
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 21, No. 1 (2016) 123-136 
DOI: http://dx.doi.org/10.12989/scs.2016.21.1.123 

Copyright © 2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

Static analysis of the FGM plate with porosities 
 

R. Benferhat 1, T. Hassaine Daouadji 2,3, L. Hadji 2,3 and M. Said Mansour 1 
 

1 Laboratoire de Géomatériaux, Département de Génie Civil, Université Hassiba Benbouali de Chlef, Algérie 
2 Département de Génie Civil, Université Ibn Khaldoun de Tiaret, Algérie 

3 Laboratoire des Matériaux & Hydrologie, Université Djillali Liabès de Sidi Bel Abbes, Algérie 
 

(Received March 21, 2015, Revised February 19, 2016, Accepted March 05, 2016) 

 
Abstract.    This work focuses on the behavior of the static analysis of functionally graded plates materials (FGMs) 
with porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For 
this purpose a new refined plate theory is used in this work, it contains only four unknowns, unlike five unknowns for 
other theories. This new model meets the nullity of the transverse shear stress at the upper and lower surfaces of the 
plate. The parabolic distribution of transverse shear stresses along the thickness of the plate is taken into account in 
this analysis; the material properties of the FGM plate vary a power law distribution in terms of volume fraction of 
the constituents. The rule of mixture is modified to describe and approximate material properties of the FG plates 
with porosity phases. The validity of this theory is studied by comparing some of the present results with other 
higher-order theories reported in the literature, the influence of material parameter, the volume fraction of porosity 
and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples. 
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1. Introduction 
 

Functionally graded materials (FGMs) are new inhomogeneous materials. It is one of the most 
functional forms of composite structures developed by the composite industry. It has attained 
broad acceptance in aerospace and many other industries and it is widely employed in aircraft and 
space vehicles, ships, boats, cargo containers, and residential constructions. The technique of 
grading ceramics along with metals initiated by the Japanese material scientist in Sendai has 
marked the beginning of exploring the possibility of using FGMs for various structural 
applications (Reddy 2000). 

FGMs are considered as a potential structural material for future high-speed spacecraft and 
power generation industries. FGMs are new materials, microscopically inhomogeneous, in which 
the mechanical properties vary smoothly and continuously from one surface to the other. In an 
FGM, the composition and structure gradually change over volume, resulting in corresponding 
changes in the properties of the material. By applying the many possibilities inherent in the FGM 
concept, it is anticipated that materials will be improved and new functions for them created. 

During the last two decade there has been a considerable research reports on mechanical 
response, buckling, free vibration, etc. of FGM structural elements. Several studies have been 
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performed to analyze the behavior of functionally graded plates and shells. Bourada et al. (2015) 
gives a new simple shear and normal deformations theory for functionally graded beams. Carrera 
et al. (2010) investigates the static response problem of multilayered plates and shells embedding 
functionally graded material (FGM) layers. Kiani et al. (2012) has analyzed the static and dynamic 
of an FGM doubly curved panel resting on the Pasternak-type elastic foundation. Al-Basyouni et 
al. (2015) analyzed the bending and vibration of functionally graded micro beams based on 
modified couple stress theory and neutral surface position. Mahi et al. (2015) presented a new 
hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, 
functionally graded, sandwich and laminated composite plates. Cinefra et al. (2012) presented a 
refined models based on the Carrera’s unified formulation (CUF) for the static analysis of plates 
and shells made of functionally graded material (FGM), subjected to mechanical loads. Neves et al. 
(2011) presented a study using the radial basis function collocation method to analyze static 
deformations of functionally graded plates using a sinusoidal shear deformation plate formulation, 
allowing for through-the-thickness deformations. Ravikiran et al. (2008) have studied the static 
behavior of functionally graded metal–ceramic (FGM) beams under ambient temperature. Neves et 
al. (2012a) presented an original hyperbolic sine shear deformation theory for the bending and free 
vibration analysis of functionally graded plates, the theory accounts for through-the-thickness 
deformations. Sepahi et al. (2010) have studied the effects of three-parameter elastic foundations 
and thermo-mechanical loading on axisymmetric large deflection response of a simply supported 
annular FGM plate. Neves et al. (2012b) studied the static and free vibration analysis of 
functionally graded plates using a quasi-3D sinusoidal shear deformation theory. Hadji et al. (2015) 
proposed a refined exponential shear deformation theory for free vibration of FGM beam with 
porosities. Bennoun et al. (2016) gives a novel five variable refined plate theory for vibration 
analysis of functionally graded sandwich plates. However, in FGM fabrication, micro voids or 
porosities can occur within the materials during the process of sintering. This is because of the 
large difference in solidification temperatures between material constituents (Zhu et al. 2001). 
Wattanasakulpong et al. (2012) also gave the discussion on porosities happening inside FGM 
samples fabricated by a multi-step sequential infiltration technique. Therefore, it is important to 
take in to account the porosity effect when designing FGM structures subjected to dynamic 
loadings. Recently, Wattanasakulpong and Ungbhakorn (2014) studied linear and nonlinear 
vibration problems of elastically and restrained FG beams having porosities. 

