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Abstract. In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular
double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is
noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced
composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face
sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich
beams. The connections of every sandwich beam with its surrounding medium and also between them have been
carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the
classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional
material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform
distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O,
FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are
varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton’s
principle, the size-dependent nonlinear goveming differential equations of motion and associated boundary
conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed
parametric study is presented to indicate the influences of electric and magnetic fields, slendemess ratio, thickness
ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material
length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural
frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models
on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the
thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded
sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural
frequencies tend to decrease for all amounts of the Winkler spring modulus.
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1. Introduction

Sandwich structures are being used extensively in aerospace, marine, naval, transportation and
civil engineering industries. Due to their special characteristics, sandwich structures are being
considered as primary and secondary structural members. Some of superior qualities of sandwich
structures consist of: high strength and stiffness to weight ratio, ease of manufacturing, thermal
and acoustic insulation, and flexibility in design. The widespread range and importance of these
applications, represents the necessary of accurate model capable of predicting the vibration
response of sandwich structures. Some researches of this structures subjected to mechanical
loading are denoted in the literature including Plantema (1966), and Reissner (1948). Many
classical researches on sandwich structures such as Allen (1969), Zenkert (1995) and Vinson (1999)
considered that the core material is vertically incompressible. Liew et al. (2015) performed
mechanical analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC)
and illustrated a review of various investigations in the existing literature in terms of static, free
vibration, dynamic, buckling and non-linear analyses of FG-CNTRC. Static and dynamic analysis
of FG Euler—Bernoulli microbeam was investigated by Kahrobaiyan ef al. (2012) based on strain
gradient theory (SGT). Tajalli et al. (2013) performed mechanical behavior analysis of size-
dependent micro-scaled FG Timoshenko beams by SGT. Zhang et al. (2014) considered non-
classical Timoshenko beam element based on the SGT and revealed that lower size effects are
significant when the beam thickness is small, but become negligible with increasing beam
thickness.

Some researchers have been worked about optimization of nanostructures and its applications
and also to determine the optimal distribution of carbon nanotubes for specific purposes.
Nanthakumar et al. (2015) presented shape and topology optimization of nanostructures using a
coupled XFEM/Level set method and investigated a computational method for the optimization of
nanostructures, where our specific interest is in capturing and elucidating surface stress and
surface elastic effects on the optimal nanodesign, they obtained results of optimal topologies of a
nanobeam subject to cantilever and fixed boundary conditions. Also, they showed that the
importance of size and aspect ratio in determining how surface effects impact the optimized
topology of nanobeams. Ghasemi er al. (2014a) and (2015) studied optimum fiber content and
distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization
approach and concluded that when system unreliability increases, fiber distribution optimization
becomes more influential. In the other work, Ghasemi et al. (2014b) focused on the uncertainties
propagation and their effects on reliability of polymeric nanocomposite (PNC) continuum
structures using stochastic multi-scale modeling, in the framework of the combined geometry and
material optimization.

In recent years, static, buckling, and free vibration behavior of sandwich structure has been
widely investigated by some researchers. The vibration and buckling of FG sandwich beams based
on a quasi-3D theory has been performed by Vo et al. (2015). Grygorowicz et al. (2015) studied
the elastic buckling of a sandwich beam with variable mechanical properties of the core. They
compared the values of the obtained critical load by the analytical and numerical methods. The
free vibration of the FG sandwich beams by a mesh-free boundary-domain integral equation
method was analyzed by Yang et al. (2014). Their results demonstrated that the current developed
method is not only convenient to implement, but also showed higher accuracy, convergence and
efficiency. Lanc et al. (2015) investigated buckling analysis of thin-walled FG sandwich beams
and expressed that the power-law index and skin-core-skin thickness ratios play very important
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role on the buckling analysis of sandwich beams. Rahmani and co-workers (2009) exhibited free
vibration analysis of sandwich structures with a flexible FG syntactic core. They concluded that
the eigen-frequenies of the beam decrease with an increase in the /A ratio. Free vibration analysis
of sandwich cylindrical panel with FG core using three-dimensional theory of elasticity was
discussed by Alibeigloo and Liew (2014). Wang and Shen (2011, 2012) illustrated nonlinear
vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Bui et
al. (2013) studied transient responses and natural frequencies of sandwich beams with FG core.
Based on Mori-Tanaka approach, the free vibration of sandwich beam with FG core by using the
element free Galerkin method was studied by Chehel Amirani et al. (2009). Vo et al. (2014)
investigated vibration and buckling of sandwich beams with FG skins homogeneous core using a
refined shear deformation theory. In the other work, static analysis of higher order sandwich beams
by weak form quadrature element method was carried out by Wang and Wang (2014) and also
showed that the proposed beam element can yield very accurate displacements and stresses as
compared to theoretical solutions. Damanpack and Khalili (2012) represented high-order free
vibration analysis of sandwich beams with a flexible core using dynamic stiffness method and
revealed that the dynamic stiffness method with small number of elements in solving the
eigenvalue problem has a good accuracy in the other result.

