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Abstract.    The current research presents a buckling analysis of isotropic and orthotropic plates by proposing a new 
four variable refined plate theory. Contrary to the existing higher order shear deformation theories (HSDT) and the 
first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates 
undetermined integral terms and involves only four variables. The governing equations for buckling analysis are 
deduced by utilizing the principle of virtual works. The analytical solution of a simply supported rectangular plate 
under the axial loading has been determined via the Navier method. Numerical investigations are performed by using 
the proposed model and the obtained results are compared with CPT solutions, FSDT solutions, and the existing 
exact solutions in the literature. It can be concluded that the developed four variable refined plate theory, which does 
not use shear correction coefficient, is not only simple but also comparable to the FSDT. 
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1. Introduction 
 

The stability of rectangular plates has been a topic of investigation in engineering structures for 
more than a century (Matsunaga 2009, Bachir Bouiadjra et al. 2013, Altunsaray and Bayer 2014, 
Afsharmanesh et al. 2014, Bakora and Tounsi 2015, Bouguenina et al. 2015, Nguyen et al. 2015, 
Tagrara et al. 2015, Tebboune et al. 2015, Larbi Chaht et al. 2015, Musa 2016, Rajanna et al. 2016, 
Bouderba et al. 2016, Yousefitabar and Matapouri 2016, Chikh et al. 2016, Eltaher et al. 2016). A 
great number of exact solutions for isotropic and orthotropic plates have been proposed, and the 
most known are documented in Timoshenko and Woinowsky-Krieger (1959), Timoshenko and 
Gere (1961), Bank and Yin (1996), Kang and Leissa (2005), Hwang and Lee (2006) and Musa 
(2016). In company with investigations of stability response of plate, a great number of plate 
models have been proposed. The simplest one is the classical plate theory (CPT) which ignores the 
transverse shear influences. This model is not suitable for the thick and orthotropic plate with 
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important degree of modulus ratio. To avoid this limitation, the shear deformation theory which 
considers the transverse shear influences is introduced by several researchers. Indeed, the FSDT 
(first shear deformation theory) and HSDT (high shear deformation theory) were proposed as 
improvement of the CPT. The FSDT is based on Reissner (1945) and Mindlin (1951) and consider 
the transverse shear influences by the way of linear distribution of the displacements across the 
thickness. Many investigations have been presented in different scientific articles by employing 
FSDT for the free vibration behavior of composite plates (Yan et al. 1966, Whitney 1969, Whitney 
and Pagano 1970, Ambartsumyan 1970, Sun and Whitney 1973, Bert and Chen 1978, Reddy 1979, 
Noor and Burton 1989a, b, Kant and Swaminathan 2001). Kant and Swaminathan (2001) extended 
the FSDT presented by Whitney and Pagano (1970) for the dynamic response of laminated 
composite and sandwich plates. Sadoune et al. (2014) developed a novel FSDT for mechanical 
behavior of laminated plates. Meksi et al. (2015) proposed a new simple FSDT with only four 
variables for static and vibration analysis of functionally graded plates. Bellifa et al. (2016) used a 
new FSDT for bending and dynamic analysis of functionally graded plates. Hadji et al. (2016) 
analyzed a FG beam using a new first-order shear deformation theory. Yaghoobi et al. (2014) 
proposed an analytical study on post-buckling and nonlinear free vibration analysis of FG beams 
resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM. Bourada et 
al. (2012) presented a new four-variable refined plate theory for thermal buckling analysis of FG 
sandwich plates. It is noted that various HSDTs are also used (Mahapatra et al. 2016a, b, Katariya 
and Panda 2016, Mehar and Panda 2016, Panda and Katariya 2015, Kar and Panda 2014, Panda 
and Singh 2013a, b, c, 2010a, b, 2011) to investigate the geometrical deformation of composite 
structures under the large geometrical distortion. Tounsi and his co-workers (Benachour et al. 2011, 
Houari et al. 2013, Tounsi et al. 2013, Ould Larbi et al. 2013, Saidi et al. 2013, Bousahla et al. 
2014, Draiche et al. 2014, Fekrar et al. 2014, Hadji et al. 2014, Khalfi et al. 2014, Zidi et al. 2014, 
Klouche Djedid et al. 2014, Ait Yahia et al. 2015, Zemri et al. 2015, Sallai et al. 2015, Bennai et al. 
2015, Bouchafa et al. 2015, Meradjah et al. 2015, Merazi et al. 2015, Al-Basyouni et al. 2015, 
Attia et al. 2015, Ait Atmane et al. 2015, Belkorissat et al. 2015, Boukhari et al. 2016, Bounouara 
et al. 2016, Mouaici et al. 2016, Beldjelili et al. 2016) proposed a new HSDTs to investigate the 
mechanical behavior of composite structures. Recently, Mantari and Granados (2015) proposed a 
new FSDT with four variables in which integral terms in the plate kinematics are utilized. Since 
FSDTs do not respect equilibrium conditions at the top and bottom surfaces of the plate, shear 
correction coefficients are needed to correct the unrealistic distribution of the shear strain/stress 
within the thickness. For these reasons, many HSDTs have been proposed to improve the 
limitations of FSDT such as Levinson (1980), Bhimaraddi and Stevens (1984), Reddy (1984), Ren 
(1986), Kant and Pandya (1988), and Mohan et al. (1994). A good review of these models for the 
investigation of laminated plates is found in (Noor and Burton 1989a, b, Reddy 1990 and 1993, 
Mallikarjuna and Kant 1993, Dahsin and Xiaoyu 1996). Reddy (1984) proposed a HSDT with 
cubic distributions for axial displacements. Based on Reddy’s theory, Xiang et al. (2011) 
developed a n-order shear deformation theory. Kant and Pandya (1988), Mallikarjuna and Kant 
(1989) and Kant and Khare (1997) employed also HSDTs with cubic distributions for axial 
displacements as in the article by Reddy (1984). Recently, a new class of HSDTs is proposed by 
many researchers such as Shahrjerdi et al. (2011), Bouderba et al. (2013), Viswanathan et al. 
(2013), Ait Amar Meziane et al. (2014), Belabed et al. (2014), Ahmed (2014), Swaminathan and 
Naveenkumar (2014), Nedri et al. (2014), Bourada et al. (2015), Hamidi et al. (2015), Kar et al. 
(2015), Hebali et al. (2014), Mahi et al. (2015), Saidi et al. (2016), Bennoun et al. (2016) and 
Tounsi et al. (2016). 
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In the present research, the buckling analysis of isotropic and orthotropic plates under the in-
plane loading is investigated by utilizing a novel HSDT with four variables in which instead of 
derivative terms in the displacement field, integral terms are employed. The displacement field 
presented by Mantari and Granados (2015) is improved by considering higher-order distributions 
of in-plane displacements within the plate thickness. By employing the Navier procedure, the 
closed-form solutions have been determined. Numerical results considering side-to-thickness ratio 
and modulus ratio are carried out to illustrate the validity of the present model in computing the 
critical buckling load of isotropic and orthotropic plates. It can be concluded that the present 
model, which does not use shear correction coefficient, is not only simple but also comparable to 
the FSDT. 
 
