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Abstract.    In this study, the influence of centrally placed circular and square cutouts on vibration and buckling 
characteristics of different ply-oriented laminated panels under the action of compressive and/or tensile types of non-
uniform in-plane edge loads are investigated. The panels are inspected under the action of uniaxial compression, 
uniaxial tension and biaxial, compression-tension, loading configurations. Furthermore, the effects of different 
degrees of edge restraints and panel aspect ratios are also addressed in this work. Towards this, a nine-node heterosis 
plate element has been adopted which includes the effect of shear deformation and rotary inertia. According to the 
results, the tensile buckling loads are higher than that of compressive buckling loads. However, the tensile buckling 
load continuously reduces with the increased cutout sizes irrespective of ply-orientations. This is also true for 
compressive buckling loads except for some particular ply-orientations with higher sized cutouts. 
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1. Introduction 
 

Composite laminates are ideally suited for structural applications of aircraft, spacecraft, 
mechanical and civil engineering structural components due to their high stiffness to weight ratio 
and flexibility in design. These laminates have been extensively used in weight sensitive aircraft 
and aerospace industries since their inception, and recently in civil engineering structures such as 
bridge decks, bridge girders, strengthening and retrofitting of existing structures. The practical 
application and complex usability of such materials demand a better understanding of their 
structural response under various complicated loading conditions. This is particularly true for 
vibration and buckling response, as the presence of in-plane load alters the free vibration response 
of structural components. In fact, a situation may encounter that the natural frequency of the 
structural component becomes zero for a particular intensity of in-plane load and resulting in 
instability of the components. Hence, the problem of elastic instability is of considerable 
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importance and has been the subject of interest to researchers for many years. 
Many researchers have investigated the buckling and/or vibration behaviour of panels under 

uniform edge compression (Afsharmanesh et al. 2014, Altunsaray and Bayer 2014, Ashour 2003, 
Kutlu 2011, Reddy and Phan 1985, Walker 1998). Practically, the in-plane edge loads are non-
uniform in nature for many situations. For example, laminated panels are part of a complex 
structure, and are generally comprised of several interconnected components. The in-plane edge 
loads transferred to these panels from the connected components can be non-uniform in nature. A 
limited number of researchers have worked on vibration and/or stability problems of panels under 
non-uniform edge compression (Lal and Saini 2013, Srivastava et al. 2003, Tang and Wang 2011, 
Zhong and Gu 2007). 

Furthermore, cutouts are often used in the design of composite structures for easy access, 
inspection as well as to pass hydraulic lines, fuel lines and electric lines, and also to reduce the 
overall weight of the structures (Soni et al. 2013). In many cases, the vibration and buckling 
responses of such perforated structural components are vulnerable in nature. Therefore, in order to 
prevent premature failure and to utilise their full strength, a complete understanding of the stability 
behaviour of such panels under the action of non-uniform edge loads is essential. 

Yazici et al. (2003) carried out an experimental investigation of the effect of U-shaped cutout 
on stability characteristics of Ly5082 epoxy resin and E-Glass fibre composite plate under the 
application of uniform in-plane edge loads. Baba (2007), as well as Baba and Baltaci (2007)have 
also carried out experimental and numerical investigations by using Finite element (FE) package 
(ANSYS) to study the influence of circular and semi-circular cutouts on stability characteristics of 
E/glass-epoxy composite panels under uniform edge loads. Topal and Uzman (2008)worked on the 
optimum design of laminated plate with and without central cutouts under the application of 
uniform biaxial edge compression using FE method through feasible direction technique. Aydin 
Komur and Sonmez (2008) carried out the numerical analysis by using FE package (ANSYS) to 
study the buckling characteristics of isotropic panel by varying the position of circular cutouts 
along the principal x-axis under the action of uniformly varying loads. The buckling and post-
buckling characteristics of different shaped cutout laminated composites under the application of 
uniform edge loads with different boundary conditions were studied by Kumar and Singh (2010) 
by using FE formulation. Komur et al. (2010) investigated the effects of different layups with 
circular/elliptical cutout on buckling behaviour of the woven-glass-polyester composite plate 
under the application of uniform edge compression using FE technique. Singh et al. (2012) 
analysed the buckling characteristics of isotropic plate with cutout by adopting FE package–
ANSYS. In their study, they have shown that the plate under partial edge load from both edges 
exhibiting more buckling resistance as compared to that of plate under central partial edge load. 
Soni et al. (2013) investigated the buckling behaviour of simply supported composite laminates 
with circular/square cutout subjected to uniaxial non-uniform edge loads using FE package– 
ABAQUS. Narayana et al. (2014) used FE package–ANSYS to investigate the effect of 
square/rectangular cutout on stability characteristics of quasi-isotropic composite laminates under 
linearly varying uniaxial edge compression. Recently, Komur and Sonmez (2015) also used FE 
package–ANSYS to investigate the effects of different uniaxial partial edge load and central 
circular cutouts on buckling behaviour of isotropic simply supported plates. 