The classical continuum elasticity theory cannot descript the accurate structural behavior at
micro and nano scale because of lacking of the material length scale parameter. Therefore, during
past years, several non-classical higher-order continuum theories have been introduced and
employed to predict size-dependent responses of micro-scaled structures. One of the size-
dependent continuum theories is SGT, introduced by Fleck and Hutchinson (1993). After that, Lam
et al. (2003) proposed a MSGT with three material length scale parameters relevant to dilatation
gradient, deviatoric gradient and symmetric rotation gradient tensors. In recent years, this theory
has been utilized by many researchers to analyze the static and dynamic problems of micro-scale
structures. For instance, static bending and free vibration behaviors of Euler-Bernoulli and
Timoshenko homogeneous microbeams have been respectively developed by Kong et al. (2009)
and Wang et al. (2010). Using SGT and MCST, the bending, buckling and free vibrations of Euler-
Bernoulli microbeams have been employed by Akgdz and Civalek (2011, 2012, 2013a). Moreover,
a new size-dependent sinusoidal shear deformation beam model based on SGT was proposed by
them Akgoz and Civalek (2013b). Sahmani et al. (2014) studied nonlinear free vibration analysis
of FG third-order shear deformable microbeams based on the MSGT and demonstrated that by
approaching from metal phase to ceramic phase for an FGM microbeam, the linear frequency and
nonlinear frequency ratio tend to decrease and increase, respectively. Mohammadimehr et al.
(2015a) studied the vibration analysis of visco-elastic tapered micro-rod based on SGT resting on
visco-Pasternak foundation using differential quadrature method (DQM). Lei and co-workers
(2013) analyzed bending and vibration of FG sinusoidal microbeams based on the SGT and
showed that the FG microbeams exhibit significant size-dependence when the thickness of the
microbeam approached to the material length scale parameter. Electro-thermal vibration of visco-
elastically coupled BNNT systems conveying fluid embedded on elastic foundation via SGT have
been carried out by Ghorbanpour Arani and Amir (2013). Size-dependent bending, buckling and
free vibration of FG Timoshenko microbeams based on the most general SGT has been conducted
by Ansari et al. (2013). Also, in other work, Ansari ef al. (2011) represented free vibration analysis
of size-dependent FG microbeams based on the strain gradient Timoshenko beam theory and it is
observed that the value of gradient index play an important role in the vibrational response of the
microbeams of lower slenderness ratios. Mohammadimehr et al. (2015b) analyzed free vibration
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of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-CNTs using
MSGT, sinusoidal shear deformation theory and meshless method and showed that the elastic
foundation, vdW interaction and magnetic field increase the dimensionless natural frequency of
the double-bonded nanocomposite plates for CT, MCST and MSGT. Also, in the other work
(Mohammadimehr et al. 2016b), they investigated modified strain gradient Reddy rectangular
plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric
nanocomposite reinforced by FG-CNT and concluded that the elastic foundation and van der
Waals interaction in contrast to applied voltage increase the dimensionless critical biaxial buckling
load and vice versa decrease the dimensionless deflection of the double-coupled nanocomposite
plates. Electro-elastic analysis of a sandwich thick plate considering FG core and composite
piezoelectric layers on Pasternak foundation using third-order shear deformation theory was
performed by Mohammadimehr et al. (2016a) and concluded that the natural frequency and
critical buckling load diminish with an increase in the power law index. In other study, a new
Euler-Bernoulli beam model based on a simplified SGT and its applications was presented by
Liang ef al. (2014). The obtained numerical results showed the significance of the Poisson’s effect
and the strain gradient elastic effect. The improved high order analysis of sandwich beams by
considering a bilinear elasto-plastic behavior of core was investigated by Jedari Salami et al.
(2015). A simple shear deformation theory for thermo-mechanical behavior of FG sandwich plates
on elastic foundations was introduced by Taibi er al. (2015). A new simple shear and normal
deformations theory for FG beams was presented by Bourada et al. (2015). Interfacial shear stress
optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing
ingredients was performed by Ghasemi et al. (2014c). They illustrated that adding reinforcements
homogeneously into polymers will slightly improve the interfacial shear stress but that
considerable improvements are observed when the distribution of the reinforcement in the core is
optimized. Bouremana and co-workers (2013) expressed a new first shear deformation beam
theory based on neutral surface position for FG beams by assuming that the in-plane and
transverse displacements consist of bending and shear components. A new nonlinear high order
theory for sandwich beams along with an analytical and experimental investigation was expressed
by Dariushi and Sadighi (2013). They indicated that nonlinear effects become more significant in
some cases and the results of linear model are unreliable.

The objective of the current study is to investigate the nonlinear magneto-electro-mechanical
free vibration behavior of rectangular double-bonded sandwich beams including sandwich beam
with carbon nanotube reinforced composite (CNTRC) face sheets including magnetic field and
sandwich beam with boron nitride nanotube reinforced composite (BNNTRC) face sheets
consisting of electrical properties based on the MSGT. Considering homogenous core for both
sandwich beams and assuming connection of every sandwich beam with its surrounding medium
and also between them by Pasternak foundation, the MSGT is introduced into the classical
Timoshenko beam theory to develop a size-dependent beam model. For the CNTRC and BNNTRC
face sheets of sandwich beams, uniform distribution (UD) and four functionally graded
distribution patterns of CNTs or BNNTs including FG-A, FG-V, FG-O, and FG-X are considered.
It is assumed that the material properties of face sheets for both sandwich beams are varied in the
thickness direction and estimated through the extended rule of mixture. By using Hamilton’s
principle, the size-dependent nonlinear governing differential equations of motion together with
corresponding boundary conditions are derived. Afterward, by employing GDQM, the higher-
order equations of motion are discretized to calculate first two natural frequencies of double-
bonded sandwich beams.
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2. Material properties of double-bonded sandwich beams