 
2. Theoretical formulation 
 

2.1 Kinematics and strains 
 
In this research work, further simplifying supposition are considered to the conventional HSDT 

so that the number of variables is diminished. The kinematic of the conventional HSDT is 
expressed by 

),()(),(),,( 0
0 yxzf

x

w
zyxuzyxu x

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  (1a)

 

),()(),(),,( 0
0 yxzf

y

w
zyxvzyxv y

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  (1b)

 
),(),,( 0 yxwzyxw   (1c)

 
where u0; v0; w0, φx, φy are five unknown displacements of the mid-plane of the plate, f(z) denotes 
shape function defining the distribution of the transverse shear strains and stresses within the 
thickness. By supposing that  dxyxx ),(  and ,),( dyyxy   the displacement field of the 
current theory model can be found in a simpler form as 
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In this investigation, the proposed higher-order shear deformation plate theory is determined by 

considering 
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It can be observed that the kinematic in Eq. (2) incorporates only four variables (u0, v0, w0 and 
θ). The nonzero strains associated with the kinematic in Eq. (2) are 
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The integrals used in the above expressions shall be resolved by a Navier type method and can 

be expressed as follows 
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where the coefficients A′ and B′ are adopted according to the type of solution employed, in this 
case via Navier. Hence, A′ and B′ are defined as follows 
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where α and β are defined in expression (20). 
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2.2 Constitutive equations 
 
