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Abstract.    This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric 
analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the 
conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative 
approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency 
of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi 
equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA 
based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the 
conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are 
provided to confirm the computational efficiency and robustness of the proposed method in comparison with 
derivative-based LSM and FEM. 
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1. Introduction 
 

In past decades, structural optimization as an interesting area of research has received great 
deal of attentions by numerous researchers. The structural optimization has ability to shorten the 
design cycle and to enhance the product quality (Jia et al. 2011). Sizing, shape and topology 
optimization have been considered as the classification of the structural optimization. Topology 
optimization can determine the optimal distribution of a given amount of material in the design 
domain with known loads and boundary conditions to obtain the optimal connectivity, shape and 
numbers of holes until the specified structural performance is maximized or minimized (Bendsøe 
and Sigmund 2003). For solving the topology optimization problems, a number of methods such as 
Optimality Criteria (OC) methods (Rozvany 1989, Rozvany and Zhou 1991), the approximation 
methods (Schmit and Farsi 1974, Schmit and Miura 1976, Vanderplaats and Salajegheh 1989), the 
Method of Moving Asymptotes (MMA) (Svanberg 1987), Evolutionary Structural Optimization 
(ESO) method (Xie and Steven 1993) and even more heuristic methods such as genetic algorithm 
(Kane and Schoenauer 1996, Fanjoy and Crossley 2000, Jakiela et al. 2000, Salajegheh et al. 
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2009), ant colony (Kaveh et al. 2004) and the hybrid of metaheuristic techniques (Gholizadeh and 
Barati 2014, Mashayekhi et al. 2016) have been developed. In recent years, the level set methods 
(LSMs) have been proposed as an attractive alternative for topology optimization (Dijk et al. 2013, 
Luo 2013). 

The LSM is known as the efficient tool of attracting, modeling and simulating the evolution of 
moving boundaries in many areas (Osher and Sethian 1988). The boundaries are implicitly 
specified by an Eulerian grid depending on the sign of the level set function. Because of modifying 
the implicit level set function, the boundaries of body can move, split into multiple boundaries and 
merge into a single boundary without any difficulty of shape parameterization and re–
parameterization. The evolution of the boundary of the design domain is governed by Hamilton–
Jacobi (H–J) partially differential equation and the shape velocity computed from design 
sensitivity analysis. For solving H–J partially differential equation, the numerical difficulties also 
related to the Courant–Friedrichs–Lewy (CFL) condition, periodically applied re–initializations 
and velocity extension schemes should be carefully utilized in the numerical process. The 
combination of the LSM and the shape derivative were proposed by Allaire et al. (2004) and Wang 
et al. (2004). The shape derivative easily handle boundary propagation with topological changes. 
In the conventional LSM, the final optimal design depends on the appropriate location of holes in 
the initial design. Incorporating the topological derivative into the LSMs was proposed by Burger 
et al. (2004) in order to measure the sensitivity of creating a small hole in the interior design 
domain. The topological derivative can efficiently reduce the dependency of the final optimal 
design on the location of holes in the initial design. Instead of the use of conventional upwind 
scheme for solving level set equations, the Additive Operator Splitting (AOS) method was also 
utilized by Lu et al. (1991). A survey about topological shape optimization of structures using the 
LSMs has been reported by Dijk et al. (2013) and Luo (2013). 

Most of topology optimization methods utilized the conventional finite element method (FEM) 
for structural response analysis and sensitivity calculation. In general, the methods suffer two 
serious drawbacks due to a fixed FE grid used for material representation and numerical analysis. 
The first one is that design results are highly dependent on the initial fixed FE grid (Seo et al. 
2010). In level set based approaches, fixed FE grid are utilized to define level set values at nodes 
and to analyze design models. The second drawback is that topology optimization based on FEM 
requires high post–processing effort in converting the optimized result to the computer–aided 
design (CAD) model. Using an alternative analysis method without fixed grid can overcome the 
first drawback. Also, unifying analysis and design models defined with CAD data have been 
proposed to eliminate the second drawback. In the regards, the isogeometric analysis (IGA) has 
been developed as a promising alternative to FEM in topology optimization (Hughes et al. 2005). 
IGA based on Non–Uniform Rational B–Splines (NURBS) basis function can be applied for both 
the solution field approximation and the geometry description. This leads to the ability of 
modeling complex geometries accurately. Studies on shape optimization and topology 
optimization based on IGA were presented by Wall et al. 2008, Cho and Ha 2009, Nagy et al. 2010, 
Qian 2010, Roodsarabi et al. 2016. 

In this study, a hybrid of topological derivative–based LSM and IGA are proposed for structural 
topology optimization. Topological derivative approach is utilized to create new holes in 
appropriate places of the design domain, and alleviate the strong dependency of the optimal 
topology on the initial design. The values of the gradient vector in H–J equation of the 
conventional LSM are also replaced with a Delta function. In order to obtain great time advantage 
in the optimization procedure, a semi–implicit discretization scheme and the AOS method are 
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utilized to solve the level set equations. Furthermore, in the topology optimization procedure the 
NURBS based–IGA approach is utilized instead of in the conventional FEM. In fact, in IGA 
control points play the same role with nodes in FEM and B–Spline basis functions are utilized as 
shape functions of FEM for analysis of structure. Boundary conditions are directly imposed on 
control points. Numerical integration is implemented almost same with FEM in order to transform 
the parametric domain to master element for Gauss quadrature. In the LSM–based topology 
optimization procedure the design model are computed using a fixed isogeometric mesh that is 
unchanged during topology optimization. Hence, in this study the “Ersatz material” approach 
(Allaire et al. 2004) is adopted in order to avoid the time–consuming re–meshing process of design 
model topology optimization procedure. Based on the popular “Ersatz material” approach, the 
elements associated with the void (hole) region are modeled by a soft material. The material 
properties of elements intersected by the zero–level set contour are interpolated between the void 
and solid phase in design domain. Several numerical examples are represented to demonstrate the 
capability and performance of the proposed method. The numerical results of the proposed method 
are also compared with other LSMs and the hybrid of topological derivative–based LSM and FEM 
to indicate the efficiency and accuracy of the proposed method. 
 