Sandwich structures represent a special form of a layered structure that consist of two thin stiff
and strong face sheets separated by a relatively thick, lightweight, and homogenous core material.
Fig. 1 shows two sandwich microbeams are bounded together and are attached with Pasternak
foundation from both sides. It is assumed that the homogenous core of two sandwich beams are
made of pure aluminum metal and face sheets of upper and lower sandwich beams are made of
FG-BNNTRC and FG-CNTRC, respectively, with different distributions of BNNT and CNT in the
thickness direction. In this paper, it is assumed that there is no delamination between the core and
face sheets of both sandwich beams. Herein after, the lower and upper sandwich beams with FG-
CNTRC and FG-BNNTRC face sheets, respectively, have been determined by sub or super-scripts
“C” and “B” representing the sandwich beam with CNTRC and BNNTRC face sheets,
respectively. The length of two sandwich beams denote L, and thicknesses of face sheets and the
core of CNTRC are hfc and A, respectively and similarly for BNNTRC are th and A",

The UD and FG distributions (FG-A, FG-V, FG-O and FG-X) of BNNT and CNT in the
thickness direction of the face sheets for both sandwich beams respectively, are considered, as
shown in Fig. 2. In this figure, the density of BNNT or CNT within the face sheet area is constant
and the volume fraction varies through the thickness of the face sheet. The Cartesian coordinate
systems (x, y, z) is used on the central axis of each sandwich beam where (x1, y1, z1), (x2, V2, 22)
axes are taken along the length, width and height directions of CNTRC and BNNTRC,
respectively. The homogenous core of both sandwich beams is modeled as an elastic material that
its material properties are constant along the z-axis. The mechanical parameters p., E., G., v. are
denoted the density, Young’s modulus, shear modulus and Poisson’s ratio of the core, respectively.
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Fig. 1 An schematic view of the double-bonded sandwich Timoshenko microbeams
resting on the Pasternak foundation
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Fig. 2 Configurations of the sandwich microbeam with various CNT or BNNT
distribution patterns in face sheets

Here, we first determine the effective material properties of both sandwich beams based on the
extended rule of mixture. The material properties of both BNNTRC and CNTRC were shown to be
anisotropic by many researchers (Han and Elliott 2007, Zhang and Shen 2006). The effective
Young’s modulus and shear modulus of CNTRC face sheets through the extended rule of mixture
can be written as (Yas and Samadi 2012, Mohammadimehr ez al. 2016b and c)

Eﬁf =V BN+ VmE:S (la)
772 Vcnt Vm
= +—
B, By ES (o
773 ch‘ Vm
0 ot 4 om
G, G G (Ic)

where E,”", E»,™" and G,”" denote the Young’s modulus and shear modulus of CNT, respectively.
E,S and G,° indicate the corresponding properties of the matrix for face sheet. The CNT
efficiency parameters #; (i = 1, 2, 3) are introduced in Eq. (1) to consider the size-dependent
material properties and will be later determined by matching the elastic moduli of CNTRC
obtained through the molecular dynamics (MD) simulations with the obtained numerical results
from the rule of mixture. V,,,~ and V,, are the volume fractions for CNT and matrix, respectively,
which are related by V.,.C+v,c=1. Similarly, Poisson’s ratio » and mass density p of the CNTRC
face sheets for bottom sandwich beam can be determined as

v_fq = chvcc;n + vac ,0? = I/Cntpcc;n + Vmpgzt ()

m?

In which ve,, v," denote the Poisson’s ratios, and pcmc, pmc are the densities of the CNT and
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matrix, respectively. The effective Young’s modulus and shear modulus of BNNTRC face sheets
for top sandwich beam through the rule of mixture have been denoted as follows

Efj = VbnntEIﬁmt + VmErf'l} (3a)
G/Ij = VbnntGlﬁmt + VmGnB; (3b)

The different distributions of the CNT or BNNT along the thickness direction of the face sheets
of sandwich beam depicted in Fig. 2 are assumed to be as follows (Mohammadimehr et al. 2016b
and ¢)

FG-UD: V, =V, (4)
2z ) «

FG-4 V,,c=1+7 v (5)

FG-V: Vm:(l—%n’; (©)

FG-0: V,,C:2—4%V:; (7

FG-X: Vn,=4%V; (®)

where V. is the volume fraction of reinforced composite which means BNNT or CNT that is
calculated from

* w

V‘ — rc
“ W+ (0 AT, )

W.. 1s the mass fraction of BNNT or CNT.

3. The double-bonded sandwich Timoshenko beams

With considering the dependency of deformation behavior on the size effects in the
microbeams, it is essential to consider size dependent effects in the analysis of the behavior of FG
microbeams at micro scale. Conventional continuum mechanics fails to predict the size-dependent
response of the structures at micro and nanoscale due to lacking intrinsic length scales. In recent
years, several higher-order elasticity theories have been introduced to develop size-dependent
continuum models. The SGT was proposed by Lam et al. (2003) that introduce additional
dilatation gradient tensor and the deviatoric stretch gradient tensor in addition to the symmetric
rotation gradient tensor in the MCST of Yang et al. (2002). These tensors can be characterized by
three independent material length scale parameters (/y, /;, /) and two classical material constants
(E, v) for isotropic linear elastic materials. After that, the strain energy ¥ for an isotropic linear
elastic material occupying region X (with a volume element Q) is given by
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= [loyey + po )+ my g - DE - B v (10

where &, y;, 11,;,-,{“), xii» Ei, H; represent the strain tensor, the dilatation gradient tensor, the deviatoric
stretch gradient tensor, the symmetric rotation gradient tensor, the electric field and magnetic field,
respectively which can be defined as (Lam et al. 2003)

gy:%@u+u)
Vi = Emm,i
7715}() - ;( jk,i +‘9ki,j +gij,k)_%[5ij(gmm,k +2gmk,m)+5 ( mml +2 mzm)+5k( mmj 287"]3"?)] (11)