The problems considered so far were concerned with compressive edge loading conditions. 
However, in the majority of cases, panels with/without cutouts are also subjected to the tensile 
type of non-uniform edge loads. For instance, during the take-off of an aircraft, the lifting force 
tries to bend the wings upward. Due to this, many upper wing panels are under the application of 
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non-uniform in-plane edge compression. Similarly, lower wing panels are under non-uniform in-
plane edge tension. Usually, no special attention is given to the buckling of such panels when they 
are subjected to the tensile type of edge loads. These tensile buckling phenomena are practically 
more important when the panels have defects like crack or cutouts. It may be noted that for a panel 
with cutout under the action of tensile edge load, the compressive stresses are induced within the 
vicinity of cutout region. These compressive stresses may result in local tensile buckling, thereby 
exhibiting complex wrinkles in the zone of compression, which has not received much attention in 
the past. Leissa and Ayoub (1988) studied the buckling behaviour of isotropic plates under a pair 
of tensile concentrated forces acting opposite to each other. The vibration and buckling phenomena 
of isotropic plate subjected to localised tensile patch load and concentrated loads have been 
studied by Deolasi et al. (1995). Kumar et al. (2003) have published some results on tensile 
buckling and vibration behaviour of laminated composite plates and shells subjected to localised 
patch and concentrated loads. Kumar et al. (2002) have investigated the vibration and buckling 
characteristics of isotropic plate with cutout under the action of partial in-plane edge loads by 
using FE approach. Shimizu (2007) used FE method to study the effect of different shaped cutouts 
on tensile buckling behaviour of simply supported isotropic plate. Kremer and Schürmann (2008) 
studied the influence of shape optimised cutout on tensile buckling behaviour of simply supported 
square plates using FE approach. In their study, the classical laminate theory is utilised to obtain 
layer-wise stresses. 

Review of the literature reveals that sufficient information is available on vibration and 
buckling problems of panels under the action of uniformly distributed edge loads. On the contrary, 
a very limited number of studies deal with the buckling of laminated panels under the action of 
non-uniform edge compression. Also, there is a paucity of research in the current literature 
involving tension buckling of laminated panels subjected to non-uniform tensile edge loading. To 
the best of the authors’ knowledge, there is no study involving compression and tension buckling 
of laminated panels with circular and square cutouts under the action of non-uniform compressive 
and tensile edge loading. 

In the present study, effect of tension and compression buckling of laminated panels with 
circular and square cutouts are investigated with the influences of various parameters like cutout 
sizes, boundary conditions, ply-orientations, panel aspect ratios and different type of non-uniform 
in-plane edge loads. 
 
 
2. Theory and formulation 
 

A laminated composite panel with a central circular cutout of diameter ϕ, panel length a, 
breadth b, and thickness h along x-, y- and z-axes respectively is shown in Fig. 1(a). The FE mesh 
pattern for centrally placed circular and square cutout panels under a typical uniaxial load (α = 0.5) 
along the x-axis is shown in Fig. 1(b) and Fig. 1(c) respectively. The detailed mesh pattern over a 
quarter panel of circular and square cutout is shown in Fig. 1(d) and Fig. 1(e) respectively. In the 
analysis, a finer mesh is adopted in the vicinity of cutout, and coarser mesh away from the cutout 
region. The mesh details are discussed in subsequent convergence studies under the Section 3.1. 

Here, P0
x is the loading function along the x-axis; P0 is the loading intensity and α is the load 

defining factor. By changing the value of load defining parameter α, one can obtain different 
loading conditions. For instance, α = 0 defines uniformly distributed load. On the other hand, α = 2 
defines the pure in-plane bending as can be seen in Fig. 2. 
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Fig. 1 (a) Geometry of the panel; (b) Mesh pattern over a full panel with circular cutout subjected to a typical
in-plane load, P0

x = P0 (1 – αy/b), α = 0.5; (c) Mesh pattern for a square cutout panel with a typical 
tensile edge load, α = 0.5; (d) Detailed mesh pattern over a quarter panel of circular cutout; (e) 
Detailed mesh pattern over a quarter panel of square cutout 

 
 

Fig. 2 Examples of linearly varying edge loads 
 
 
2.1 Governing equations 
 
The governing differential equation of motion for a discretized structure can be written in 

matrix form considering either tension or compression in-plane edge loads (Kumar et al. 2005) 
 

          0  0     GM q K P K q  (1)
 

where [K], [KG] and [M] are assembled system stiffness, geometric stiffness and mass matrices 
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respectively. Here, {q} represents the eigenvector for different modes of vibration/buckling. 
The governing equations for the buckling and vibration problems can be obtained by reducing 

Eq. (1) as follows: 
 
Static buckling problem: 
When ,0}{ q  Eq. (1) reduces to a static case as 
 

        0 cr GK q P K q  (2)
 

Vibration problem: 
When the plate vibrates harmonically under the action of in-plane compression or tension edge 

loads, Eq. (1) reduces to 
 

          2
0 -   0 . GK q P K q M q  (3)

 

In the above Eq. (3), if P0 is equal to zero, then the equation represents a free vibration problem 
without in-plane load. If the in-plane load exists, then for a particular value of P0, the square of the 
frequency (ω2) becomes zero and then the corresponding load represents the critical buckling load. 