For elastic and orthotropic plate, the constitutive relations can be expressed as 
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where Qij present the plane stress reduced elastic constants in the material axes of the plate, and are 
expressed as 
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where E1, E2 are Young’s modulus, G12, G23, G13 are shear modulus, and v12, v21 are Poisson’s 
ratios. For the isotropic plate, these above material characteristics reduce to E1 = E2 = E, G12 = G23 
= G13 = G, v12 = v21 = v. The subscripts 1, 2, 3 correspond to x, y, z directions of Cartesian 
coordinate system, respectively. 

 
2.3 Governing equations 
 
The principle of virtual works is employed herein to derive the governing equations. The 

principle can be expressed in analytical form as 
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where δU is the variation of strain energy; and δV is the variation of the external work done by 
external load applied to the plate. 

The variation of strain energy of the plate is given by 
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where A is the top surface and the stress resultants N, M, and S are expressed by 
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The variation of the external work can be expressed as 
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where ),,( 000

xyyx NNN  are transverse and in-plane applied loads, respectively. 
By substituting Eqs. (11) and (13) into Eq. (10), the following governing equations can be 

derived 
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By substituting Eq. (4) into Eq. (8) and the subsequent results into Eq. (12), the stress resultants 

can be written as below 
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and stiffness components are expressed as 
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Introducing relations (15) into Eq. (14), the governing equations can be expressed in terms of 
displacements (δu0, δv0, δw0, δθ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential operators 
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2.4 Closed-form solution 
 
The critical buckling loads of simply supported, orthotropic, rectangular plate will be computed 

in this work by employing the Navier method. Considering that the plate is subjected to in-plane 
compressive loads of form: ,1

0
crx NN  ,2

0
cry NN  00 xyN  (here γ1 and γ2 are non-dimensional 

load parameters). The following displacement functions are chosen to automatically satisfy the 
boundary conditions 
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with 

 
am /     and   bn /   (20)

and Umn, Vmn, Wmn, Xmn are arbitrary parameters to be determined. Substituting Eq. (19) into Eq. 
(17), the closed-form solution of buckling load can be determined from 
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The geometrical instability has been taken care in the present analysis by considering the 

determinant of the coefficient matrix in Eq. (21) to be equal zero. Indeed, for nontrivial solution, 
the determinant of the coefficient matrix in Eq. (21) must be zero. For each choice of m and n, 
there is a corresponding unique value of Ncr. The critical buckling load is the smallest value of Ncr 
(m, n). 

By applying the condensation approach to eliminate the in-plane displacements Umn and Vmn, 
Eq. (21) can be rewritten as 
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The system of homogeneous Eq. (23) has a nontrivial solution only for discrete values of the 

buckling load. For a nontrivial solution, the determinant of the coefficients (Wmn, Xmn) must equal 
zero 

0
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SkS
 (25)

 
The resulting equation may be solved for the buckling load. This gives the following 

expression for buckling load 
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By employing the Eq. (25), the following expression for critical buckling load is determined 
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3. Numerical results and discussions 
 

In this section the accuracy of the proposed HSDT which uses a kinematic with only four 
variables, is assessed. For this end, a simply supported rectangular plate under loading conditions, 
as presented in Fig. 1, is examined to demonstrate the accuracy of the current formulation in 
investigating the buckling response of the plate. For proposed examples, the following engineering 
constants are employed (Reddy 1997) 
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(a) (b) (c) 

Fig. 1 The loading conditions of square plate for (a) uniaxial compression; (b) biaxial compression; and 
(c) tension in the x direction and compression in the y direction 

 

21 / EE  varied  5.0// 213212  EGEG ,  2.0/ 223 EG ,  25.012   (28)
 
For convenience, the following non-dimensional buckling load is utilized 
 

3
2

2

hE

aN
N cr  (29)

 
where a is the length of the square plate and h is the thickness of the plate. 