In this study, a new refined theory for static analysis of simply supported FGM plates with 
considering porosities that may possibly occur inside the functionally graded materials (FGMs) 
during their fabrication are proposed. The plates are made of an isotropic material with material 
properties varying in the thickness direction only. Analytical solutions for bending deflections of 
FGM plates are obtained. The governing equations are derived from the principle of minimum 
total potential energy. Numerical examples are presented to illustrate the accuracy and efficiency 
of the present theory and the influence of material parameter, the volume fraction of porosity and 
the thickness ratio on the behavior mechanical P-FGM plate. 
 
 
2. Problem formulation 
 

The FGM plate is regarded to be a single layer plate of uniform thickness. Here we ascertain 
the FGM plate of length a, width b and total thickness h made from anisotropic material of metal 
and ceramics and grading is assumed to be only through the thickness, in which the composition 
varies from top to bottom surface. 
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2.1 Higher-order plate theory 
 

The displacements of a material point located at (x, y, z) in the plate may be written as 
 

),(),,(

).(),(),,(

).(),(),,(

0

0
0

0
0

yxwzyxw

z
y

w
zyxvzyxv

z
x

w
zyxuzyxu

y

x



















 
(1)

 

where u, v, w are displacements in the x, y, z directions, u0, v0 and w0 are midplane displacements, 
and θx and θy are the rotations of normal’s to the midplane about the y and x axes, respectively. ψ(z) 
represents shape function determining the distribution of the transverse shear strains and stresses 
along the thickness. The displacement field of the classical thin plate theory (CPT) is obtained 
easily by setting ψ(z) = 0. The displacement of the first-order shear deformation plate theory 
(FSDPT) is obtained by setting ψ(z) = z. Also, the displacement of parabolic shear deformation 
plate theory (PSDPT) of (Reddy 1984) is obtained by setting 
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In addition, the exponential shear deformation plate theory (ESDPT) of Karama et al. (2003) is 
obtained by setting 
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2.2 Present refined sinusoidal shear deformation plate theory 
 
Unlike the other theories, the number of unknown functions involved in the present Refined 

Sinusoidal Shear Deformation Plate Theory (RSSDPT) is only four, as against five in case of other 
shear deformation theories (Reddy 1984, Karama et al. 2003). The theory presented is 
variationally consistent, does not require shear correction factor, and gives rise to transverse shear 
stress variation such that the transverse shear stresses vary parabolically across the thickness 
satisfying shear stress free surface conditions. 

 
2.2.1 Basic assumptions 
Assumptions of the present refined plate theory are as follows (Sid Ahmed Houari et al. 2013): 
 

- The displacements are small in comparison with the plate thickness and, therefore, strains 
involved are infinitesimal. 

- The transverse displacement W includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y, and time t only. 
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),(),(),,( yxwyxwzyxw sb   (3a)
 
- The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
- The displacements U in x direction and V in y direction consist of extension, bending, and 

shear components. 

sb uuuu  0         sb vvvv  0  (3b)
 

The shear components us and vs give rise, in conjunction with ws, to the parabolic variations of 
shear strains γxz , γyz and hence to shear stresses τxz , τyz through the thickness of the plate in such a 
way that shear stresses τxz , τyz are zero at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as 
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2.2.2 Displacement fields and strains 
The displacement field can be obtained as follows 
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The linear strains can be obtained as 
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It should be noted that the above strains are derived for geometrically linear problems. For 

elastic and isotropic FGMs, the constitutive relations can be written as 
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Where ),,,,( yzxzxyyx  and ),,,,( yzxzxyyx  are the stress and strain components, 

respectively. 
Stiffness coefficients, ijQ  can be expressed as 
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2.2.3 Effective material properties of metal ceramic functionally graded plates 
A FG plate made from a mixture of two material phases, for example, a metal and a ceramic. 