 
2. Topology optimization problem 
 

The main aim of topology optimization is to minimize the compliance (i.e., global strain energy) 
over the structural domain for general loading conditions with a constraint on total material 
volume resources. Numerous equivalent formulations of the minimum compliance problem are 
proposed in the work of Allaire et al. (2004). 

Let Ω be a bounded open set, then all admissible shapes in working domain D will be occupied 
by a linear isotropic elastic material with Hooke’s law, Ae, in the design domain. The objective 
function (compliance) denoted by J(Ω) is formulated as follows 

 

( ) ( ) ( )f u g u u u
NΩ Γ Ω

J Ω dV d S Ae e dV      (1)

 
where ΓN is the Neumann (or force) boundary condition, f and g are body force and surface load, 
respectively; and u is the displacement field based on the following linear elasticity equations 
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u
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div Ae in Ω

in Γ

Ae n in Γ

 


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





 (2)

 
where ΓD is the Dirichlet (or displacement) boundary condition and Ae(u) is the stress field. 

Therefore, the standard notion for minimum compliance design problems can be mathematic-
ally defined as follows 

 

Minimize : ( ) ( ) ( )

subject to :

f u g u u u
N

maxΩ

Ω Γ Ω
J Ω dV d S A e

V

e

V

dV

d

 



  


 (3)
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3. Basic level set model for structural optimization 
 

The basic LSM developed by Osher and Sethian (1988) is an efficient numerical technique for 
the tracking of propagating interfaces. The wide variety of successfully applications of LSM has 
been reported in computer vision, medical scans, seismic analysis, fluid flow, structural 
optimization and optimal control. It makes use of a function, ϕ, referred to as the level set function, 
which represents the boundary as the zero level set and nonzero in the domain. Hence, the value of 
the level set function is defined as 

 

(4)

 
where D  Rd denotes the design domain, in which all admissible forms of Ω are a smooth 
boundary open set place in (i.e., Ω  D), and t  R+ is time. ∂Ω is the boundary of the material 
domain, Ω. 

The topology optimization of structures can be described by the evolution of the level set 
function in pseudo–time, t, with advection velocity in a normal direction, and the motion of the 
structural boundaries can be defined as 

 
( ) { ( ( ), ) 0} ( ) ( )x xΩ t t t t Ω t      (5)

 
By the total derivative of the level set function with respect to t yields, the Hamilton–Jacobi 

(H–J) partially differential equation as the level set equation can be obtained as 
 

00, ( ,0) ( )x xv
t

   
   


 (6)

 
where vn is the advection velocity along the normal direction of the implicit interface. In fact, the 
H–J equation is used to update the free structural boundaries. 

Solving the H–J partially differential equation equation needs an appropriate choice of upwind 
difference schemes, a re–initialization algorithm and an extension velocity method, which may 
require excessive amounts of computational effort. Thus, this problem limits the utility of the level 
set methods (Osher and Fedk 2002). 
 
 
4. Design sensitivity analysis and computation 
 

4.1 Shape derivative concept 
 
In order to solve the optimization problem (3), a based–gradient method (i.e., shape derivative) 

is utilized. Murat and Simon (1976) introduced a technique for constructing a shape derivative by 
the parameterization of domains. This approach is described as follows 

 

 Ω Ω    (7)
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where Ω is a smooth open set domain, and   
is identity mapping in N , θ  W1,∞ ( ,N N  ). 

The shape derivative of objective function, J(Ω): ,N N   is defined as the Frechet 
derivative in W1,∞ ( ,N N  ). For θ being small enough 

 

        J Ω J Ω J Ω O       (8)

 
where J (Ω) is a continuous linear form on W1,∞ ( ,N N  ) given as the unique solution for the 
problem presented in Eq. (3). 

The above equation is called Frechet derivative–based sensitivity and the sensitivity of the 
mean compliance (Eq. (1)) is given as follows (Garreau et al. 2001, Allaire et al. 2004) 

 

           2
N DΓ Γ

g u
g u f u u u u uJ Ω H Ae e n d S Ae e n d S

n
   


   



  
    

   (9)

 
where H is the mean curvature defined by H = div n; ∂Ω is decomposed into three parts, ΓD, ∂DN, 
ΓO. ΓD is an admissible Dirichlet boundary condition, such that ΓD  ∂DD; ΓN = ∂DN  ΓO is a 
Neumann boundary condition, where ∂DN supports a non–homogeneous one and ΓO supports a 
homogeneous one. By assuming no body force in (Eq. (1)), the objective function is also defined 
as 

  g u
ND

J Ω dS


   (10)

 
Therefore, the Frechet derivative of the mean compliance and the volume constraint are defined 

as 

      
DΓ

u uJ Ω Ae e n dS     (11)

 

     
Ω

x xΩV n dS 


    (12)

 
The optimization problem is solved using the augmented Lagrangian method. Hence, based on 

the Lagrange multiplier, λk, and the penalization parameter, Λk, the augmented Lagrangian, ),(J is 
defined as follows 

   
21

2

k
max maxkΩ Ω

J J dV VΩ Ω dV V
Λ

       
      (13)

 
The Lagrange multiplier and penalization parameter are updated at each iteration of the 

optimization process as 

1
max

1k k

k Ω
λ λ dV V

Λ

    
   (14)

 
1k kΛ α Λ   (15)

 
where α  (0, 1) is a constant parameter. By assuming no body force, the shape derivative of the 
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augmented Lagrangian is obtained as 
 

 
0Γ

J Ω v n d S     (16)

 

   
2

max

1

2 Ω
u uv dV V Ae e

Λ
         (17)

 
To ensure the decrease of the objective function in the level set method, the normal velocity 

field must be chosen appropriately. The fast descent or the steepest descent method is used, which 
proposed by Allaire et al. (2004) and Wang et al. (2004). The normal velocity field in the H–J 
equation is substituted with a normal component of this direction θ.n = ‒ v. 