 
 
 

Table 1 Comparison of non-dimensional critical buckling load of square plates under uniaxial compression 

a / h Theories 
Isotropic 
v = 0.3 

Orthotropic 

E1 / E2 = 10 E1 / E2 = 25 E1 / E2 = 40 

5 

Present 2.9512 6.3478 9.1039 10.5785 

RPT(*) 2.9512 6.3478 9.1039 10.5785 

FSDT(*) (ks = 2 / 3) 2.8200 5.5679 7.1122 7.7411 

FSDT(*) (ks = 5 / 6) 2.9498 6.1804 8.2199 9.1085 

FSDT(*) (ks = 1) 3.0432 6.6715 9.1841 10.3463 

10 

Present 3.4224 9.3732 16.7719 22.2581 

RPT(*) 3.4224 9.3732 16.7719 22.2581 

FSDT(*) (ks = 2 / 3) 3.3772 8.8988 14.7011 18.3575 

FSDT(*) (ks = 5 / 6) 3.4222 9.2733 15.8736 20.3044 

FSDT(*) (ks = 1) 3.4530 9.5415 16.7699 21.8602 

20 

Present 3.5650 10.6534 21.3479 31.0685 

RPT(*) 3.5650 10.6534 21.3479 31.0685 

FSDT(*) (ks = 2 / 3) 3.5526 10.4926 20.4034 28.85 

FSDT(*) (ks = 5 / 6) 3.5650 10.6199 20.9528 30.0139 

FSDT(*) (ks = 1) 3.5733 10.7066 21.3363 30.8451 
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50 

Present 3.6071 11.0780 23.1225 34.9717 

RPT(*) 3.6071 11.0780 23.1225 34.9717 

FSDT(*) (ks = 2 / 3) 3.6051 11.0497 22.9366 34.4886 

FSDT(*) (ks = 5 / 6) 3.6071 11.0721 23.0461 34.7487 

FSDT(*) (ks = 1) 3.6085 11.0871 23.1197 34.9244 

100 

Present 3.6132 11.1415 23.4007 35.6120 

RPT(*) 3.6132 11.1415 23.4007 35.6120 

FSDT(*) (ks = 2 / 3) 3.6127 11.1343 23.3527 35.4852 

FSDT(*) (ks = 5 / 6) 3.6132 11.1400 23.3810 35.5538 

FSDT(*) (ks = 1) 3.6135 11.1438 23.3999 35.5996 

* Taken from Ref (Kim et al. 2009) 
Table 2 Comparison of non-dimensional critical buckling load of square plates under biaxial compression 

