plates have received great attention, and a variety of 
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plate theories has been introduced based on considering the transverse shear deformation effect. 
The classical plate theory (CPT), which neglects the transverse shear deformation effect, provides 
reasonable results for thin plate. Mindlin (1951) and Reissner (1945) developed FSDTs which 
incorporate the effect of shear deformation. In these theories, the transverse shear strain 
distribution is assumed to be constant through the plate thickness and therefore it requires shear 
correction factor in order to satisfy traction free boundary conditions at top and bottom surfaces of 
plates. 

Different higher-order shear deformation plate theories (HSDT) were proposed, including the 
second-order shear deformation formulation of Whitney and Sun (1973) and the third-order shear 
deformation theory of Lo et al. (1977) with 11 unknowns; Kant (1982) with six unknowns; 
Bhimaraddi and Stevens (1984) with five unknowns; Reddy (Reddy 1984, Reddy and Phan 1985), 
with five unknowns and Hanna and Leissa (1994) with four unknowns. Ambartsumian (1958), 
proposed a transverse shear stress function in order to explain plate deformation. A similar method 
was used later by Soldatos and Timarci (1993), for dynamic analysis of laminated shells. Later 
some new functions were proposed by (Reddy 1984, Touratier 1991, Karama et al. 2003, Soldatos 
1992, Aydogdu 2009, Senthilnathan et al. 1987, Xiang et al. 2011a and Mantari et al. 2012). The 
multiquadrics Radial basis functions (RBFs) method were applied to analyze the laminated 
composite plates by (Ferreira 2005a, b, Ferreira et al. 2003, 2004, 2005, Ferreira and Fasshauer 
2006). Inverse multiquadric RBFs were used to analyze composite plates by Xiang (Xiang and 
Wang 2009). Vel and Batra (2004) presented the three dimensional exact solution for the vibration 
of functionally graded rectangular plates. Zenkour (2006) proposed a generalized shear 
deformation theory for bending analysis of functionally graded plates. Whitney (1987) proposed a 
curvature Effects in the Buckling of Symmetrically-Laminated Rectangular Plates with Transverse 
Shear Deformation. Whitney and Pagano (1970) presented the shear deformation in heterogeneous 
anisotropic plates. Liew et al. (1996) presented the Navier’s solution for laminated plate buckling 
with prebuckling in-plane deformation. 

On the other hand, A two variable refined plate theory (RPT) was first developed for isotropic 
plates by Shimpi (2002), and was extended to orthotropic plates by (Shimpi and Patel 2006a, b, 
Kim et al. 2009), and Thai and Kim (2010) have studied laminated composite plates using this 
theory. Ait Amar Meziane et al. (2014) studied the buckling and free vibration response of 
exponentially graded sandwich plates under various boundary conditions. Narendar (2011) studied 
the mechanical buckling of the nanoplates and Thai (2012) developed a nonlocal refined beam 
theory for nanobeams based on this theory. Bouazza and Benseddiq (2015) investigated an 
analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular 
plates (FGM) under thermal loadings. Bouazza et al. (2016) developed an analytical solution of 
refined hyperbolic shear deformation theory to obtain the critical buckling temperature of cross-
ply laminated plates with simply supported edge. Belabed et al. (2014) presented an efficient and 
simple higher order shear and normal deformation theory for functionally graded material (FGM) 
plates. Thai and Choi (2012) developed the efficient and simple refined theory for buckling 
analysis of functionally graded plates. Hebali et al. (2014) proposed a new quasi-3D hyperbolic 
shear deformation theory for the static and free vibration analysis of functionally graded plates. 
Bennoun et al. (2016) used a novel five variable refined plate theory for vibration analysis of 
functionally graded sandwich plates. Mahi et al. (2015) used a new hyperbolic shear deformation 
theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and 
laminated composite plates. Bourada et al. (2015) have developed a new simple shear and normal 
deformations theory for functionally graded beams. Piscopo (2010) also investigated refined 
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buckling analysis of rectangular plates under uniaxial and biaxial compression. Hassaine Daouadji 
et al. (2012) used a higher order theory which involves only four degrees of freedom for bending 
analysis of functionally graded plates. 