 

(18)

 
4.2 Topological derivative concept 
 
While the shape derivative is based on local perturbations of the boundary of the domain Ω, the 

topological derivative concept quantifies the sensitivity of the problem when the domain Ω is 
perturbed by the introduction of a hole. The topological derivative for all homogeneous Neumann 
boundary conditions on the hole is defined via 

 

      
 0

/
lim

x
x

x
T

w

J Ω w J Ω
D

w







  (19)

 
where wε represents a small hole with radius εa, and a is constant. |wε| is the measure of w, which is 
equal to πε2a2. 

 The topological derivative of the objective function or mean compliance on the discussion in 
the work of Garreau et al. (2001) can be obtained as follows 

 

   
 

            2
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T
D Ae e tr Ae tJ r e

  
  

  


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
 (20)

 
where λ and μ are the Lame moduli of the material. The topological sensitivity of the domain 
volume Ω is defined as 

 x
T

D V w      (21)
 

where w represents a unit circle. Therefore, the topological derivative of the augmented objective 
function is formed the necessary ingredients as 
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
 (22)
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5. Topological derivative–based LSM 
 

A significant drawback of the conventional LSM in topology optimization is that it cannot 
create new holes in the design domain. Hence, the topological derivative concept can overcome 
this drawback. Based on the topological derivative concept, a forcing term (i.e., wg) is added to 
obtain the sensitivity of creating new holes at the interior point of the design domain of a given 
objective function. This term increases the level set function and later nucleates new holes in the 
zero level. According to the expressions in Section (3) this strategy results in a first–order H–J 
equation for the level set function as 

 

0v w g
t

 
   


 (23)

 
where w is a weighting parameter which determines the influence of the topological derivative. 
Also, the term g is defined as follows (Huaug et al. 1986) 

 
   sign T Ωg D J   (24)

 
For compliance minimization, the nucleating solid areas within the void regions are pointless, 

because such solid regions will not take any load. Hence, holes should only be nucleated within 
the solid structure 

(25)

 
In order to increase stability of the LSM and obtain a good convergence, the following Delta 

function, instead of the measure of the gradient vector, is utilized to interpolate the scalar level set 
function 

2 2( ) exp( )x xn

n
n


   (26)

 
where n is a positive value. Hence, the level set function is reformulated by using the Delta 
function as 

0( )nv w g
t


   



 (27)

 
In this equation, the normal velocity field is substituted with the mean curvature flow and 

velocity to ensure a smooth design boundary or v + βk. Hence, Eq. (23) is re–constructed as 
 

 ( )( ) 0.0 , ( )n kv w g
t


 


 

     
 

 (28)

 
The solving the H–J equation (i.e., Eq. (28)) based on explicit methods is time consuming 

procedure. Hence, in this study, the Additive Operator Splitting (AOS) scheme (Lu et al. 1991 and 
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Weickert et al. 1998) as a semi–implicit method is utilized for solving the H–J equation. Based on 
AOS scheme, Eq. (28) can be formulated as follows 

 
1

1( ) ( ) ( ( ) )A
k k

k k k ki i
n L n v w g

t

 
      


       (29)

 
To solve Eq. (29), the level set function can be updated in the following way 
 

(30)

 

 1

1 1( ) 2 ( ) ( ) ( )I Ak k k k k
n nU t t t w g      


       (31)

 

 1

2 2( ) 2 ( ) ( ) ( )I Ak k k k k
n nU t t t w g      


       (32)

 
and the elements of matrix AL (ϕk) is defined as follows 
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 
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




  (33)

 
where )(iNL  is the set of the two neighbors of pixel i (boundary pixels have only one neighbor) 
along the L directions, h is the grid size. 

 
 

6. Isogeometric analysis approach 
 
Isogeometric analysis (IGA) has developed as powerful computational approach that offers the 

possibility of integrating finite element analysis (FEA) into conventional NURBS–based CAD 
tools. The concept of the IGA is great interest in various engineering problems that is utilized for 
the discretization of partial differential equations. The main advantage of IGA is to utilize the 
NURBS basis functions that model accurately the exact geometries of solution space for numerical 
simulations of physical phenomena. In recent years, the IGA–based approaches have been 
developed and have shown many great advantages on solving many different problems such as 
fluid–structure interaction, shells, structural analysis and fracture mechanics (Shojaee and 
Valizadeh 2012, Shojaee et al. 2013). 
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6.1 B–Spline and NURBS basis function 
 
NURBS are a generalization of piecewise polynomial B–Splines curves. The B–Spline basis 

functions are defined by the knot vector which is a set of non–decreasing parameters of real 
number (knots). A knot vector in one dimension is a non–decreasing sequence of real numbers 
(Hughes et al. 2005) 

1 2 1Ξ {  ,   , ,  }n p       (34)
 

where ξi is the ith knot, i is the knot index, i + 1, 2, ..., n + p + 1, p is the order of the B–Spline, and 
n is the number of basic functions. 