= )
S
Zi/ 4 elpggq/ p + ejpggqi,p

H, =-Q
E =-¢p

S

i
>

where O; represents differentiation with respect to the x;. u; denotes the components of the
displacement vector u, ¢, is the dilatation strain. J; and e;; are the Knocker and the alternate
symbols, respectively, ¢ and Q are the scalar functions of electric potential of BNNTRC-SB and
magnetic potential of CNTRC-SB, respectively. The corresponding classical and higher order
stress measures for a linear isotropic elastic material can be showed by the following constitutive
relations (Lam et al. 2003)

0, =A6;&4 +2Ge; —ar6,;AT —ho,E;

i

p, =261y,
i) =268
(12)
m; =2Gl; Xii

D, = hll(g _aﬁNNTRCAT)_ €1 Py
B, = 911(‘9 _aTNTRCAT) 1€

where /o, /; and /, denote the additional independent three material length scale parameters
associated with dilatation gradients, deviatoric stretch gradients and symmetry rotation gradients,
respectively. The dielectric permittivity constant and magnetic permeability constant have been
showed by €}, and p;;, respectively. The Lame constants 4 and G in the constitutive equation of
the classical stress o;; are given by

B vE G E
C (1+0)(1-20) “2(1+0) (13)

The kinematics of an arbitrary point in the micro beam based on Timoshenko beam theory can
be represented as follows
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U (x,z,t) =U(x,t) + z¥(x,1)
U,(x,z,t)=0 (14)
Us(x,z,t) =W (x,t)

in which U, W, ¥ represent the axial displacement of neutral axis, the lateral deflection of the
beam and the rotation angle of the normal to the mid-surface of the beam, respectively.
Substituting Eq. (14) into Eq. (11), the nonzero components of the von Karman type nonlinear
strain-displacement relations are expressed as

oUu oY 6W
En=—+2— +
Ox Ox 8x
ow

=—+Y
Vxz o

(15)

By inserting Eqgs. (14) and (15) into Eq. (11), the following nonzero components of y, ' and 7"
and the nonzero components of the classical stress tensor are defined in Appendix A. By
substituting Eqgs. (A-1) and (A-2) into Eq. (12), the nonzero components of the higher-order
stresses can be obtained as given in Appendix B. To derive the governing differential equations of
motion, the Hamilton’s principle is employed as the following form

5H=j(éT—5V+5W)dz=0 (16)
0

where 0V, oW, and JT denote the virtual strain energy, the virtual work done by external forces,
and the virtual kinetic energy, respectively. In the following, the total strain energy of double-
bonded sandwich beams for both CNTRC-SB and BNNTRC-SB are shown as ¥ and V* that are
obtained as follows

2
ou, 0¥, 1 (an jz
+z +—
ox ox 2\ ox
0 2
+ Dt Cl’x —af AT U, +26‘P1 +l(anj
o5 ox ox 2\ oOx

L 2 2
1 oU, o, 1(aw,
VC:EJIQ + kQSS[ +‘Pj ]+[q11§21’x( axl tz le +§[ axlj —aTC.ATﬂ dAdx  (17)

11

I o0*U, 6‘1’ oW, O*W,
" kQSS( 8x2 " ox ox? J]

o2 oY, ov, 0 ’
+ 2Q55( M 25]} [sts( (3;/1]]
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Oox

+ hll¢2,x_aB.AT ou, +zale +l(aW2J2
o8 g Ox ox 2\ ox
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+ 2Q55( 5)6 J +| k QSS( 8)622}

where superscripts “C” and “B” denote the CNTRC-SB and BNNTRC-SB, respectively

4 8 1
K, =21§+§13, K2:E LK, =E122 (19)
The kinetic energy by T can be defined as
L B 2 2 2
T:lH p(aUlj +(8U2) +[6U3j Adx
249 ot ot ot (20)

ou
ot

ow

J{%

ot

Zal//
ot

Z%j L[ (@ jnm

And the external work due to surrounding elastic medium,
(Mohammadimehr et al. 2010)
62
" ox? ]Wl}

§ .

1
W, zzl +H—kw2(W2—Wl)+Gp ( -~

[raomea, 2]

W, can be obtained as

k W+G

wl

dx (21)

2 o)




Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich...

11

In which p and A4 are the density and the cross-sectional area of every sandwich beam,

(Iochc’Izc)z IPCWC(Z)(LZ,ZZ)dZ

([03,[133123)2 Ipbnm (Z)(LZ,ZZ)dZ

(A”C,B”C,DHC):J-Ql"l”””(z)(l,z,zz)dz, (AllB’BllB’DllB):J-lelmmc(z)(l’zazz)dza

(A55C5BSSC’ 55C _[erc( )1,z zz)dz (ASSBDBSSB’DSSB J.annm(z)(l z zz)dz

respectively. The stiffness components and inertia related terms of both sandwich beams can be
defined as

(22)

(23)

Taking the variation of U;, W, ¥, and Q; for CNTRC-SB and U,, W,, ¥, and @, for

BNNTRC-SB by using Egs. (17)-(21) and according to Eq. (16), the governing equations of
motion for both sandwich beams using the clamped-clamped boundary conditions will be obtained
that are described in Appendix C.