The material properties of FG plates are assumed to vary continuously through the thickness of the 
plate. In this investigation, the imperfect plate is assumed to have porosities spreading within the 
thickness due to defect during production. Consider an imperfect FGM with a porosity volume 
fraction, α (α << 1), distributed evenly among the metal and ceramic, the modified rule of mixture 
proposed by Wattanasakulpong and Ungbhakorn (2014) is used as (Hadji et al. 2015) 
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Now, the total volume fraction of the metal and ceramic is: Vm + Vc = 1, and the power law of 

volume fraction of the ceramic is described as 
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Hence, all properties of the imperfect FGM can be written as (Hadji et al. 2015) 
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It is noted that the positive real number k (0 ≤ k < ∞) is the power law or volume fraction index, 
and z is the distance from the mid-plane of the FG plate. The FG plate becomes a fully ceramic 
plate when k is set to zero and fully metal for large value of k. 

Thus, the Young’s modulus (E) and material density (ρ) equations of the imperfect FGM plate 
can be expressed as (Ait Athmane et al. 2015, Ait Yahia et al. 2015, Hadji et al. 2015) 
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However, Poisson’s ratio (ν) is assumed to be constant. The material properties of a perfect FG 
plate can be obtained when α is set to zero. 

 
2.3 Governing equations and boundary conditions 
 
The equilibrium equations are derived by using the virtual work principle, which can be written 

for the plate as 
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where  is the top surface. 
Substituting Eqs. (7) and (8) into Eq. (14) and integrating through the thickness of the plate, Eq. 

(14) can be rewritten as (Hassaine Daouadji et al. 2012) 
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The governing equations of equilibrium can be derived from Eq. (18) by integrating the 
displacement gradients by parts and setting the coefficients ,,, 00 bwvu  and sw zero separately. 
Thus, one can obtain the equilibrium equations associated with the present shear deformation 
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theory. 
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Using Eq. (8) in Eq. (16), the stress resultants of the plate can be related to the total strains by 
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The stiffness coefficients Aij and Bij, etc., are defined as 
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Substituting from Eq. (16) into Eq. (18), we obtain the following equation (Hassaine Daouadji 

et al. 2012) 
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Where dij, dijl, and dijlm are the following differential operators 
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3. Results and discussion 
 

In numerical analysis, fundamental frequencies of simply supported perfect and imperfect FG 
Plates are evaluated. The FG plate is taken to be made of aluminum and alumina with the 
following material properties: 

Ceramic (PC: Alumina, Al2O3): Ec = 380 GPa; 
Metal (PM: Aluminium, Al): Em = 70 GPa; ν = 0.3; 
And their properties change through the thickness of the plate according to power-law. The 

bottom surfaces of the FG plate are aluminum rich, whereas the top surfaces of the FG plate are 
alumina rich. 

For convenience, the following dimensionless form is used 
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To validate accuracy of the refined plate theory, the comparisons between the present results 
and the available results obtained by Reddy (2000), Karama (Karama et al. 2003), Hassaine 
Daouadji (2012) and the 3D solutions of Werner (1999). 

 
 

Table 1 Center deflections of isotropic homogenous plates (k = 0, Em = EC = E = 1 and a/b = 1) 

a/h 
Karama 

(ESDPT) 
Reddy 

(PSDPT) 
Hassaine Daouadji

(NHPSDT) 
3D 

(Z = 0) 
Present theory 

(RSDPT) 

α = 0 α = 0 α = 0 α = 0 α = 0 α = 0.1 α = 0.2 

0.01 44380.05 44383.88 44383.86 44384.7 44383.84 49315.39 55479.80 

0.1 46.2763 46.6588 46.65655 46.7443 46.65480 51.83867 58.3185 
 
 

Table 2 Comparison of normalized displacements and stresses of a FGM rectangular plate (b = 3a and k = 2) 