The half open interval [ξi, ξi+1) is called the ith knot span and it can have zero length since knots 
may be repeated more than one, and the interval [ξi, ξn+p+1] is called a patch. In the IGA, open knot 
vectors are always employed. A knot vector is said to be open if it has p + 1 repeating knots at the 
two ends. B–Spline basis functions are defined in the following recursive form as 

 

1
,0

1 if
( )

0
i i

iN
  

  
 


 (35)

 

and 
 

1
, , 1 1, 1

1 1

( ) ( ) ( )i pi
i p i p i p

i p i i p i

N N N
  

  
   

 
  

   


 

 
 (36)

 
A pth degree NURBS curve is defined as follows 
 

1
,( ) ( )C P

n

i
i p iN 



   (37)

 
where Ni,p (ξ) is the ith B–Spline basis function of order p and P are control points, given in d–
dimensional space. 1–D B–Splines basis functions built from open knot vectors are interpolatory at 
the ends of parametric space. 

In two dimensions, B–Spline basis functions are interpolatory at the corners of the patches. The 
NURBS curve of order p is defined as 

 

1
,( ) ( )C P

n

i
i p iR 



   (38)
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, ,
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i p i

N w N w
R

W
N w

 


 


 


 

(39)

 
where Ri, p is the NURBS basis functions, Pi is the control point and wi is the ith weight that must be 
non–negative. 

In the two dimensional parametric space, NURBS surfaces are constructed by tensor product 
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through knot vectors Ξ = {ξ1, ξ2,..., ξn+p+1} and Ψ = {η1, η2,..., ηm+p+1}. It yields to 
 

  ,
, , ,

1 1

, ( , )
n m

p q
i j i j i j

i j

C R P   
 

  (40)

 
where Pi, j is the (i, j)th of n×m control points, also called the control mesh. The interval [ξ1, ξn+p+1] 

× [η1, ηm+q+1] is a patch and [ξ1, ξn+1) × [η1, ηj+1) is a knot span. ),(,
, qp

jiR  is the NURBS basis 
function in two dimensional space 
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  (42)

 
where Ni,p and Ni,q are the B–Spline basis functions defined on the knot vectors over an m×n net of 
control points Pi,j. 

The derivative of ),(,
, qp

jiR  and ),(, jiW  with respect to ξ is derived by simply applying 
the quotient rule to Eqs. (41) and (42) 
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

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The domain of problem is divided into patches and each patch is divided into knot spans or 

elements. Patches play the role of sub–domains within which element types and material models 
are assumed to be uniform (Hughes et al. 2005). Nevertheless, many complicated domains can be 
represented by a single patch. 

 
6.2 NURBS based isogeometric analysis formulation 
 
For a 2–D linear elasticity problem with the presence of body force f and traction force g, the 

following weak form equation is obtained by the virtual displacement method 
 

f g
t

T T T

Ω Ω Γ
dΩ dΩ dΓ     ε σ u u  (45)

 
where σ is the stress tensor and ε is the strain tensor. In isogeometric approach, the discretization is 
based on NURBS. Hence, the geometry and solution field are approximated as 

 
( , ) ; , patch   x R P  (46)
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( , ) ; , patch

h    u R P  (47)
 

where Ωpatch = {(ξ, η) | ξ  [ξ1, ξ2,..., ξn+p+1], η  η1, η2,..., ηm+q+1}. The matrix–form of Ri, j and Pi, j 
can be changed into vector–form by mapping from i, j subscripts to k by 
 

( 1) ; 1,2, ,k i j n with k n m       (48)
 
So, the control points are defined as 
 

1,1 1,1 2,1 2,1 ,{ , , , ,..., }Tx y x y y
n mP P P P PP  (49)

 
The values of solution field at the control points, also called control variables, in the present 

IGA formulation are displacements and can be arranged similar to the control points in a vector 
form as 

1 1 1 1 2 1 2 1
Tx y x y y

n md d d ,d , ,d, , , , , , ,d { }  (50)

 
The matrix R is obtained from NURBS basis functions as follows 
 

1,1 2,1 ,

1,1 2,1 ,

0 0 ... 0

0 0 ... 0

n m

n m

R R R

R R R

 
 
 

R  (51)

 
Next, the stiffness matrix for a single patch is computed as 
 

( , ) ( , )T

patch
t d d    


 K B D B J


 (52)

 
where t  is the thickness, 

~
 is the parametric space, B (ξ, η) is the strain–displacement matrix, 

and J is the Jacobian matrix which maps the parametric space to the physical space. D is the elastic 
material property matrix for plane stress. 

It is noted that in this study the standard Gauss–quadrature over each knot space is utilized for 
numerical integration. The proper number of Gauss points depend on the order of the NURBS 
basis functions. 

 
 

7. Hybrid of topological derivative–based LSM and IGA 
 
For the proposed topology optimization using the hybrid of topological derivative–based LSM 

and IGA, the discretization of structure is formulated in the IGA framework in this study. The 
objective function of the optimization problem (i.e., Eq. (1)) is also obtained based on the 
compliance of specify locations in structure. In IGA framework, the geometry of structure is 
constructed by performing knot insertion procedure on the initial geometry model shown in Fig. 1. 