The dimensionless mechanical, electrical, magnetic, geometric, size effect, elastic foundation

parameters are defined as follows

X L U,U 5W5W
g=—, N=—, (“v“z:wvwz Mv (‘//1»‘//2):(Tla‘{’2):
L H
t A K I? K, L2 K .I?
r=— |20 (leasz’K ( W , w3
LY\ 1y, Ay Ao
G, » G
(GPI’GPZ’G ) [Ap ’ AP 4 j
110 110 110
(aIIC Asscsbyicsbssesdy e ssc [A“C ASSC Buc Jssc Dssc Dssc J 24
4 AllO A0H A0 H o A4, H AllOHz (24)
(allB Assp>by1psDssp>dyg 553 (A“B ASSB By Bsss Dy Dssy j
4 AllO A0H  A40H A110H2 A110H2
1 I L 1 I I
([06=I1Calzc):(£a 1< > } (103’1137[23) ( 03’ i’ i]
Iy 1pH I, H Ly 1ooH IOOH2
K, Kk, K, Rh, . qhhy
(K],KZ,K3):[—1, > } 1= —, 11:—/
Loy IoH 1 H Le, 4, Ly, 4,

In which 4,0 and [y denote the values of 4, and [, for a homogeneous matrix beam.
Substituting Eq. (24) into Egs. (C-1) and (C-2), the dimensionless governing equations of motion

for both sandwich beams are derived that are illustrated in Appendix D.
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4. Solution method

Different numerical techniques can be employed to solve the governing equations and
associated boundary conditions. In this study, GDQM (Shu 2000, Shu and Du 1997) is used to
discretize the governing differential equations of motion. The GDQM has been proved to be an
efficient higher-order numerical technique for the solution of boundary value problems with
respect to other numerical technique and has been widely used to achieve acceptable solutions for
various dynamic and stability problems and different boundary conditions. Since this numerical
method provides simple and low computational cost. Moreover, the implementation of the GDQM
is relatively easier and the efforts needed for solving the problem with GDQM is also relatively
less in comparison to the other numerical methods. The advantages of the GDQM included no
restriction on the number of grid points used for the approximation and the weighted coefficients
are determined using simple recurrence relation instead of solving a set of linear algebraic
equations as in other version of DQM. In this method, the partial derivative of a function with
respect to spatial variables at a given discrete point are approximated as a weighted linear sum of
the function values at all discrete points chosen in the solution domain. Thus the partial derivatives
of a function f'at a point x; are expressed as

d"f
dx"

=Y rly,) (25)

X=X; Jj=1

where C;" are the respective weighting coefficients matrix, N is the number of grid points and f
can be taken as U, W, V. The weighting coefficients for the first derivative (i.e., n = 1) are

N N
I =x)/ 1 Gy G#)
cm = g | e iLj=12,...,.N (26)
M —— (i=))

k=1,k=i (xi — Xk)

For higher-order derivatives, we have

N
2) _ )~ ()
cp =Y
k=1

N N
3) _ M2 2) (M
i =2 CRCY = 2.G0C (27)
k=1 k=1
N N
DN ce® 2§ e
-3 avep -F ey
k=1 k=1

Through the procedure of discretizing the problem, the grid points are generated as according
to Chebyshev-Gauss-Lobatto pattern as (Shu and Du 1997)

X; =l{1—cos[M}}, i=12,...,.N (28)
2 N
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5. Numerical results

In this section, based on MSGT, numerical results are presented for determination of first two
dimensionless nonlinear natural frequencies of double-bonded sandwich beams (Fig. 1) including
the lower sandwich beam with CNTRC face sheets and the upper sandwich beam with BNNTRC
face sheets resting on Pasternak foundation. It should be mentioned that letting the material length
scale parameters /y, /1, [, equal to zero, the governing equations modeled by the classical theory
(CT) will be achieved. Also, setting the material length scale parameters /, and /; to zero, the
present model reduces to the MCST. Afterward, numerical results corresponding to each type of
beam theory are obtained and compared together. The material properties of homogenous core for
both sandwich beams, made of pure aluminum metal, are considered as follows

E,=70GPa, v,=033, p,=2780kg/m’ (29)

For top and bottom face sheets of CNTRC-SB with similar wall thickness, poly methyl metha-
crylate (PMMA) and CNTs are considered as the matrix and reinforcement, respectively, where

their material properties at room temperature (300 K) are assumed to be as the following form (Yas
and Samadi 2012)

E€ =25GPa, v€ =03, pC=1190kg/m’, af =45¢—6,

E =600GPa, ES =10GPa, G =17.2GPa, v<, =0.19, 50
pC, =1400kg/m®, af, =3.4587¢—6, V. =0.12,

n =1.2833, n,=1n,=1.0556

where the CNT efficiency parameters are evaluated through matching the obtained Young’s
modulli £y, £, and shear modulus G, of CNTRC from the extended rule of mixture to ones
predicted from MD simulations (Han and Elliott 2007, Griebel and Hamaekers 2004). Considering
BNNTs as reinforcement and Polyvinylidene fluoride (PVDF) as matrix of face sheets for
BNNTRC-SB, their material properties at room temperature are defined as follows (Salehi-Khojin
and Jalili 2008, Ghorbanpour Arani ef al. 2015)

EE=1.1GPa, v2 =03, pf=1750kg/m’, a?="7.1e-5,

hB, =0.135, €,=8.854185E -12, €],=1250*¢,, EZ  =1800GPa, 31
of =034, pf =3487kgm’, af  =12e-6,
hlﬁbnnt = 095’ eﬁbnnt: 20* S
Moreover, the other parameters for CNTs and PMMA have been estimated as follows
=8.854185¢-12, ¢, =0.135,
Ho an (32)