 
2.2 Finite element formulation 
 
In this study, a 9-node heterosis plate element is employed with five degrees of freedom (DOF) 

u, v, w, θx, and θy at all edge nodes and four DOF such as u, v, θx, and θy at the interior node. In 
order to develop heterosis element, the serendipity shape functions are used for transverse 
displacement w, and Lagrange shape functions for remaining DOF that includes u, v, θx, and θy as 
shown in Fig. 3. This type of element exhibits improved characteristics as compared to 8-node 
serendipity and 9-node Lagrange elements and offer higher accuracy for extremely thin plate 
configuration (Butalia et al. 1990, Hughes and Cohen 1978). 

The present analysis is based on the Reissner-Mindlin hypothesis, which includes the effect of 
shear deformation in the formulation. As per this hypothesis, the mid-surface normal remains 
straight before and after bending but does not remain perpendicular to the mid-plane after bending. 

The displacement field at any arbitrary distance z from the mid-plane can be expressed as 
(Kumar et al. 2005) 

0
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Fig. 3 Different types of plate elements 

8-N Serendipity 9-N Heterosis 9-N Lagrange

Node with u, v, w, θx, θy degrees of freedom

Node with u, v, θx, θy degrees of freedom
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where u, v, and w are the displacement components at any point of panel space in the x-, y-, and z-
directions; u0, v0, and w0 describe the displacements of an arbitrary point (x, y) on the middle plane; 
The parameters θx and θy are rotations of the transverse normal cross-section in the xz and yz 
planes respectively. 

The constitutive relation for the laminated panel is given by (Reddy 1996) 
 

    N C   (5)
 

where 
T

yzxzxyyxxyyx QQMMMNNNN ],,,,,,,[}{   represents the in-plane stress resultants (N), out 
of plane bending moments (M) and shear stress resultants (Q). Here, [C] is the constitutive matrix 
of the laminate (Reddy 1996). In order to compensate for the parabolic shear stress variation 
across the thickness of plate, a correction factor of 5/6 is used in the shear-shear coupling 
components of the constitutive matrix (Lal and Saini 2013). Using Green-Lagrange’s strain-
displacement expression (Bathe 1996), the linear strain-displacement matrix [B] and the non-linear 
strain-displacement matrix [BG] have been worked out. 

The different participating element level matrices such as elastic stiffness matrix [ke], geometric 
stiffness matrix [kG] and consistent mass matrix [me] have been derived using the corresponding 
energy expressions (Bathe 1996) 
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in which, ][N  is the shape function matrix and [I] is the inertia matrix consisting of I1, I2 and I3 

which are given by  
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A computer code is developed using FORTRAN language to perform all the necessary 
computations. The global matrices are generated by assembling the corresponding element 
matrices and these assembled matrices are stored using skyline technique. The subspace iteration 
technique is adopted to solve the eigenvalue problems (Bathe 1996). In the code, selective 
integration scheme is incorporated for the generation of element elastic stiffness matrix. The 3 × 3 
Gauss quadrature rule is adopted for membrane as well as bending terms, and 2 × 2 Gauss rule for 
shear terms to avoid possible shear locking. The geometric stiffness matrix is essentially a function 
of the in-plane stress distribution in an element due to applied edge loads. Since the stress field is 
non-uniform in nature for a given boundary and loading conditions, the plane stress analysis is 
carried out using standard FE procedure to determine the stresses at 3 × 3 Gauss sampling points.  
Accordingly, the integration for the generation of geometric stiffness matrix is done using 3 × 3 
Gauss quadrature rule. The in-plane, transverse and rotary inertias are considered in the 
formulation of consistent mass matrix. This matrix has been evaluated using 3 × 3 Gauss rule. 
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3. Results and discussions 
 

The problem considered here consists of a thin rectangular laminated panel (h/b = 0.01) with 
material constants, E11 = 25, E22 = 1.0, G12 = G13 = 0.50, G23 = 0.20 and ν12 = 0.25 unless otherwise 
stated. In order to define the boundary conditions, the notations, S (simply supported), C (clamped) 
and F (free) are used in the string of various boundary conditions. For simplicity, the abbreviation 
SSCC in which, the first two successive alphabets indicate simply supported condition on x = 0 
and x = a and the remaining two alphabets indicate clamped condition on y = 0 and y = b 
respectively in the order of edge numbers as shown in Fig. 1(a). In the analysis, the buckling 
results are calculated in two different stages. First, the pre-buckling analysis is carried out in order 
to determine the in-plane stress distribution within the plate element. The critical buckling loads 
are then calculated using the pre-buckling stresses. 

The displacement boundary conditions considered for both pre-buckling and buckling analyses 
are as follows: 

 

(1) Simply supported condition (SSSS): 
- for pre-buckling stress analysis: 

w = θy = 0 at x = 0, a; w = θx = 0 at y = 0, b and u = 0, v = 0 
at two nodes along the edges x = a/2 and y = b/2 repectively. 