In this study, the initial geometry is modeled based on a bi–quadratic NURBS geometry 
(surface) with a number of control point. By subdividing each knot span into equal parts in ξ and η 
direction, the physical mesh with knot spans and the control mesh with control points are also 
obtained, that is shown in Fig. 2. It is noted that the position of the control points in the initial 
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(a) Physical mesh (b) Control mesh 

Fig. 1 Initial geometry model 
 
 

  
(a) Physical mesh that is an image of knot spans (b) Control mesh for control points 

 

 

 

 

(c) Local view of the left top corner of physic
al mesh, shows elements a, b and c

(d) Control points have supported on elements 
a, b and c

Fig. 2 Geometry representation for the analysis model (Shojaee et al. 2012) 
 
 

geometry of structure has an important role in reaching the desired analysis model. Hence, the 
local support property of NURBS basis function is utilized. In other words, there are only (p+1) × 
(q+1) number of nonzero basis functions within each knot span, where p and q are the orders of 
NURBS. Therefore, the total number of control points per element is (p+1) × (q+1). In this study, 
the orders of NURBS, i.e., p and q, are equal to 2, leading to total 3×3 control points for each knot 
span, as shown in Fig. 2(d). 

In the LSM–based topology optimization procedure IGA is implemented by using control 
points which play the same role with nodes in FEM and B–Spline basis functions as the shape 
functions of FEM for the analysis of structure. The design model are also modeled using a fixed 
isogeometric. For achieving this purpose, the “Ersatz material” approach (Allaire et al. 2004) is 
utilized in this study in order to avoid the time–consuming re–meshing process of design model 
topology optimization procedure. Based on the “Ersatz material” approach, the elements 
associated with the void (hole) region are modeled by a weak material. In the optimization process, 
the truncation strategy (Shojaee and Mohammadian 2012) is used in order to limit maximum and 
minimum values of normal velocities in the design domain and increase convergence efficiency 
and the potential of nucleation. Furthermore, filtering techniques have been proposed to avoid 
quick changes and suppress the non smooth variation. These schemes have been originally 
developed in image processing. In this study, the convolution technique proposed by Sigmund 
(1994) is employed in the topology optimization procedure. 
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8. Numerical examples 
 
To demonstrate the efficiency and robustness of the proposed hybrid of topological 

derivativebased LSM and IGA, three examples of isotropic plane elasticity problem are presented 
in this section. Furthermore, the proposed method is compared with other LSMs the hybrid of 
topological derivative–based LSM and FEM. In all examples the modulus of elasticity, the 
Poisson’s ratio and thickness are considered as 1 Pa, 0.3 and 0.01 cm, respectively. In the analysis 
procedure of structures, “Ersatz material” approach (Allaire et al. 2004) is utilized, which fills the 
void areas with one weak material. For this purpose, Young’s modulus of ersatz material is 
assumed as 10–3 Pa. The order of NURBS basis functions in each direction is equal to be 2. 

 
8.1 Cantilever beam 
 
The design domain of a cantilever beam with a size of L = 1 cm is shown in Fig. 3. A vertical 

concentrated force F = 1 N is applied at the center point of the right side boundary. In the 
optimization procedure, the specified material volume fraction is 40%. The other parameters of 
LSM are also considered as Λ = 600, λ = 0, β = 10-10 and α = 0.9. These parameters are selected 
based on the authors’ experience. The time step, t, is taken as 10; and the coefficient of the 
topology derivative is taken as 2. 

The initial geometry is modeled based on a bi–quadratic NURBS geometry with 6×4 control 
points. The open knot vectors are respectively {0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 
1, 1, 1} and {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} in ξ and η direction, thus leading to 8×4 knot spans. 
By subdividing each knot span into 10 equal parts in ξ and η direction, the physical mesh with  

 
 

Fig. 3 A cantilever beam 
 
 

 

Fig. 4 The evolution process of the cantilever beam using the proposed method 
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(a) (b) 

Fig. 5 Convergence in the compliance and the volume ratio of the cantilever beam 
 
 

80×40 knot spans and the control mesh with 82×42 control points are obtained, that is shown in 
Fig. 2. The evolution procedure of structural topology based on the proposed method is shown 
from Figs. 4(a) to (f). The final topology of the cantilever is also depicted in Fig. 4(f). 

The evolutionary process of the objective function and the volume ratio are respectively 
displayed in Figs. 5(a) and (b). Fig. 5(a) shows the variation history of structural strain energy 
during optimization. Due to the volume constraint of the structure, the compliance function is 
increasing with the decreasing usage of material in the structure until satisfying the volume 
constraint, which is 40% of design domain. After that compliance is minimized, the topology of 
structure is constant. Fig. 5(b) shows the iteration history of material usage within the design 
domain during topology evolving. As can be seen from Fig. 5(b), the curve nearly leveled out at 
constant value at the iteration number 43. 

In the next stage, FEM instead of IGA is utilized in the topological derivative–based LSM and 
the topology optimization of the structure is founded. To achieve this purpose, the design domain 
is discretized with 80×40 finite elements. In fact, the order of shape functions and the number of 
degree of freedoms in FEM are equal to those of IGA. The evolution procedure of structural 
topology based on FEM is shown from Figs. 6(a) to (b). 

The final topology of the cantilever beam based on the hybrid of topological derivative–based 
LSM and FEM is also depicted in Fig. 6(e). It’s clearly observed that the results of IGA by 3200 

 
 

 

Fig. 6 The evolution process using the hybrid of topological derivative–based LSM and FEM 
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Fig. 7 The evolution process of the cantilever beam using the coarse mesh 
 
 

(a) (b) 

Fig. 8 Convergence in the compliance and the volume ratio using the coarse mesh 
 
 

elements agree well with FEA by 3200 elements. The computation time spent in the topology 
optimization procedure based on IGA and FEM is equal to 156.27 and 62.32 sec, respectively. The 
results is shown that much more computational time is spent in topology optimization based on 
IGA than that in FEM. One of the greatest advantages of IGA is its capability of working in exact 
geometry even for coarse meshes. Hence, in the following scenario a coarse mesh which contains 
40×20 isogeometric mesh is selected in order to reduce the computational time of topology 
optimization. The evolution procedure of structural topology based on the coarse mesh is shown 
from Figs. 7(a) to (f). The final topology of the cantilever is also depicted in Fig. 7(f). 