/’lﬁm =1250 * luO’ ql(icnt = 0959 ﬂﬁcnt =20 * :u0

The constant parameters in the following text are in accordance to Table 1. A parametric study
has been performed and typical results are shown in Table 2 and Figs. 3-15. The first two
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dimensionless nonlinear frequencies of double-bonded sandwich beams for various distribution
types of Winkler spring modulus corresponding to different slenderness ratio are listed in Table 2.
It is revealed that for different slenderness ratio, the values of k,,; have most influence on the first

Table 1 The constant parameters in the present work

Core-to-face sheet thickness ratio of both

Dimensionless

Dimensionless Slenderness
h h . Pasternak shear .
. ore ore Winkler modulus ratio
sandwich beams —e — (k) modulus (L/H)
hf or hf W (Gp)
3 0.1 0.02 15
Height of sandwich Temperature Material length scale CNT or BNNT volume fraction
beams (H) change (A7) parameter (1,,/H) (VC*NT or Vg
10 um 50C 0.5 0.12
Table 2 The effect of Winkler spring modulus on the nonlinear frequency of
double-bonded sandwich microbeams
L/H=10 L/H=20 L/H=30
(kw1 Koy kn3) Freq. 1 Freq. 2 Freq. 1 Freq. 2 Freq. 1 Freq. 2
(0.1,0.1,0.1) 1.1447 1.5193 0.8430 1.2194 0.7316 1.1392
(0.1, 0.1, 0.05) 1.1404 1.5039 0.8282 1.2062 0.7113 1.1271
(0.1,0.1,0.2) 1.1523 1.5503 0.8685 1.2476 0.7665 1.1656
(0.05,0.1,0.1) 1.1209 1.5158 0.8198 1.2088 0.7082 1.1256
(0.2,0.1,0.1) 1.1895 1.5273 0.8833 1.2434 0.7710 1.1694
(0.1, 0.05,0.1) 1.1360 1.4855 0.8419 1.1695 0.7315 1.0848
(0.1,0.2,0.1) 1.1576 1.5876 0.8445 1.3139 0.7317 1.2408
1.154 , , 1.55‘ . ,
—8—CT i —=—CT
1.1 —6— MCST|] 1.5} —e— MCST
0 MSGT d

Dimansionless 1st Frequency
o
S o 29
© o ©

=)
~
o

o
Q3

o
)
a

I I I
10 12 14 16

I I I I
18 20 22 24

I I
26 28 30

N = w
a w a
T T T

Dimansionless 2nd Frequency

v
T

Fig. 3 The effect of slenderness ratio on the nonlinear frequency of double-bonded sandwich microbeams for
various theories of size dependent effect: (a) 1st frequency; (b) 2nd frequency
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(1st) natural frequency in comparison to other cases, but the second (2nd) natural frequency has
been highly affected with the k,, value. In other words, the extreme values of 1st and 2th natural
frequencies can be yielded with varying k., and k,,, respectively.

Fig. 3 shows the variation of first two dimensionless natural frequencies of double-bonded
sandwich beams versus slenderness ratio based on three theories of various size dependent effects
such as CT, MCST and MSGT. It can be seen that although first two frequencies of double-bonded
sandwich beams decrease by increasing the slenderness ratio, but in a certain slenderness ratio, the
obtained frequencies for MSGT and CT beam models predict the maximum and minimum values
of natural frequencies, respectively, among the various beam models. Moreover, it can be observed
from these figures that the natural frequency of double-bonded sandwich Timoshenko beams for

1,55‘ T T T T T T T T

1.2 : : : : : : : : : :
y | —5—h,~0,q,=0 —5—h,=0,q,=0
A 0.843 O 0,0 i ©—h,,#0. 4,0 |
11+ P e a— h, =0, q #0 1450 12198 F— h, =0, q,#0 ||
105 0.843 —5—h #0,q, #0 1.2193 ——h, #0, q, #0

0.95

54
©
T

1.25¢

o

o

o
T

Dimansionless 1st Frequency
Dimansionless 2nd Frequency

o
<)
T
N

0.75

Fig. 4 The effect of electric and magnetic fields of BNNTRC and CNTRC on the nonlinear frequency of
double-bonded sandwich microbeams versus slenderness ratio: (a) 1st frequency; (b) 2nd frequency

—B8—CT —&—CT

1151 | —e— mcsT ) 1.6L| —©— MCsT ]
11l MSGT | MSGT

Dimansionless 1st Frequency
Dimansionless 2nd Frequency

o . . . . . . . . . 1 . . . . . . . . .
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
(h/H) of CNTRC-SB & BNNTRC-SB (h/H) of CNTRC-SB & BNNTRC-SB
(a) (b)

Fig. 5 The effect of identical thickness ratio of two sandwich microbeams on the nonlinear frequency of
double-bonded sandwich beams for various theories of size dependent effect: (a) 1st frequency;
(b) 2nd frequency
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—B8—CT —B—CT

1,05} & MCST E 1.45)] —O— MCsT B
MSGT MSGT

Dimansionless 1st Frequency
Dimansionless 2nd Frequency

I I I I I I 1 | I I I I I I I I
0 005 01 015 02 025 03 035 04 045 05 ) 005 01 015 02 025 03 035 04 045 05

(h,/]-l) of CNTRC-SB (h|/H) of CNTRC-SB
(a) (b)

Fig. 6 The effect of thickness ratio of CNTRC-SB on the nonlinear frequency of double-bonded sandwich
microbeams for various theories of size dependent effect: (a) 1st frequency; (b) 2nd frequency

MSGT is higher than the other theories. It is due to that three material length scale parameters
using MSGT leads to increase the stiffness of double-bonded sandwich Timoshenko beam.