Some researchers have used the four variable refined plate theory for buhafior analysis of the 
thick functionally graded plates (Ait Yahia 2015, Zidi et al. 2014, Attia et al. 2015, Boukhari et al. 
2016). Tounsi et al. (2013) studied bending response of FGM sandwich plates by the use of a new 
four variable refined plate theory under thermal and thermomechanical loading, respectively. 
Hamidi et al. (2015) studied the thermomechanical bending of functionally graded sandwich plates 
by using a sinusoidal plate theory with 5-unknowns and stretching effect. Bousahla et al. (2014) 
proposed a novel higher order shear including the neutral surface position for the static analysis of 
advanced composite plates such as functionally graded plates. Bellifa et al. (2016) studied the 
Bending and free vibration analysis of functionally graded plates using a simple shear deformation 
theory and the concept the neutral surface position. Also in some studies the elastic foundation 
theory issued in modeling (Bounouara et al. 2016, Bakora and Tounsi 2015, Chikh et al. 2016, 
Bouderba et al. 2013). Ait Atmane et al. (2015) studied a computational shear displacement model 
for vibrational of functionally graded beams with porosities. Al-Basyouni et al. (2015) studied the 
bending and vibration behaviors of size-dependent nano beams made of functionally graded 
materials (FGMs) including the thickness stretching effect. The size-dependent FGM nanobeam 
was investigated on the basis of the nonlocal continuum model. Draiche et al. (2014) proposed a 
trigonometric four variable plate theory to study free vibration of rectangular composite plates 
with patch mass. Klouche Djedid et al. (2014) studied the bending and free vibration of 
functionally graded plates by using an n-order four variable refined theory. 

The present paper deals with the nth-order shear deformation theory (Xiang et al. 2011a). The 
effectiveness and accuracy of this theory is demonstrated by (Xiang et al. 2011b, 2012, 2013a, b). 
Moreover, the present paper mainly uses the ideas behind the new refined plate theory (Shimpi 
2002) that the authors include wb and ws (bending and shear transverse displacement) to model the 
transverse displacement of the shear deformation theories (in many theories assumed constant and 
called w0 (Mantari et al. 2012, Xiang et al. 2011a, 2012, 2013a, b). In the present paper, the 
authors combine this idea for developing the nth-order shear deformation theory with modified 
displacement field to its optimization. Unlike other theories, there are only four unknown 
functions involved, as compared to five in other shear deformation theories. The theory presented 
is variationally consistent and strongly similar to the classical plate theory in many aspects. It does 
not require the shear correction factor, and gives rise to the transverse shear stress variation so that 
the transverse shear stresses vary parabolically across the thickness to satisfy free surface 
conditions for the shear stress. Closed form solutions for mechanical buckling analysis of 
mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature 
effects are obtained. Numerical examples are presented to verify the accuracy of the present theory. 
 
 
2. THEORETICAL FORMULATION 
 

2.1 Kinematics 
 
In this study, further simplifying assumptions are made to the nth-order shear deformation 

theory so that the number of unknowns is reduced. The displacement field of the conventional nth-
order shear deformation theory is given by Xiang et al. 2011a. 
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where w0, ϕx and ϕy are there unknown displacement functions of the mid-plane of the plate; and h 
is the thickness of the plate. By dividing the transverse displacement w0 into bending and shear 
parts (i.e., w0 = wb + ws) and making further assumptions given by ϕx = ‒∂wb / ∂x and ϕy = ‒∂wbb / 

∂y, the displacement field of the new refined theory can be rewritten in a simpler form as 
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Clearly, the displacement field in Eq. (3) contains only two unknowns, wb and ws. The nonzero 

strains associated with the displacement field in Eq. (3) are 
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2.2 Constitutive equations 
 
Under the assumption that each layer possesses a plane of elastic symmetry parallel to the x–y 

plane, the constitutive equations for a layer can be written as 
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Transforming the above equations of an arbitrary k layer in local coordinate system into the 

global coordinate system, the laminate constitutive equations can be expressed as 
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where usual notations for normal and shear stress components are adopted. ijQ are the transformed 
material constants given as (Reddy 1997, Jones 1975). 
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2.3 Governing equation 
 