The evolutionary process of the objective function and the volume ratio are respectively 
displayed in Figs. 8(a) and (b). As can be seen from Fig. 8(b), the curve nearly leveled out at 
constant value at the iteration number 50. 

By comparison of the final topology obtained by IGA analyzer with two mesh and FEM 
analyzer, the final topology is same. The other results obtained with the different schemes are also 
listed in Table 1. 

As can be seen from Table 1, the computational time of the proposed method based on IGA 
with a coarse mesh is less than that through FEM scheme. Therefore, the lower iteration number 

35

40

45

50

55

60

65

70

75

80

85

0 10 20 30 40 50

C
o

m
p

lia
n

ce

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

V
o

lu
m

e

Iteration

1403



 
 
 
 
 
 

Mehdi Roodsarabi, Mohsen Khatibinia and Seyyed R. Sarafrazi 

and computational time of IGA with a coarse mesh demonstrates the capability and high efficiency 
of the proposed method. In recent years, this example has been studied by other researchers 
(Shojaee and Mohamadian 2011, Shojaee et al. 2012, Mohammadian and Shojaee 2012, Shojaee 
and Mohamadian 2012). The final optimal topology obtained the proposed method of this study is 
compared with those obtained in other studies and shown in Fig. 9. 

It can be seen from Fig. 9 that the final optimal topology obtained based on the proposed 
method is similar to those reported in the literature. Furthermore, the optimal results of the 
proposed method and other LSMs are compared and reported in Table 2. 

It is obvious from Table 2 that for obtaining the optimal topology of the structure the proposed 
method requires less iterations than those in other LSMs. Thus, the performance of the proposed 
method is more efficient than other LSMs. 

 
 

Table 1 Comparison of the proposed method with the hybrid of topological derivative–based LSM and FEM 

Method Iteration number of convergence Objective function (J(Ω)) Time (sec)

LSM–IGA with 80 40 mesh 43 77.52 156.27 

LSM–IGA with 4020 mesh 50 78.28 60.62 

LSM–FEM with 8040 mesh 55 79.68 62.32 

 
 

 

(a) The conventional LSM with FEM (Shojaee 
and Mohamadian 2011) 

(b) The binary LSM and non-holes with FEM 
(Shojaee and Mohamadian 2011) 

  

 

(c) The binary LSM and holes with FEM 
(Shojaee and Mohamadian 2012) 

(d) The radial basis function LSM with IGA 
(Shojaee et al. 2012) 

  

 

(e) The enhanced LSM with FEM (Shojaee and 
Mohamadian 2012) 

(f) This study based on topological derivative–
based LSM and IGA 

Fig. 9 The comparison of the final optimal topology in this study with the other studies 
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Table 2 Comparison of the proposed method and other studies 

Schemes Objective function (J(Ω)) Number of convergence iterations

The conventional LSM with FEM 
(Shojaee and Mohamadian 2011) 

63.88 200 

The binary LSM and holes with FEM 
(Shojaee and Mohamadian 2011) 

62.73 115 

The binary LSM and non-holes with FEM
(Shojaee and Mohamadian 2011) 

64.18 100 

The radial basis function LSM with IGA
(Shojaee et al. 2012) 

62.66 60 

The enhanced LSM with FEM 
(Mohammadian and Shojaee 2012) 

80.22 81 

The proposed method 77.52 43 

 
 

Fig. 10 Messerschmitt–Bölkow–Blom (MBB) beam 
 
 
8.2 Messerschmitt–Bölkow–Blom beam 
 
Messerschmitt–Bölkow–Blom (MBB) beam considered as the second example is the standard 

problem for topology optimization. The geometry model and loading conditions of MBB beam is 
shown in Fig. 10. The dimension of the design domain is as L = 3 cm. The downward external load 

 
 

 

Fig. 11 The evolution process of the MBB beam using the proposed method 
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(a) (b) 

Fig. 12 Convergence in the compliance and the volume ratio of the cantilever beam 
 
 

 

Fig. 13 The evolution process using the hybrid of topological derivative–based LSM and FEM 
 
 

is located at the middle point of the upper border, and the force F = 1 N. In the optimization 
procedure, the specified material volume fraction is 40%. The other parameters are also considered 
as Λ = 1000, λ = 0.001, β = 10-10 and α = 0.9. These parameters are selected based on the authors’ 
experience. The time step, t, is taken as 40; and the coefficient of the topology derivative is taken 
as 7. 

The topology optimization is performed based on the proposed method with 120×30 mesh 
isogeometric and the topology evolving history is depicted in Fig. 11. The topology evolving 
history shows that the final topology is obtained in the 47 iterations. 

Fig. 12(a) shows the structural strain energy variation history during optimization. Fig. 12(b) 
also depicts the iteration history of material usage within the design domain during topology 
evolving. 

To show the high computational efficiency of the proposed algorithm, the problem is solved by 
using the hybrid of topological derivative–based LSM and FEM with 120×30 mesh. The topology 
evolving history is shown as in Fig. 13. 
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Table 3 Comparison of the proposed method with the hybrid of topological derivative–based LSM and FEM 

Method Iteration number of convergence Objective function (J(Ω)) Time step (t) 

LSM–IGA 47 46.36 9 

LSM–FEM 70 46.94 9 
 
 
By comparison of the final topology obtained by FEM and IGA analyzer with the same mesh, 

the final topology based on IGA is the same as that obtained through FEM. The other results 
obtained with the two different schemes are also listed in Table 3. 

Based on the results of Table 3, the number iteration of the proposed method is less than that in 
the hybrid of topological derivative–based LSM and FEM. Therefore, this clearly indicates that the 
proposed method is computationally more efficient than FEM. 