- for buckling analysis: 
u = w = θy = 0 along x = 0, a; v = w = θx= 0 along y = 0, b. 

(2) Clamped condition (CCCC): 
- for pre-buckling stress analysis: 

w = θx = θy = 0 along x = 0, a and y = 0, b and u = 0, v = 0 at two nodes along the edges 
x = a/2 and y = b/2 respectively. 

- for buckling analysis: 
u = v = w = θx = θy = 0 along x = 0, a and y = 0, b. 

(3) Free condition (F): no restraint for both pre-buckling and buckling analyses except u = 0, v 
= 0 at two nodes along the edges x = a/2 and y = b/2 respectively, in the pre-buckling 
analysis. 

 

The vibration frequency and the critical loads are presented in non-dimensional form as follows 
(Reddy and Phan 1985, Zhong and Gu 2007) 

Non-dimensional frequency 

2
2

22

 
  

 
absb E h

   (9)

Non-dimensional load 
2

3
22

 cr
cr

P b

E h
  (10)

 
where ωabs and Pcr are the absolute frequencies and absolute critical loads respectively. 

 
3.1 Convergence studies 
 
In a finite element analysis, the convergence studies are necessary for identifying the mesh size 

in order to achieve the proper convergence of the results. The mesh control parameters, nx = ny, nx1 
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Table 1 Convergence of buckling loads for a SSSS edged angle-ply (+45°/-45°)s square panel with 
a central circular cutout under the action of uniaxial sinusoidal compressive and tensile edge loads 

Cutout 
ratio (ϕ/b) 

Mesh order for a full panel No. of 
elements 

Compressive 
buckling loads (cr) 

Tensile buckling 
loads (cr) nx = ny nx1 = ny1 nh 

0.3 

2 1 24 88 37.169  (37.512) 222.232 

2 2 24 112 37.340  (37.352) 225.744 

2 3 24 136 37.363  (37.368) 224.678 

2 4 24 160 37.345  (37.326) 223.445 

2 5 24 184 37.346  (37.325) 222.523 

2 6 24 208 37.345  (37.321) 222.362 

2 7 24 232 34.669  (34.461) 222.295 

2 8 24 256 22.876  (22.537) 222.290 

0.5 

1 1 32 68 30.189  (31.216) 97.981 

1 2 32 100 30.641  (30.664) 98.370 

1 3 32 132 30.685  (30.679) 97.539 

1 4 32 164 30.669  (30.658) 97.059 

1 5 32 196 30.668  (30.657) 96.843 

1 6 32 228 30.667  (30.656) 96.789 

1 7 32 260 30.643  (30.621) 96.783 
 
 

= ny1 and nh are given in Fig. 1(d) or (e). For a typical case of SSSS edged panel under the action of 
uniaxial compressive as well as tensile sinusoidal edge loading, the convergence studies have been 
carried out by varying the mesh control parameters. For cutout ratios of ϕ/b = 0.3 and 0.5, the 
buckling loads are evaluated and the results are presented in Table 1 for different mesh sizes. It is 
observed from the convergence results that around 160 elements are sufficient for fairly good 
results in the case of ϕ/b = 0.3, and around 164 elements for ϕ/b = 0.5 when the load is 
compressive in nature. However, when the load is tensile in nature, around 232 and 228 elements 
are sufficient for fairly good results in the cases of ϕ/b = 0.3 and 0.5 respectively. It is important to 
note that the number of elements required to achieve good convergence for tensile loading cases is 
comparatively more than that required for compressive type of loading. Further, the results are also 
extracted by using S8R5 shell element in ABAQUS and the results generated are given in 
parenthesis in Table 1. Finally, it is concluded that the convergence criterion has been satisfied for 
each type of problem considered in this paper. 

 
3.2 Comparison with previous work– panel without cutout 
 
Comparison studies are necessary for ascertaining the accuracy and efficiency of various 

matrices involved in the analysis of vibration and buckling problems. For validating the accuracy 
of stiffness and mass matrices, free vibration response of a square laminated panel without cutout 
is carried out by using 9-node heterosis element (9-NHE), 9-node Lagrange element (9-NLE) and 
8-node serendipity element (8-NSE) along with the closed-form solutions (CFS) of Reddy and 
Phan (1985) as shown in Table 2. Similarly, to ascertain the accuracy of geometric stiffness matrix, 
the buckling analysis of cross-ply square laminate under the application of different types of non 
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Table 2 Non-dimensionalised frequency of angle-ply laminated simply supported unstiffened square plate; 
E11/E22 = 40, G12 = G13 = 0.6E22, G23 = 0.5E22, υ12 = 0.25 

 2 layers (45/-45) CFS 
(Reddy and 
Phan 1985) 