a / h Theories 
Isotropic 
v = 0.3 

Orthotropic 

E1 / E2 = 10 E1 / E2 = 25 E1 / E2 = 40 

5 

Present 1.4756 2.8549a 3.3309a 3.3800a 

RPT(*) 1.4756 2.8549a 3.3309a 3.3800a 

FSDT(*) (ks = 2 / 3) 1.4100 2.5042a 2.7332a 2.8303a 

FSDT(*) (ks = 5 / 6) 1.4749 2.8319a 3.1422a 3.2822a 

FSDT(*) (ks = 1) 1.5216 3.1027a 3.4933a 3.6793a 

10 

Present 1.7112 4.6718a 6.0646a 7.2536a 

RPT(*) 1.7112 4.6718a 6.0646a 7.2536a 

FSDT(*) (ks = 2 / 3) 1.6886 4.4259 5.4351a 6.0797a 

FSDT(*) (ks = 5 / 6) 1.7111 4.6367 5.8370a 6.6325a 

FSDT(*) (ks = 1) 1.7265 4.7708 6.1425a 7.0690a 

20 

Present 1.7825 5.3267 7.6643a 9.6614a 

RPT(*) 1.7825 5.3267 7.6643a 9.6614a 

FSDT(*) (ks = 2 / 3) 1.7763 5.2463 7.3701a 8.9895a 

FSDT(*) (ks = 5 / 6) 1.7825 5.3100 7.5546a 9.3049a 

FSDT(*) (ks = 1) 1.7866 5.3533 7.6834a 9.5297a 

50 

Present 1.8036 5.5390 8.2784a 10.6576a 

RPT(*) 1.8036 5.5390 8.2784a 10.6576a 

FSDT(*) (ks = 2 / 3) 1.8025 5.5249 8.2199a 10.5111a 

FSDT(*) (ks = 5 / 6) 1.8036 5.5361 8.2566a 10.5810a 

FSDT(*) (ks = 1) 1.8042 5.5436 8.2812a 10.6282a 

100 

Present 1.8066 5.5707 8.3744a 10.8172a 

RPT(*) 1.8066 5.5707 8.3744a 10.8172a 

FSDT(*) (ks = 2 / 3) 1.8063 5.5672 8.3593a 10.7788a 

FSDT(*) (ks = 5 / 6) 1.8066 5.5700 8.3687a 10.7972a 

FSDT(*) (ks = 1) 1.8068 5.5719 8.3751a 10.8095a 

* Taken from Ref (Kim et al. 2009) 
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a Mode for plate is (m, n) = (1, 2). 

 
 
Example 1: Table 1 gives the values of the non-dimensional buckling loads N  of isotropic 

and orthotropic square plates subjected to uniaxial compression for various values of thickness 
ratio a / h and modulus ratio E1 / E2. The obtained results are compared with the data reported by 
Kim et al. (2009) based on FSDT and refined plate theory (RPT). Many shear correction 
coefficients (ks = 2 / 3, ks = 5 / 6 and ks = 1) are employed for the FSDT (Kim et al. 2009) in 
comparison with the present model. An excellent agreement is proved for all types ranging from 
thin to very thick plates. 
Example 2: In Table 2 we found the values of the non-dimensional buckling loads N  of 

isotropic and orthotropic square plates under biaxial compression for various values of thickness 
ratio a / h and modulus ratio E1 / E2. Again, the computed values are compared with those given by 
Kim et al. (2009) based on FSDT and RPT. It is remarked that there is an excellent agreement 
between the values computed by the present model and RPT (Kim et al. 2009) for all values of 
thickness ratio a / h and modulus ratio E1 / E2. 
Example 3: This example is performed for isotropic and orthotropic square plates subjected to 

tension in the x direction and compression in the y direction. In Table 3 the comparison of non-
dimensional buckling loads N  computed via present model with those provided by Kim et al. 

 
 

Table 3 Comparison of non-dimensional critical buckling load of square plates subjected to 
tension in the x direction and compression in the y direction 

a / h Theories 
Isotropic 
v = 0.3 

Orthotropic 

E1 / E2 = 10 E1 / E2 = 25 E1 / E2 = 40 

5 

Present 4.8274a 4.0258b 4.1044c 4.1525c 

RPT(*) 4.8274a 4.0258b 4.1044c 4.1525c 

FSDT(*) (ks = 2 / 3) 4.4175a 3.2849d 3.3001e 3.3053e 

FSDT(*) (ks = 5 / 6) 4.8158a 3.9241c 3.9794c 4.0075d 

FSDT(*) (ks = 1) 5.1237a 4.4488b 4.5691c 4.6073c 

10 

Present 6.6024a 7.7863 8.5471b 9.1638b 

RPT(*) 6.6024a 7.7863 8.5471b 9.1638b 

FSDT(*) (ks = 2 / 3) 6.4032a 7.2656 7.7820b 8.1208b 

FSDT(*) (ks = 5 / 6) 6.6010a 7.7748 8.4774b 8.9039b 

FSDT(*) (ks = 1) 6.7398a 8.0651 9.0153b 9.5197b 

20 

Present 7.2754 a 9.2811 11.6347b 12.8031b 

RPT(*) 7.2754 a 9.2811 11.6347b 12.8031b 

FSDT(*) (ks = 2 / 3) 7.2139 a 9.1310 11.2544b 12.1990b 

FSDT(*) (ks = 5 / 6) 7.2753 a 9.2782 11.6015b 12.6339b 

FSDT(*) (ks = 1) 7.3168 a 9.3790 11.8453b 12.9428b 

50 
Present 7.4895a 9.8101 12.9531b 14.4177b 

RPT(*) 7.4895a 9.8101 12.9531b 14.4177b 
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FSDT(*) (ks = 2 / 3) 7.4790a 9.7830 12.8751b 14.2839b 