The strain energy of the plate is calculated by 
 

  
V

xzxzyzyzxyxyyyxx
V

ijij dVdVU 2  (9)

 
Substituting Eq. (3) into Eq. (9) and integrating through the thickness of the plate, the strain 

energy of the plate can be rewritten as 
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From Eq. (11), one can obtain the following equations 
 






































































































































yx

w

y

w

x

w

DDD

DDD

DDD

yx

w

y

w

x

w

DDD

DDD

DDD

M

M

M

s

s

s

sss

sss

sss

b

b

b

b
xy

b
y

b
x

2

2

2

2

2

662616

262212

161211

2

2

2

2

2

662616

262212

161211

22

 (12)

 






































































































































yx

w

y

w

x

w

HHH

HHH

HHH

yx

w

y

w

x

w

DDD

DDD

DDD

M

M

M

s

s

s

sss

sss

sss

b

b

b

sss

sss

sss

s
z

s
y

s
x

2

2

2

2

2

662616

262212

161211

2

2

2

2

2

662616

262212

161211

22

 (13)

 

1352



 
 
 
 
 
 

Buckling of symmetrically laminated plates using nth-order shear deformation theory with... 































xw

yw

AA

AA

Q

Q

s

s
ss

ss

x

y

5545

4544  (14)

 

where 
 

)6,2,1,()))((),(,(),,(
2/

2/

22   jidzzfzzfzQHDD
h

h
ij

s
ij

s
ijij  

)5,4,())((
2/

2/

2   jidzzgQA
h

h
ij

s
ij  

(15)

 
Substituting Eqs. (12)-(14) and (4) to Eq. (10), the strain energy per unit area, U, due to the 

buckling deformation is of the form 
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The potential energy of the applied in-plane stresses 00 , yx   and 0

xy  arises from the action of 
the applied d stresses on the corresponding second order strain 

Nl
y
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x  ,  and .Nl

xy  Following the 
usual procedure (Whitney 1987, Whitney and Pagano 1970, Dawe and Roufaeil 1982), after taking 
into account the displacement field given by Eq. (1) 
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The potential energy of the plate fiat of volume is 
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Denoting conventional inplane force terms by V1 and “curvature” terms by V2, then after 

combining Eqs. (17)-(19) and (20) we find that 
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In addition 
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Buckling of symmetrically laminated plates using nth-order shear deformation theory with... 

In order to put the integral in Eq. (23) in a useful form for heterogeneous plates, we utilize the 
constitutive relations for the inplane loading of a symmetrically-laminated plate (Whitney 1987, 
Whitney and Pagano 1970) 
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where 
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Eq. (25) can now be written in the form 
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Combining Eqs. (27) and (29), we find that 
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Taking into account Eqs. (30) and (31), the “curvature” terms, Eq. (23), are of the form 
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Governing equations can be obtained by applying the variational relationship 
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Substituting Eqs. (16), (22) and (32) into Eq. (33), we obtain the following governing equations 

in operator form 
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The linear operators ijL  are defined as follows 
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2.4 Exact solutions of mechanical buckling for symmetric cross-ply plates 
 
Consider a rectangular plate with the length a and width b which is subjected to in-plane loads. 

Therefore, the pre-buckling forces can be obtained using the equilibrium conditions as Leissa and 
Ayoub (1988) 

 00,, 000  NNNNNN xyyx   (36)
 
Where N the force per unit length is, ξ is the load parameter which indicates the loading 

conditions. Negative value for ξ indicate that plate is subjected to biaxial compressive loads while 
positive values are used for tensile loads. Also, zero value for ξ show uniaxial loading in x 
directions. 

The exact solutions of Eqs. (32) and (33) for simply supported, symmetric cross-ply rectangular 
plates may be obtained by recognizing the following plate stiffness to have zero values 
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By following the Navier solution procedure, the solutions to the problem are assumed to take 

the following forms 
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where 
 

a

xm

a

xm        ,  (39)

 
Substituting Eq. (38) into Eq. (34) for an symmetric cross-ply laminate, we obtain the 
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following equations 
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where cc takes on the value 1 when the “curvature” terms are included in the analysis and is 0 
when these terms are neglected. 