8 layers (45/-45/45…) CFS 
(Reddy and 
Phan 1985) 

b/h Present results Present results 

 9-NHE 9-NLE 8-NSE 9-NHE 9-NLE 8-NSE 

5 10.335 10.244 10.243 10.335 12.892 12.863 12.862 12.892 

10 13.044 12.975 12.975 13.044 19.289 19.235 19.235 19.289 

20 14.179 14.154 14.153 14.179 23.259 23.225 23.225 23.259 
25 14.338 14.322 14.321 14.338 23.924 23.899 23.899 23.924 

50 14.561 14.557 14.556 14.561 24.909 24.902 24.901 24.909 

100 14.618 14.617 14.617 14.618 25.176 25.174 25.174 25.176 
 
 

Table 3 Comparison of buckling loads for a cross-ply square panel (0/90/0) under linearly varying loads; 
E11/E22 = 40, G12 = G13 = 0.6E22, G23 = 0.5E22 and υ12 = 0.25 

Loading pattern (α) Source h/b = 0.01 h/b = 0.05 h/b = 0.1 

0.5 

CFS (Zhong and Gu 2007) 47.267 41.075 29.432 

9 – HPE 47.261 40.939 29.228 

9 – LPE 47.259 40.930 29.225 

8 – SPE 47.256 40.921 29.120 

1.0 

CFS (Zhong and Gu 2007) 64.982 56.705 40.999 

9 – HPE 64.975 56.486 40.525 

9 – LPE 64.962 56.478 40.514 

8 – SPE 64.960 56.457 40.500 

1.5 

CFS (Zhong and Gu 2007) 91.374 80.336 47.708 

9 – HPE 91.355 79.989 48.300 

9 – LPE 91.338 79.957 48.291 

8 – SPE 91.331 79.930 48.285 

2.0 

CFS (Zhong and Gu 2007) 129.785 114.837 47.872 

9 – HPE 129.758 114.167 48.720 

9 – LPE 129.730 114.152 48.660 

8 – SPE 129.725 113.980 48.514 

 
 

uniform edge compressive loads have been carried out using same three kinds of elements for 
different h/b ratios and the results are tabulated in Table 3 along with the closed form solutions of 
Zhong and Gu (2007). It can be observed that though all the elements give satisfactory results both 
in the cases of vibration and buckling analyses, better accuracy has been exhibited by the heterosis 
element, and hence, the same element has been used in the rest of the work. 

 
3.3 Comparison study – panel with cutout 

 
The comparative study of panel with different sized circular cutout is further extended to 
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Table 4 Comparison of buckling loads for a SSSS edged square laminated panel with circular cutouts 
under uniform edge load; E11 = 130.0 GPa, E22 = 10.0 GPa, G12 = G13 = 5.0 GPa, G23 = 3.4 GPa, 
and ν12 = 0.35 

ϕ/b 
40 layers (45/-45/0/90)5S,  b/h = 75 8 layers (0/90)2S, b/h = 100 

Present Jain and Kumar (2004) Present Ghannadpour et al. (2006) 

0.0 19.16 (19.14) 19.23 13.82 (13.81) 13.79 

0.1 18.41 (18.42) 18.56 12.83 (12.83) 12.80 

0.2 16.94 (16.97) 17.10 10.84 (10.85) 10.82 

0.3 15.40 (15.42) 15.30 8.98 (8.97) 8.97 

0.4 14.63 (14.63) 14.63 7.52 (7.51) 7.51 

0.5 13.96 (13.97) 13.84 6.40 (6.39) 6.39 
 
 

 
Fig. 4 Square panels under various kinds of uniaxial and biaxial non-uniform edge loading 

 
 

ascertain the buckling behavior of square laminated panel under uniformly distributed edge load. 
The effect of 8-layered (0/90)2s and 40-layered (45/-45/0/90)5s laminated panels have been studied 
under different cutout sizes by using heterosis element. The results are tabulated in Table 4 along 
with the results obtained using S8R5 element in ABAQUS, and results of similar studies carried by 
other researchers and reported in the literature (Jain and Kumar 2004, Ghannadpour et al. 2006). 
The ABAQUS results are shown within the parenthesis. The good agreement is found between the 
present study and those from the literature and FE package–ABAQUS. 

 
3.4 Buckling and vibration results under compressive and tensile edge loading 

 
In this section, the vibration and buckling behavior of four layered symmetric laminated panels 

are examined by considering various parameters such as ply-orientation, edge condition, load type, 
panel aspect ratio and cutout size. The typical loading cases considered in the present investigation 
as shown in Fig. 4. The uniaxial loading case shown here is compressive in nature. Therefore, the 
corresponding uniaxial tensile loading case can be obtained by reserving the loading direction. 

 
3.4.1 Buckling of laminated panels under the action of uniaxial varying edge load 
The effect of different ply-orientations on the buckling behavior of four layered symmetric 

(±θ°)s laminated panel subjected to uniaxial varying compressive edge load (α = 0.5) has been 
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studied for the panels with circular and square cutouts. 
Fig. 5(a) shows the variation of buckling loads with ply-orientations for different sized circular 

cutouts (ϕ/b = 0 to 0.7). It can be seen from the figure that for any given cutout ratio ϕ/b, the 
buckling load parameter γcr gradually increases with the increased ply-orientation till it reaches a 
maximum at certain ply-angle beyond which, it reduces with further increase of the ply-orientation. 
The maximum buckling load γcr occurs at θ ≈ (±45°)s and shift towards θ ≈ (±60°)s, as the ϕ/b 
increases. It is also seen that for θ = (±0°)s to around (±55°)s, the value of γcr predominantly 
reduces with the increased ϕ/b. Beyond θ = (±55°)s, the variation of γcr with ϕ/b is insignificant. 