 
8.3 Michell structure 
 
The proposed method is finally tested for the Michell structure which has been widely used as 

the topology optimization problem. The geometry of the Michell structure with a load, F = 1 N, 
applied at the center of the bottom edge is shown in Fig. 14. 

The left corner of the bottom of the design domain is fixed and its right corner is simply 
supported. The dimension of the design domain is as L = 4 cm. In the optimization procedure, the 
specified material volume fraction is 40%. The other parameters are also considered as Λ = 2000, λ 
= 0.001, β = 10-10 and α = 0.9. These parameters are selected based on the authors’ experience. The 
time step, t, is taken as 9; and the coefficient of the topology derivative is taken as 3. 

 
 

Fig. 14 Michell structure 
 
 

 
Fig. 15 The evolution process of the Michell structure using the proposed method 
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Fig. 16 The evolution process using the hybrid of topological derivative–based LSM and FEM 

 
 

Table 4 Comparison of the proposed method with the hybrid of topological derivative–based LSM and FEM 

Method Iteration number of convergence Objective function (J(Ω)) Time step (t) 

LSM–IGA 66 16.3 9 

LSM–FEM 70 16.3 9 

 
 
The topology optimization is performed based on the proposed method with 80×40 mesh 

isogeometric and the topology evolving history is depicted in Fig. 15. The topology evolving 
history shows that the final topology is obtained in the 66 iterations. 

To demonstrate the high computational efficiency and robustness of the proposed method, the 
problem is also optimized by using the hybrid of topological derivative–based LSM and FEM. The 
topology evolving history is shown as in Fig. 16. 

By comparison of the final topology obtained by FEM and IGA analyzer, the final topology 
based on IGA is the same as that obtained through FEM. The other results obtained with the two 
different schemes are also listed in Table 4. 

As seen from Table 4, the optimal design based on IGA is obtained in less than 66 iterations. 
The lower iteration number illustrates the capability and high efficiency of the propose method. 

 
 

9. Conclusions 
 
In this paper, a hybrid of topological derivative–based level set method (LSM) and 

isogeometric analysis (IGA) are proposed for structural topology optimization. Topological 
derivative approach is utilized to create new holes in appropriate places of the domain, and 
alleviate the strong dependency of the optimal topology on the initial design. IGA based on Non– 
Uniform Rational B–Spline (NURBS) functions is incorporated in the topology optimization 
procedure to overcome the drawbacks in the conventional finite element method (FEM) based 
topology optimization approaches. 

The numerical examples demonstrate the merits of the proposed method in the term of the 
computational cost. In other words, the number iteration and computational cost of the proposed 
method based on the IGA analyzer with a coarse mesh is less than those in the hybrid method 
based on FEM analyzer. Therefore, the proposed method in comparison with other LSMs and the 
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hybrid of derivative–based LSM and FEM provides the computational efficiency and robustness in 
the structural topology optimization. 

 
 

References 
 
Allaire, G., Jouve, F. and Toader, A.M. (2004), “Structural optimization using sensitivity analysis and a 

level–set method”, J. Comput. Phys., 194(1), 363-393. 
Bendsøe, M.P. and Sigmund, O. (2003), Topology Optimization Theory, Methods and Applications, 

Springer– Verlag, New York, NY, USA. 
Burger, M., Hackl, B. and Ring, W. (2004), “Incorporating topological derivatives into level set methods”, J. 

Comput. Phys., 194(1), 344-362. 
Cho, S. and Ha, S.H. (2009), “Isogeometric shape design optimization: exact geometry and enhanced 

sensitivity”, Struct. Multi. Optim., 38(1), 53-70. 
Dijk, N.P., Maute, K., Langelaar, M. and Keulen, F. (2013), “Level–set methods for structural topology 

optimization: A review”, Struct. Multidiscip. Opt, 48(3), 437-472. 
Fanjoy, D. and Crossley, W. (2000), “Using a genetic algorithm to design beam cross–sectional topology for 

bending, torsion, and combined loading”, Proceedings of the 41st Structures, Structural Dynamics, and 
Materials Conference and Exhibit, Atlanta, GA, USA, April. 

Garreau, S., Guillaume, P. and Masmoudi, M. (2001), “The topological asymptotic for PDE systems: the 
elasticity case”, SIAM. J. Control. Optim, 39(6), 1756-1778. 

Gholizadeh, S. and Barati, H. (2014), “Topology optimization of nonlinear single layer domes by a new 
metaheuristic”, Steel. Compos. Struct., Int. J., 16(6), 681-701. 

Haipeng, J., Beom, H.G., Wanga, Y., Lin, S. and Liu, B. (2011), “Evolutionary level set method for 
structural topology optimization”, Comput. Struct., 89(5-6), 445-454. 

Huaug, E.J., Chioi, K.K. and Kov, V. (1986), Design Sensitivity Analysis of Structural Systems, Academic 
Press, Orlando, FL, USA. 

Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), “Isogeometric analysis: CAD, finite elements, 
NURBS, exact geometry and mesh refinement”, Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. 

Jakiela, M.J., Chapman. C., Duda, J., Adewuya, A. and Saitou, K. (2000), “Continuum structural topology 
design with genetic algorithms”, Comput. Meth. Appl. Mech. Eng, 186(2-4), 339-356. 

Jia, H., Beom, H.G., Wang, Y., Lin, S. and Liu, B. (2011), “Evolutionary level set method for structural 
topology optimization”, Comput. Struct., 89(5-6), 445-454. 

Kane, C. and Schoenauer, M. (1996), “Topological optimum design using genetic algorithms”, Contr. 
Cybern., 25(5), 1059-1088. 