After substituting the Eq. (38) into Eqs. (40) and (41) we get a systems of two equations for 
finding the Wbmn and Wsmn. By equaling the determinant of coefficient to zero we have 
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Indicated the critical mechanical buckling load as this result in the following cubic equation in 

N, the determinant of the coefficient matrix in Eq. (42) must be zero. 
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2 ANANA   (44)

 
where 
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Fig. 1 SHELL99 Linear Layered Structural Shell (Nakasone et al. 2006, Madenci and Guven 2007) 
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The critical buckling load, Ncr, corresponds to the value of m and n which yields the lowest 

value of N. 
If curvature terms are neglected, viewing Eq. (44), the buckling load N, can be expressed as 
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2.5 The finite element method 
 
The present part is a survey of plate buckling of square orthotropic plates by using the finite 

element method (F.E.M). Using ANSYS, the most known software in the domain for it, type of 
modeling is chosen shell99 (Fig. 1). 

SHELL99 may be used for layered applications of a structural shell model. While SHELL99 
does not have some of the nonlinear capabilities of SHELL91, it usually has a smaller element 
formulation time. SHELL99 allows up to 250 layers. If more than 250 layers are required, a user-
input constitutive matrix is available. 
 
 
3. Numerical results and discussion 
 

In this section, various numerical examples are described and discussed for verifying the 
accuracy of the present method in predicting the buckling behaviors of simply supported 
symmetric cross-ply laminates. For the verification purpose, the results obtained by present 
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method are compared with those of the results of previous works in the literature and computer 
code Ansys. The following lamina propertied is used (Khdeir and Librescu 1988, Fares and 
Zenkour 1999, Wu and Chen 2007) 

 
49.0,25.0,5.0,6.0,,/ 231312223213123221  vvvEGEGGEEopenEE  (0)

 
The material properties are assumed to be the same for all layers and the critical buckling loads 

are normalized as 

3
2

2

hE

aN
N cr  (0)

 
In order to verify the present solutions, the convergence properties of the biaxial critical 

buckling loads of square cross-ply laminated composite plates are presented in Table 1. As table 
shows, the present results have a good agreement with Refs. (Khdeir and Librescu 1988, Fares and 
Zenkour 1999, Wu and Chen 2007) and finite element method using Ansys. 

Table 2 presents a comparison of the lowest critical buckling loads of three-layer cross-ply 
laminated plates with analytical solutions (Fares and Zenkour 1999, Wu and Chen 2007) and finite 
element method for various values of the degree of orthotropy of the individual layers E1/E2. They 
are in excellent agreement. 

Figs. 2-6 display the first mode shapes of a symmetric cross-ply laminated square plates 
(0°/90°/0°; a/h = 10) for E1/E2 = 2, 10, 20, 30, 40 respectively with simply supported (elements 
Shell 99). The value of the nondimensional critical buckling load of the graphs of first mode exists 
in Table 1. 

 
 

Table 1 Comparison of non-dimensional biaxial buckling factors, ,3
2

2 hEaNN cr  for simply supported 
symmetric cross-ply 0°/90°/0° without consideration of the effects of curvature terms, (a/h = 10) 

Theory 
E1/E2 

2 10 20* 30* 40* 

CPTb 2.473 5.746 9.591 12.147 14.704 

FSDTb 2.344 4.936 7.588 8.575 10.202 

HSDTa 2.364 4.963 5.516 9.056 10.259 

HSDTb 2.343 4.916 7.449 8.820 9.975 

GLHOTc 2.366 4.960 7.493 8.803 8.803 

Present ansys 2.128 4.751 7.335 9.376 11.035 

Present theory n = 3 2.346 5.107 7.838 9.434 10.882 

Present theory n = 5 2.349 5.118 7.910 9.558 11.062 

Present theory n = 7 2.351 5.131 7.958 9.634 11.169 

Present theory n =9 2.354 5.142 7.990 9.683 11.238 

* The lowest critical buckling occurs at mode numbers m = 1, n = 2. 
a Khdeir and Librescu (1988) 
b Fares and Zenkour (1999) 
c Wu and Chen (2007) 
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Fig. 2 First buckling mode of symmetric cross-ply laminated square plates subjected to biaxial 
compression (0°/90°/0°; a/h = 10, E1/E2 = 2), Shel99 element 