Similar studies have been carried out for the same panel with square cutout (c/b = 0 to 0.7) and 
the results are depicted in Fig. 5(b). One can observe from the figures that the buckling 
characteristic of square cutout panel is almost similar to that of circular cutout panel without much 
change in the values of γcr. 

 
 

 
(a) (b) 

Fig. 5 Compressive buckling variation of different ply-oriented SSSS edged square panels with 
different ratios of (a) circular cutouts; and (b) square cutouts under the action of uniaxial 
varying load for α = 0.5 

 
 

(a) (b) 

Fig. 6 Tensile buckling variation of different ply-oriented SSSS edged square panels with different 
ratios of (a) circular cutouts; and (b) square cutouts under the action of uniaxial varying load 
for α = 0.5 
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For the same problem, the buckling behavior of the panel with circular and square cutouts is 
examined by applying tensile varying edge load (α = 0.5) and the results are shown in Figs. 6(a)-(b) 
respectively. It is observed from Figs. 6(a)-(b) that for any given ply-orientation, the tensile 
buckling load γcr continuously decreases with the increase of cutout ratio (ϕ/b or c/b). But, for any 
given ply-angle, the variation of buckling resistance with the increase of cutout ratio is significant 
as the ϕ/b or c/b approaches a value of 0.4 and there onwards, it is almost insignificant. It may be 
attributed towards the fact that the tensile stresses are comparatively more pronounced at lower ϕ/b 
or c/b ratios. It is also observed from the figures that the value of γcr is found to be higher at θ = 
(±30°)s and (±90°)s for ϕ/b or c/b (≤ 0.4). But, for higher ϕ/b or c/b (≥ 0.5), the value of γcr is 
generally found to be higher only at θ = (±30°)s. Further, it is worth to mention that although the 
buckling behavior is similar for both circular and square cutout panels, quite higher buckling 

 
 

(a) (b) 

Fig. 7 Variation of buckling parameter γcr for different ply-oriented SSSS edged square panels with 
different ratios of (a) circular cutouts; and (b) square cutouts under the action of biaxial varying 
load α = 0.5 

 
 

(a) (b) 

Fig. 8 Variation of compressive buckling parameters γcr for different ply-oriented SSSS edged square 
panels with different ratios of (a) circular cutouts; and (b) square cutouts under uniaxial 
sinusoidal load 
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resistance is observed in circular cutout panels as compared to that of square cutout panels. 
The effect of biaxial (compression-tension) type of edge load (α = 0.5) on buckling behavior of 

different ply-oriented panel with circular and square cutouts have been studied and the results are 
illustrated in Figs. 7(a)-(b) respectively. It is observed from the figures that for any given ply-
orientation, the value of γcr continuously reduces with the increased cutout ratios (ϕ/b or c/b). The 
decrease in γcr with increased cutout ratio is significant at θ = (±0°)s and insignificant at θ ≥ (±60°)s. 
It is also observed from the figures that for lower ϕ/b or c/b (≤ 0.2), the γcr is found to be maximum 
at θ = (±0°)s and thereafter decreases with a further increased ply-orientation. However, for the 
cutout ratio (ϕ/b or c/b ≥ 0.3), the value of γcr gradually increases with the increased ply-
orientation till it reaches a maximum at certain ply-angle and then, starts reducing with a further 
increase in ply-angles. However, the buckling values of square cutout panels are found to be 
almost equal with that of circular cutout panels for any given cutout ratio and ply-orientation. 

 
3.4.2 Buckling behavior of laminated panels subjected to sinusoidal edge loading 
The variation of γcr with the ply-angles (±θ°)s for SSSS edged panels with circular and square 

cutouts subjected to uniaxial compressive sinusoidal edge load is shown in Figs. 8(a)-(b) 
respectively. It is noticed from the figures that the buckling behavior is almost similar to the load 
case (α = 0.5) shown in Figs. 5(a)-(b) without much difference in the values of γcr. However, the 
role of ϕ/b or c/b on γcr is predominant in the ply-orientation range of (±0°)s ≤ θ < (±60°)s. But, for 
θ ≥ (±60°)s, the effect of ϕ/b or c/b on γcr is negligible. It can also be observed that the values of γcr 

are almost same for both types of cutouts for any given cutout ratio and ply-orientation. 
Similar studies have been carried out for the same circular and square cutout panels subjected 

to uniaxial tensile sinusoidal edge load and the results are depicted in Figs. 9(a)-(b) respectively. 
The tensile buckling behavior of the panels shown in Figs. 9(a)-(b) is almost similar to the load 
case (α = 0.5) shown in Figs. 6(a)-(b) irrespective of cutout ratios except for ϕ/b or c/b = 0.2. It is 
to be noted that the panel under the load case (α = 0.5) shows higher buckling resistance as 
compared to that of the panel under sinusoidal edge load irrespective of ply-orientation as well as 
cutout ratios. It may be due to the fact that in the case of sinusoidal load, the compressive stress 
field is more pronounced in the central region of the panel as compared to that of tensile load case 