FSDT(*) (ks = 5 / 6) 7.4895a 9.8097 12.9463b 14.3789b 

FSDT(*) (ks = 1) 7.4965a 9.8275 12.9942b 14.4430b 

100 

Present 7.5211a 9.8907a 13.1666b 14.6827b 

RPT(*) 7.5211a 9.8907a 13.1666b 14.6827b 

FSDT(*) (ks = 2 / 3) 7.5185a 9.8838a 16.1463b 14.6474b 

FSDT(*) (ks = 5 / 6) 7.5211a 9.8906a 13.1648b 14.6724b 

FSDT(*) (ks = 1) 7.5229a 9.8951a 13.1772b 14.6891b 

* Taken from Ref (Kim et al. 2009) 
a Mode for plate is (m, n) = (1, 2); b Mode for plate is (m, n) = (1, 3); c Mode for plate is (m, n) = (1, 4) 
d Mode for plate is (m, n) = (1, 5); e Mode for plate is (m, n) = (1, 6). 
(2009) based on FSDT and RPT is presented. It can be seen that there is an excellent agreement for 
a wide range of values of thickness ratio and modulus ratio. 

Fig. 2 demonstrates the effect of thickness and modulus ratios on the non-dimensional critical 
buckling load N  of square plate subjected to uniaxial compression. It is observed that the present 
novel four variable refined plate theory and RPT predict almost the same data, and CPT over-
estimates the buckling loads of plate due to neglecting transverse shear deformation influences. 
The difference between CPT and shear deformation models diminishes when the side-to-thickness 
ratio a / h increases. As well as the plate becomes more orthotropic, the difference between the 
present theory and FSDT will increase with respect to the increase of thickness ratio. 

The variations of non-dimensional critical buckling load N  of square plate as a function of the 
modulus ratio is illustrated in Fig. 3. The considered plate is subjected to biaxial compression. The 
curves plotted by employing the present model are compared with the curves plotted by utilizing 
the CPT, FSDT and the RPT. From these results can be concluded that the resulting curves are 
very close to the curves plotted by using RPT and the CPT over-estimates the results when the 

 
 

(a) (b) 

  

1299



 
 
 
 
 
 

Fouad Bourada, Khaled Amara and Abdelouahed Tounsi 

(c) (d) 

Fig. 2 The effectofside-to thickness and modulus ratios on the critical buckling load of square plate subjected
to uniaxial compression: (a) isotropic; (b) E1 / E2 = 10; (c) E1 / E2 = 25; and (d) E1 / E2 = 40 

 

(a) (b) 

Fig. 3 The effect of modulus ratio on the critical buckling load of square plate subjected to uniaxial 
compression: (a) a = 10 h; and (b) a = 20 h 
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(a) (b) 

Fig. 4 The effect of modulus ratio on the critical buckling load of square plate subjected to 
biaxial compression: (a) a = 10 h ; and (b) a = 20 h 

 
 
 

modulus ratio increases. It can be also seen that the difference between the present theory and SDT 
will increase with increasing the modulus ratio. 

The effect of modulus ratio on the critical buckling load of square plate subjected to tension in 
the x direction and compression in the y direction is shown in Fig. 4. Again from Fig. 4 can be 
observed that the resulting curves are very close to the curves plotted by using RPT and the CPT 
over-estimates the results when the modulus ratio increases. 

It can be observed from Tables 1-3 and Figs. 2-4 that the difference of critical buckling load 
between the present theory and FSDT depends on not only the thickness and modulus ratios, but 
also the in-plane loading conditions (Fig. 1). 
4. Conclusions 
 

A simplified HSDT with only four unknowns was developed for buckling analysis of isotropic 
and orthotropic plates. Governing equations are obtained from the principle of virtual works. 
Closed-form solutions are obtained for simply supported orthotropic plates. The accuracy of the 
developed model has been checked for the stability analysis of isotropic and orthotropic plates. 
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