Kaveh, A., Hassani, B., Shojaee, S. and Tavakkoli, S.M. (2004), “Structural topology optimization using ant 
colony methodology”, Eng. Struct, 30(9), 2559-2565. 

Lu, T., Neittaanmaki, T. and Tai, X.C. (1991), “A parallel splitting up method and its application to Navier– 
Stokes equations”, Appl. Math. Lett., 4(2), 25-29. 

Luo, Z. (2013), “A short survey: Topological shape optimization of structures using level set methods”, J. 
Appl. Mech. Eng., 2, 123-128. 

Mashayekhi, M., Salajegheh, S. and Dehghani, M. (2016), “Topology optimization of double and triple layer 
grid structures using a modified gravitational harmony search algorithm with efficient member grouping 
strategy”, Comput. Struct., 172, 40-58. 

Mohammadian, M. and Shojaee, S. (2012), “Binary level set method for structural topology optimization 
with MBO type of projection”, Int. J. Numer. Meth. Eng., 89(5), 658-670. 

Murat, F. and Simon, S. (1976), Etudes de problems d’ optimal design, In: Lecture Notes in Computer 
Science, Springer–Verlag, Berlin, Germany, Volume 41, pp. 54-62. 

Nagy, A.P., Abdalla, M.M. and Gürdal, Z. (2010), “Isogeometric sizing and shape optimization of beam 
structures”, Comput. Methods Appl. Mech. Eng., 199(17-20), 1216-1230. 

1409



 
 
 
 
 
 

Mehdi Roodsarabi, Mohsen Khatibinia and Seyyed R. Sarafrazi 

Osher, S. and Fedkiw, R.P. (2002), Level Set Methods and Dynamic Implicit Surface, Springer–Verlag, New 
York, NY, USA. 

Osher, S. and Sethian, J.A. (1988), “Fronts propagating with curvature–dependent speed: algorithms based 
on Hamilton–Jacobi formulations”, J. Comput. Phys, 79(1), 12-49. 

Qian, X. (2010), “Full analytical sensitivities in NURBS based isogeometric shape optimization”, Comput. 
Meth. Appl. Mech. Eng., 199(29-32), 2059-2071. 

Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016), “Isogeometric topology optimization of 
structures using level set method incorporating sensitivity analysis”, Int. J. Optim. Civil. Eng, 6(3), 405-
422. 

Rozvany, G.I.N. (1989), Structural Design via Optimality Criteria, Kluwer Academic Publishers, Dordrecht, 
The Netherlands. 

Rozvany, G.I.N. and Zhou, M. (1991), “The COC algorithm, Part I: Cross section optimization or sizing”, 
Comp. Meth. Appl. Mech. Eng., 89(1-3), 281-308. 

Salajegheh, S., Mashayekhi, M., Khatibinia, M. and Keykha, M. (2009), “Optimum shape design of space 
structures by genetic algorithm”, Int. J. Space Struct., 24(1), 45-57. 

Schmit, L.A. and Farsi, B. (1974), “Some approximation concepts for structural synthesis”, AIAA. J., 12(5), 
692-699. 

Schmit, L.A. and Miura, H. (1976), Approximation Concepts for Efficient Structural Synthesis, NASA 
Publisher, Washington, USA. 

Seo, Y.D., Kim, H.J. and Youn, S.K. (2010), “Isogeometric topology optimization using trimmed spline 
surfaces”, Comput. Meth. Appl. Mech. Eng. 199(49-52), 3270-3296. 

Shojaee, S. and Mohamadian, M. (2011), “A binary level set method for structural topology optimization”, 
Int. J. Optim. Civil. Eng., 1(1), 73-90. 

Shojaee, S. and Mohamadian, M. (2012), “Structural topology optimization using an enhanced level set 
method”, Sci. Iran, 19(5), 1157-1167. 

Shojaee, S. and Valizadeh, N. (2012), “NURBS–based isogeometric analysis for thin plate problems”, Struct. 
Eng. Mech., Int. J., 41(5), 617-632. 

Shojaee, S., Mohamadian, M. and Valizadeh, N. (2012), “Composition of isogeometric analysis with level 
set method for structural topology optimization”, Int. J. Optim. Civil. Eng., 2(1), 47-70. 

Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), “Combination of isogeometric analysis and extended 
finite element in linear crack analysis”, Struct. Eng. Mech., Int. J., 48(1), 125-150. 

Sigmund, O. (1994), “Design of material structures using topology optimization”, Ph.D. Thesis; Department 
of Solid Mechanics, Technical University of Denmark, Denmark. 

Svanberg, K. (1987), “The method of moving asymptotes–a new method for structural optimization”, Int. J. 
Numer. Meth. Eng., 24(2), 359-373. 

Vanderplaats, G.N. and Salajegheh, E. (1989), “A new approximation method for stress constraints in 
structural synthesis”, AIAA. J., 27(3), 352-358. 

Wall, W.A., Frenzel, M.A. and Cyron, C. (2008), “Isogeometric structural shape optimization”, Comput. 
Meth. Appl. Mech. Eng., 197(33-40), 2976-2988. 

Wang, M.Y., Wang, X.M. and Guo, D.M. (2004), “A level set method for structural topology optimization”, 
Comput. Meth. Appl. Mech. Eng., 192(1-2), 217-224. 

Weickert, J., Romeny, B.M. and Viergever, M. (1998), “Efficient and reliable schemes for nonlinear 
diffusion filtering”, IEEE. Trans. Image. Process, 7(3), 398-410. 

Xie, Y.M. and Steven, G.P. (1993), “A simple evolutionary procedure for structural optimization”, Comput. 
Struct., 49(5), 885-896. 

 
CC 
 
 

1410