 
 

(a) (b) 

Fig. 9 Variation of tensile buckling parameters γcr for different ply-oriented SSSS edged square panels 
with different ratios of (a) circular cutouts; and (b) square cutouts under uniaxial sinusoidal load 
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(a) (b) 

Fig. 10 Buckling variation of different ply-oriented SSSS edged square panels with different ratios of 
(a) circular cutouts; and (b) square cutouts under biaxial sinusoidal load 

 
 
at α = 0.5. However, in this case, higher values of γcr have been observed for the ply-orientations 
of (±0°)s

 and (±90°)2 only for ϕ/b or c/b = 0.2 whereas, for the remaining cutout ratios (> 0.2), the 
value of γcr is found to be maximum at θ = (±30°)s. Furthermore, the circular cutout panel shows 
more tensile buckling resistance as compared to that of square cutout panel for all ply-orientations. 

The effect of biaxial sinusoidal (compression-tension) edge load on buckling behavior of 
different ply-oriented SSSS edged square panels with circular and square cutouts have been studied 
and the results are depicted in Figs. 10(a)-(b) respectively. It is observed from Figs. 10(a)-(b) that 
the value of γcr continuously decreases with the increase of (±θ°)s for the cases of ϕ/b or c/b ≤ 0.1. 
However, for the cases of ϕ/b or c/b > 0.1, the buckling load initially increases with the increase in 
ply-orientation and reaches a maximum value at certain ply-angle and thereafter starts decreasing 
to a minimum with the further increase of (±θ°)s. The ply-orientation (±θ°)s at which γcr is 
maximum shifts from (±45°)s to (±60°)s as ϕ/b or c/b varies from 0.2 to 0.7. 

From the above study, it may be concluded that if there is, at least, one pair of in-plane 
compressive edge load, then there will not be any significant change in the values of γcr for both 
circular and square cutout panels. 

 
3.4.3 Effect of boundary conditions along with cutout sizes 
The effect of degree of edge restraints on buckling behavior of a typical layered panel with θ = 

(±75°)s is examined by considering fourteen different types of boundary conditions and the results 
are illustrated in Figs. 11(a)-(b). It is observed from Fig. 11(a) that γcr generally increases with 
increase in the degree of edge restraints for any given ϕ/b. In the cases of CCCC, CSCC, and SSCC 
edge conditions, the value of γcr initially decreases with the increased cutout ratios up to ϕ/b = 0.2 
and then increases with a further increase of ϕ/b. Similarly, for CSCS, CCSS, CSSC, SCSS, and 
SSSS boundary conditions, the value of γcr also decreases up to ϕ/b = 0.5 and marginally increases 
beyond this cutout ratio. This may be attributed to the load path being redirected from the vicinity 
of cutout towards the stiffer region (Soni et al. 2013). However, for other edge conditions, the 
value of γcr continuously reduces with the increase of ϕ/b. 

Similar kind of behavior is also observed when the same panel is subjected to biaxial sinusoidal 
edge load except CCCC, CSCC, and SSCC boundary conditions as can be seen in Fig. 11(b). 
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(a) (b) 

Fig. 11 Effect of cutout ratios ϕ/b and boundary conditions on variation of γcr for (±75°)s layup 
square panel subjected to (a) uniaxial sinusoidal compressive load; and (b) biaxial 
sinusoidal compressive-tensile load 

 
 

Further, it is also observed that the value of γcr remains same for any given size of cutout in both 
the cases of uniaxial and biaxial loadings, if at least, one edge of the panel is free. 

 
3.4.4 Effect of panel aspect ratios along with size of cutouts 
The combined effects of panel aspect ratios a/b and cutout ratios ϕ/b on the buckling behavior 

of (±45°)s ply-oriented SSSS edged panel subjected to compressive and tensile type of sinusoidal 
edge loads have been studied and the results are illustrated in Figs. 12(a)-(b) respectively. The 
panel aspect ratios, a/b = 1.0, 1.6, 2.0, 2.6 and 3.0 along with ϕ/b = 0.3 to 0.7 are considered in this 
section. The different panel aspect ratio is obtained by varying the length of panel, a and keeping 
its width, b constant. It can be observed from Fig. 12(a) that the value of compressive buckling 

 
 

(a) (b) 

Fig. 12 Variation of γcr for different aspect ratios of (±45°)s ply-oriented SSSS edged panels with various 
sized cutouts under the application of (a) compressive sinusoidal load; and (b) tensile sinusoidal load
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load decreases with the increase in ϕ/b ratio in the case of square panel. The trend is found to be 
reversed for panels with higher aspect ratios. However, the values of γcr are found to be maximum 
for the panel aspect ratio equal to 1.6. 