 
 

Fig. 3 First buckling mode of symmetric cross-ply laminated square plates subjected to biaxial 
compression (0°/90°/0°; a/h = 10, E1/E2 = 10), Shel99 element 

 
 

Fig. 4 First buckling mode of symmetric cross-ply laminated square plates subjected to biaxial 
compression (0°/90°/0°; a/h = 10, E1/E2 = 20), Shel99 element 
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Fig. 5 First buckling mode of symmetric cross-ply laminated square plates subjected to biaxial 
compression (0°/90°/0°; a/h = 10, E1/E2 = 30), Shel99 element 

 
 

Fig. 6 First buckling mode of symmetric cross-ply laminated square plates subjected to biaxial 
compression (0°/90°/0°; a/h = 10, E1/E2 = 40), Shel99 element 

 
 

Table 2 Comparison of non-dimensional biaxial buckling factors, ,3
2

2 hEaNN cr  

for simply supported symmetric cross-ply 0°/90°/0° without consideration of 
the effects of curvature terms, (a/h = 10, E1/E2 = 40) 

Theory 
(m,n) 

(1,1) (1,2) (1,3) (1,5) (1,7) (1,9) 

HSDTa 11.060 9.975 13.627 21.795 27.465 31.280 

GLHOTb 11.082 9.824 13.050 20.835 27.638 30.529 

Present theory n = 3 12.983 10.882 13.891 21.811 27.4698 31.280 

Present theory n = 5 13.047 11.062 14.401 23.314 29.695 33.718 

Present theory n = 7 13.134 11.169 14.656 24.083 30.935 35.243 

Present theory n =9 13.203 11.238 14.808 24.537 31.688 36.199 
a Fares and Zenkour (1999) 
b Wu and Chen (2007) 
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Several examples are solved to demonstrate the accuracy and efficiency of the method. In the 
examples considered, symmetric cross-ply thick rectangular laminates including curvature effects 
are considered and the following material properties are assumed, Whitney (1987) 

 

55.0   ,3.0   ,323.0   ,533.0,14 121222321221  EGEGEE  (0)

 
The next two tables are given for cylindrical bending of buckling load of simply supported 

square cross-ply laminated composite plates [0°/90°/90°/0°] plate. Two different cases have been 
considered in the numerical study: (1) without the effects of curvature terms; and (2) with the 
effect of curvature terms. Note that Case 1 is the conventional consideration of thick plate 
buckling, which forms the basis of comparison for the case (2). The results are presented in Tables 
3 and 4 and Figs. 7 and 8. In Tables 3 and 4, the critical buckling factor )/( 2

32 EhaN cr  for simply 
supported square cross-ply laminated composite plates [0°/90°/90°/0°], under biaxial buckling and 
under in-plane combined tension and compression, respectively for different values of thickness-
side ratio (a/h = 5, 10, 15, 20, 25,30). The material and geometry of the square plate considered 
here are Whitney (1987). These results are compared with the results found by Whitney (1987) by 
using first-order shear deformation theory. As seen a very good agreement has been achieved 
between them. Tables 3 and 4 also show that, the critical buckling factor increases with increase in 
the thickness-side ratio a/h. A comparison of Table 3 with Table 4 shows that the critical buckling 
load for the plate subjected to compression along x-direction and tension along y-direction, is 
greater than the corresponding values for the plate under biaxial compression. On the other hand, if 
the effect of curvature terms is included (Case 2), the buckling factors are always lower than those 
in Case 1. This appears to be academic, however, as the results in Tables 3 and 4 show that the 
curvature terms have little practical effect on the critical buckling factor for the laminate 
geometries considered. 