The influence of electric and magnetic properties of BNNTRC and CNTRC on the first two
dimensionless natural frequencies of double-bonded sandwich beams against slenderness ratio is
depicted in Fig. 4. For given values in present work, it is obvious that although both electric and
magnetic fields have low effect on the obtained results but the magnetic field of CNTRC has
remarkable effect rather than electric field of BNNTRC.

The effect of identical thickness ratio of two sandwich beams ((h/H)cnrre.se = (h/H)annrrC-SB)
on the first two dimensionless frequencies of double-bonded sandwich beams for various beam
theories is represented in Fig. 5. As can be seen, the variation trend of dimensionless 1st frequency
predicted by various types of size dependent effect is different with respect to dimensionless 2nd
frequency. It is shown that with increasing thickness ratio of both sandwich beams, the 1st natural
frequency increases firstly to achieve a maximum value for specific value of thickness ratio that
approximately is equal to 0.48 and after this value, with an increase in the thickness ratio, 1st
natural frequency decreases, whereas the variation of 2nd natural frequency is completely
ascending for all values of thickness ratio. Moreover, it is found that with rising thickness ratio, the
difference of 2nd natural frequency between various beam theories increases. It should be
mentioned that when the thickness ratio of both sandwich beams are set to 0 ((A/H)cnrresg =
(h/H)snyrrese = 0), this means the case of double-bonded homogenous beams made of core
material without considering face sheets and while this parameter is considered to 0.5 ((2/H)cnrre.
sz = (h/H)pyntress = 0.5), the double-bonded sandwich beams convert to the double-bonded
beams including CNTRC beam and BNNTRC beam without considering homogenous core.

Fig. 6 shows first two dimensionless natural frequencies of double-bonded sandwich beams for
the different size dependent effect with the thickness ratio of CNTRC-SB beam. It is noted that the
thickness ratio of BNNTRC-SB beam is constant in this figure. It is observed that the variation
trend of dimensionless 1st and 2nd natural frequencies for various beam models is similar together
where first, by enlarging CNTRC-SB thickness ratio, the 1st and 2nd natural frequencies increase
until to yield its maximum value and then decrease. Also as depicted, the maximum value of 1st
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T T T T
—8— CT —B8—CT

1.05H —6— MCST i 1.551| —&— MCST i
MSGT MSGT

Dimansionless 1st Frequency
Dimansionless 2nd Frequency

0.7 I I . I I I . I I 1.15 . . . . . . . . .
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
(h/H) of BNNTRC-SB (h/H) of BNNTRC-SB
(@) (b)

Fig. 7 The effect of thickness ratio of BNNTRC-SB on the nonlinear frequency of double-bonded sandwich
microbeams for various theories of size dependent effect: (a) 1st frequency; (b) 2nd frequency

and 2nd natural frequencies and associated stiffness for different beam models occur at thickness
ratio of CNTRC-SB beam ((4/H)cnrre.s) about 0.46 and 0.48, respectively.

Fig. 7 demonstrates the effect of thickness ratio of BNNTRC-SB beam on both the
dimensionless 1st and 2nd natural frequencies of double-bonded sandwich beams using different
size dependent theories. According to this figure, increasing the thickness ratio of BNNTRC-SB
beam leads to higher values of dimensionless 1st and 2nd frequencies for various size dependent
theories. It is noted that the thickness ratio of CNTRC-SB beam is constant in this figure. It can be
seen that maximum frequency and associated stiffness can be obtained with thickness ratio equal
to 0.5 ((h/H)gnnrre-sg = 0.5). Also, the difference values of 2nd frequency between various beam
models become larger when the thickness ratio increases. Furthermore, it is revealed that the

—a—HL =2 —&—HL, =2 1
I _ )
1151 —e— H/Lm=3 155 —e— H/Lm—3 4
H/L =5 H/L =5
- w
M —e— L =10 15 —e— w10

Dimansionless 1st Frequency
Dimansionless 2nd Frequency
»

. . . . . . . . . I I I I I I I I I
0 0.1 0.2 0.3 0.4 05 06 07 0.8 0.9 1 0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1
k k

(a) (b)

Fig. 8 The effect of k,; on the nonlinear frequency of double-bonded sandwich microbeams for strain
gradient theory with different dimensionless material length scale parameter H/l,: (a) 1st frequency;
(b) 2nd frequency
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Fig. 9 The effect of k,; on the nonlinear frequency of double-bonded sandwich microbeams for strain

gradient theory with different dimensionless material length scale parameter H//,: (a) st
frequency; (b) 2nd frequency

increasing magnitude of 1st frequency for lower values of thickness ratio is more rate than that of
2nd frequency and this trend for higher values of thickness ratio become slight whereas this
behavior for 2nd frequency is vice versa.

Fig. 8 shows the variation of dimensionless 1st and 2nd frequencies with the Winkler spring
foundation no.1 (k) calculated by MSGT beam model. It can be seen that by increasing the value
of H/l,, both the dimensionless 1st and 2nd frequencies decrease. Also, the concavity of curves for
every frequency is contrary to other one or in other word, the concavity of st frequency curves is
downward and negative whereas the concavity of 2nd frequency curves is upward and positive. In
addition, it is clear that as the magnitude of £, increases, the obtained values of 1st frequency for
different material length scale parameter have been diverged but the corresponding values of 2nd
natural frequency have been converged.

The effect of Winkler spring foundation no. 3 (k,3) on the dimensionless 1st and 2nd natural
frequencies based on MSGT beam theory is indicated in Fig. 9. As illustrated in this figure,
increasing in the Winkler spring modulus and dimensionless length scale parameter (H//,,) leads to
increase and decrease values of both the 1st and 2nd natural frequencies, respectively. It is found
that the variation trend of dimensionless 1st frequency has been depicted as curves with negative
concavity that the discrepancies between curves of H/l, decrease slightly whereas the
dimensionless 2nd frequency change linearly with respect to k,; for different values of H//, and
there is constant value of discrepancy between lines of H//,, as k,,; value increases.