a/h Theory α w x y yz xz xy 

4 

ESDPT α = 0 4.0569 5.2804 0.6644 0.6084 0.6699 0.5900 

PSDPT α = 0 4.0529 5.2759 0.6652 0.6058 0.6545 0.5898 

Present 
theory 

α = 0 3.8716 5.4197 0.66778 0.6096 0.6802 0.5395 

α = 0.1 4.7346 5.9455 0.6796 0.6312 0.6717 0.4940 

α = 0.2 6.2567 6.8649 0.6809 0.6598 0.6624 0.4148 

10 

ESDPT α = 0 3.5543 12.9252 1.6938 0.61959 0.6841 1.4898 

PSDPT α = 0 3.5537 12.9234 1.6941 0.6155 0.6672 1.4898 

Present 
theory 

α = 0 3.5231 12.9841 1.6995 0.6211 0.6922 1.4659 

α = 0.1 4.3921 14.2925 1.7073 0.6431 0.6821 1.3695 

α = 0.2 5.9992 16.6660 1.7174 0.6723 0.6679 1.1948 

20 

ESDPT α = 0 3.4824 25.7712 3.3971 0.6214 0.6878 2.9844 

PSDPT α = 0 3.48225 25.7703 3.3972 0.6171 0.6704 2.9844 

Present 
theory 

α = 0 3.4745 25.8012 3.4001 0.6231 0.6951 2.9719 

α = 0.1 4.3452 28.4167 3.4167 0.6452 0.6845 2.7851 

α = 0.2 5.9665 33.1876 3.4388 0.6745 0.6687 2.4428 

100 

ESDPT α = 0 3.4593 128.728 17.0009 0.6220 0.6894 14.9303 

PSDPT α = 0 3.45937 128.7283 17.0009 0.6177 0.67176 14.9303 

Present 
theory 

α = 0 3.4591 128.734 17.0015 0.6238 0.6962 14.9278 

α = 0.1 4.3305 141.8106 17.0863 0.6459 0.6854 14.0039 

α = 0.2 5.9566 165.7058 17.2002 0.6752 0.6689 12.3036 
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The present solution is realized for a quadratic plate in table 1, with the following fixed data: a 
= 1, b = 1, Em = Ec = E = 1, q0 = 1, ν = 0.3 and two values for the plate thickness: h = 0.01, h = 0.1 
It is to be noted that the present results of the center deflection compare very well with the 3-D 
solution for perfect FG plate and takes maximum values for the imperfect FG plate (α = 0.1 and α 
= 0.2). This is expected because the imperfect FG plate is the one with the lowest stiffness and the 
perfect FG plate is the one with the highest stiffness. 

The center deflection w  and the distribution across the plate thickness of in-plane longitudinal 
stress x and longitudinal tangential stress xy  are shown in Table 2 for different values of the 
plate thickness a/h. It is to be noted that the present results compare very well with the other 
theories solution. In addition the comparisons show that the effect of the porosity on the deflection 
of FG plates with two different type of porosity. The results reveal that the deflection results 
increase as the volume fraction of porosity (α) increases. 

 
 

Fig. 1 Dimensionless center deflection (w) as function of the aspect ratio (a/b) of a perfect 
and imperfect FGM plate 

 
 

Fig. 2 Dimensionless center deflection (w) as a function of the side-to-thickness ratio (a/h) of 
a perfect and imperfect FGM square plate 
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Figs. 1 and 2 shows the variation of the non-dimensional deflection with the aspect and side-to-
thickness ratio, respectively for simply supported perfect and imperfect FG plates based on the 
present plate theory. The deflection is maximum for the imperfect FG plate (α = 0.1 and α = 0.2) 
and minimum for the perfect FG plate (α = 0). The difference increases as the aspect ratio 
increases while it may be unchanged with the increase of side-to-thickness ratio. 

For both material pairs, the non-dimensional deflection of the metallic plate is found to be of 
the largest values and that of the ceramic plate, of the smallest values. All the plates with 
intermediate properties undergo corresponding intermediate values of the non-dimensional 
deflection. This is expected because the metallic plate is the one with the lowest stiffness and the 
ceramic plate is the one with the highest stiffness. 

Figs. 3 and 4 contains the plots of the in-plane longitudinal and normal stresses x  and y  
through-the-thickness of the perfect and imperfect FG plate for k = 2. The stresses are tensile at the 

 
 

Fig. 3 Variation of in-plane longitudinal stress (σxx) through-the thickness of an FGM plate for 
different values of the volume fraction of porosity 

 
 

Fig. 4 Variation of in-plane normal stress (σyy) through-the thickness of an FGM plate for 
different values of the volume fraction of porosity 
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Fig. 5 Variation of transversal shear stress τyz through-the thickness of an FGM plate for 
different values of the volume fraction of porosity 

 
 

Fig. 6 Variation of transversal shear stress τxz through-the thickness of an FGM plate for 
different values of the volume fraction of porosity 

 
 
top surface and compressive at the bottom surface and take the maximum values for the imperfect 
FG plate. 

Figs. 5 and 6, shows the distribution of the shear stresses xz and yz through the thickness of 
the FG Plate. The volume fraction exponent of the FG plate in taken as k = 2. It’s clear that the 
distributions are not parabolic and the stresses increase for the imperfect FG plate. 
 
 

4. Conclusions 
 

A new refined shear deformation plate theory is proposed for static analysis of perfect and 
imperfect FG plates. The theory accounts for parabolic distribution of the transverse shear strains 
and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear 
correction factors. The modified rule of mixture covering porosity phases is used to describe and 
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approximate material properties of the imperfect FG plates. Based on the present plate theory, the 
equilibrium equations are derived from the principle of virtual displacements. The influence of the 
porosities on deflection and stresses is then discussed. Numerical examples show that the proposed 
theory gives solutions which are almost identical with those obtained using other shear 
deformation theories. 
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