It should be noted that the present theory involves only two independent variables as against 
 
 

Table 3 Comparisons of critical buckling factor )/( 2
32 EhaN cr  for simply supported 

square cross-ply laminated composite plates [0°/90°/90°/0°], under biaxial buckling 

Cc Theory 
a/h 

5 10 15 20 25 30 

0 

FSDTa 3.6706 5.8112 6.5605 6.8758 7.0332 7.1221 

Present n = 3 4.0417 6.0853 6.7201 6.9752 7.1000 7.1697 

Present n = 5 4.0676 6.1049 6.7312 6.9820 7.1046 7.1730 

Present n = 7 4.1096 6.1299 6.7448 6.9903 7.1101 7.1769 

Present n = 9 4.1440 6.1495 6.7553 6.9967 7.1143 7.1799 

1 

FSDTa 3.5837 5.7459 6.5213 6.8509 7.0163 7.1100 

Present n = 3 3.9629 6.0188 6.6801 6.9500 7.0830 7.1576 

Present n = 5 3.9876 6.0378 6.6910 6.9567 7.0875 7.1608 

Present n = 7 4.0273 6.0619 6.7044 6.9649 7.0930 7.1647 

Present n = 9 4.0596 6.0808 6.7148 6.9712 7.0972 7.1677 
a Whitney (1987) 

1363



 
 
 
 
 
 

Tawfiq Becheri, Khaled Amara, Mokhtar Bouazza and Noureddine Benseddiq 

Table 4 Comparisons of critical buckling factor )/( 2
32 EhaN cr  for simply supported square cross-ply 

laminated composite plates [0°/90°/90°/0°], under in-plane combined tension and compression 

Cc Theory 
a/h 

5 10 15 20 25 30 

0 

FSDTa 10.9050 27.4733 38.8042 45.4372 49.3608 51.7962 

Present n = 3 11.7515 28.9051 40.1032 46.4447 50.1229 52.3792 

Present n = 5 11.6513 28.6329 39.7157 46.0800 49.8186 52.1330 

Present n = 7 11.8933 29.0683 40.0991 46.3738 50.0398 52.3018 

Present n = 9 12.0988 29.4029 40.3869 46.5920 50.2032 52.4262 

1 

FSDTa 10.4425 26.7192 38.0402 44.793 48.8479 51.3908 

Present n = 3 11.5465 28.2716 39.3715 45.8088 49.6117 51.9739 

Present n = 5 11.8438 29.2809 40.4623 46.7252 50.3352 52.5415 

Present n =7 12.0901 29.7429 40.8660 47.0306 50.5629 52.7141 

Present n = 9 12.3023 30.0997 41.1699 47.2580 50.7313 52.8413 

* Mode (2,1) 
a Whitney (1987) 
 
 
three in the case of FSDT (Whitney 1987). Also, the present theory does not required shear 
correction factors as in the case of FSDT. It can be concluded that the present theory is not only 
accurate but also efficient in predicting critical buckling load of laminated composite plates. 
 
 
4. Conclusions 
 

The effect of curvature terms on the buckling response of symmetrically-laminated rectangular 
plates is studied using the hyperbolic refined shear deformation theory. Using the Navier solution 
method, the differential equations have been solved analytically and the critical buckling loads 
presented in closed-form solutions. From this numerical study, the following conclusions may be 
drawn: 
 

● Laminated composite plates are widely used in civil infrastructure systems and other 
structural applications because of their advantageous features such as high ratio of stiffness 
and strength to weight. One of the main failure mechanisms in orthotropic plates is buckling. 
Unlike any other isotropic plate, the buckling of orthotropic plate is more complicated due 
to inherently anisotropic. Thus, an accurate buckling analysis of the orthotropic plates is an 
important part of the structural design. 

● By dividing the transverse displacement into the bending shear parts, the number of 
unknowns of the theory is reduced, thus saving computational time. 

● The formulation the theory accounts for the shear deformation effects without requiring a 
shear correction factor. 

● The classical plate theory comes out as a special case of present theory 
● The effect of curvature terms on critical buckling load was shown to be negligible for the 

laminates under consideration by comparing solutions with and without these terms 
included. 
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