A different behavior is observed when the same panel is subjected to tensile type of sinusoidal 
edge load as shown in Fig. 12(b). It is observed from the figure that the tensile buckling load γcr 
decreases with an increase in ϕ/b for all aspect ratios of the panel. It is also noticed that for any 
given ϕ/b, the buckling resistance of the panel continuously increases with an increase in panel 
aspect ratio a/b and is found to be maximum at a/b = 2.6. Further, the value of γcr remains almost 
constant with an increase of a/b. This may be due to the fact that the tensile buckling is a local 
buckling phenomenon due to localized compressive stress around the cutout, which remains same 
for all higher aspect ratios. It is worth to mention that as the ϕ/b ratio reaches 0.7, the effect of 
panel aspect ratio is almost negligible and it remains almost constant. 

 
3.4.5 Vibration characteristics of laminated panel with cutout 
The free vibration behavior of a (±45°)s ply-oriented panel with centrally placed circular 

cutouts under the action of compressive and tensile types of sinusoidal edge loads have been 
studied and the results are illustrated in Figs. 13(a)-(b) respectively. It is observed from Fig. 13(a) 
that the frequency at zero load gives the fundamental frequency, and this frequency increases with 
the increase in ϕ/b and is found to be maximum at ϕ/b = 0.7. It may be attributed to the decrease of 
panel stiffness with the increased cutout size. However, for any given ϕ/b, as the intensity of 
compressive load increases, the frequency of oscillation decreases and reduces to zero at the onset 
of buckling. 

It is observed from Fig. 13(b) that for any given cutout ratio ϕ/b, the frequency of oscillation 
initially increases with the increase of in-plane edge load. As the load further increases, the 
frequency starts decreasing and becomes zero at the onset of tensile buckling. The rate of increase 
of frequency is significant at lower cutout ratios and found to be maximum at ϕ/b = 0.2 and 
minimum at ϕ/b = 0.7. It may be due to the dominance in the tensile stresses as compared with that 
of compressive stresses at lower ϕ/b, and this dominance in tensile stresses gradually reduces as 
the cutout size increases. 

 
 

(a) (b) 

Fig. 13 Variation of frequency parameters (ϖ) for different cutout ratios of (±45°)s ply-oriented square 
panel under (a) uniaxial compressive sinusoidal load; (b) uniaxial tensile sinusoidal load 
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4. Conclusions 
 

The results from the studies of the tensile and compressive buckling and vibration 
characteristics of composite laminated panel with circular and square cutouts subjected to non-
uniform in-plane edge loading and can be summarized as follows: 

 
(1) The natural frequency is found to decrease with the increase in compressive load and 

reduces to zero when the in-plane load approaches the critical buckling load. In case of 
tensile edge load, the frequency of oscillation initially increases with the increase in 
applied edge load up to certain extent and thereafter decreases with the further increase in 
load and reduces to zero at the onset of tensile buckling. 

(2) The type of loading and ply-orientation play a significant role in the buckling behavior of 
a panel with and without cutout. However, the maximum buckling resistance of ply-angle 
range is evaluated for each type of loading case and cutout ratios. 

(3) For any given ply-angle, the buckling load continuously decreases with the increased 
cutout size when the panel is subjected to uniaxial tensile or biaxial (compressive-tensile) 
loading cases. This is also true for uniaxial compressive loading cases except for some 
particular ply-orientations with higher sized cutouts, for which, an increase in the buckling 
load is observed. 

(4) The tensile buckling loads are found to be significantly lesser at higher sized cutouts as 
compared to that of lower sized cutouts irrespective of ply-orientations. 

(5) The circular and square cutouts show similar buckling behavior without much change in 
the value of buckling loads for both uniaxial compressive and biaxial (compressive-tensile) 
loading cases. But, in the case of uniaxial tensile edge load, circular cutout panel shows 
comparatively higher buckling load as compared to that of panel with square cutout. 

(6) In the cases of uniaxial compressive and biaxial (compressive-tensile) edge loads, the 
presence of smaller sized cutout (≤ 0.1) may be neglected due to their insignificant change 
in the value of buckling loads. 

(7) The buckling load of perforated panel is highly influenced by panel aspect ratios. In case 
of square panel, the compressive buckling load generally decreases with the increase in 
cutout sizes. The trend is reversed for higher panel aspect ratios. Maximum compressive 
buckling load is observed as the panel aspect ratio approach 1.6. In case of tensile edge 
load, the tensile buckling load continuously decreases with the increase in the cutout ratio. 
However, for any given cutout ratio, the buckling load increases with the increased panel 
aspect ratio and is found to be maximum at a/b = 2.6 and thereafter, it almost remains 
constant with the further increase in a/b. 

(8) The critical buckling load increases with the increase in the degree of edge restraints. In 
some particular cases, the buckling load initially decreases with the increase in cutout size 
up to a certain stage and thereafter increases with a further increase in the cutout size. 
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