Figs. 10 and 11 show the variation of dimensionless 1st and 2nd natural frequencies of double-
bonded sandwich beams versus Winkler spring modulus no. 1 (k) and no. 3 (k,3), respectively
based on SGT with UD face sheets of CNTRC-SB and different distribution face sheets of
BNNTRC-SB. As illustrated, for all cases, the FGA and FGV distribution types of BNNTRC-SB
face sheets have the highest and lowest both the 1st and 2nd frequencies, respectively and for other
them from up-to-down trend is followed by FGX, UD and FGO face sheets. It is revealed that the
1st natural frequency in both figures increases with enlarging the Winkler spring modulus, so that
by decreasing &, and increasing k3, the 1st frequency for various cases of distribution are closed
to each other and converged. For the dimensionless 2nd frequency, it can be seen that the
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Fig. 10 The effect of k,, on the nonlinear frequency of double-bonded sandwich microbeams for strain
gradient theory with UD face sheets of sandwich beam #1 and different face sheets of sandwich
beam #2: (a) Ist frequency; (b) 2nd frequency

1.04 { —E— UD(CNTRC-SB)-UD(BNNTRC-SB) 1.65 T T T T T T T T
—A— UD(CNTRC-SB)-FGABNNTRC-SB) —HE— UD(CNTRC-SB)}-UD(BNNTRC-SB)
—7— UD(CNTRC-SB)}-FGV(BNNTRC-SB) 16l —A— UD(CNTRC-SB)-FGABNNTRC-SB)
UD(CNTRC-SB)-FGO(BNNTRC-SB) 2| —— UD(CNTRC-SB)}-FGV(BNNTRC-SB)
1.02 UD(CNTRC-SB)-FGX(BNNTRC-SB) 4 UD(CNTRC-SB)-FGO(BNNTRC-SB)
UD(CNTRC-SB)-FGX(BNNTRC-SB)
L. 155} 1
Z} :
§ 1l J g
2 s L 4
E‘- E 1.5
= =
z =
= 098 g S 145 1
2 1.0076 2
=
H 1.0074 £ 44l |
g 2
H 1.0072 7 ]
a8 1.007 8 135 1.44 ]
0.498 0.5 0.502 7
1.34 1.439 B
0498 05 0502
0.9 . . . . . . . . . 1.25 . . . . | \
0 0.1 0.2 03 04 05 06 07 08 09 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ky Ky
(a) (b)

Fig. 11 The effect of k,,; on the nonlinear frequency of double-bonded sandwich microbeams for strain
gradient theory with UD face sheets of sandwich beam #1 and different face sheets of sandwich
beam #2: (a) Ist frequency; (b) 2nd frequency

variation trend versus k,,; has been plotted as curves which by increasing the k,, value, these
curves for different distribution types tend to be converged but the behavior of 2nd frequency
against k,; is quite linearly that for all amount values of k,;, the difference between various
distribution types is a constant value. In other word, the distribution type of face sheet has more
remarkable effect on the 1st frequency for lower values of &,; and higher values of k,,;.

Figs. 12 and 13 represent the variation of dimensionless 1st and 2nd natural frequencies of
double-bonded sandwich beams against Winkler spring modulus no. 1 (k,;) and no. 3 (k,3),
respectively based on SGT with different distribution face sheets of CNTRC-SB and UD face
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Fig. 12 The effect of k,,, on the nonlinear frequency of double-bonded sandwich microbeams for strain
gradient theory with different face sheets of sandwich beam #1 and UD face sheets of sandwich
beam #2: (a) Ist frequency; (b) 2nd frequency
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Fig. 13 The effect of k,,; on the nonlinear frequency of double-bonded sandwich microbeams for strain
gradient theory with different face sheets of sandwich beam #1 and UD face sheets of sandwich
beam #2: (a) Ist frequency; (b) 2nd frequency

sheets of BNNTRC-SB. As plotted in these figures, the influence of %,,; value on the 1st frequency

is more prominent for different distribution types rather than £, value so that for higher values of

k.1 there is no noticeable difference amount between obtained 1st frequencies of various
distribution types. Another point in this figure is that the 2nd frequency varies linearly respect to
k. and the face sheet distribution type has not considerable effect. It is also found that the
variation trend of 2nd frequency against k,,; and k,; is curvature and linear, respectively where the
effect of different distribution types of face sheets for varying k,; value is negligible and also this
behavior for higher values of £, is considerable than lower ones.
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Fig. 14 The nonlinear mode-shapes of deflection w for the both sandwich microbeams:
(a) st frequency; (b) 2nd frequency
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Fig. 15 The nonlinear mode-shapes of rotation i for the both sandwich microbeams:
(a) 1st frequency; (b) 2nd frequency

The nonlinear mode-shapes of the displacement (w) and rotation () for the lower (CNTRC-SB)
and upper (BNNTRC-SB) sandwich microbeams corresponding to first two nonlinear natural
frequencies are shown in Figs. 14 and 15, respectively.

From Fig. 14, it can be seen that the maximum amplitude of transverse vibration of each
sandwich microbeam is located at the middle of it. Also, as plotted in Fig. 15, the 1st mode-shape
of rotation behavior along the both lower and upper sandwich microbeams is similar together
whereas this trend for 2nd mode shape of them is vice versa. On the other hand, the both sandwich
microbeams for the 1st natural frequency rotate in the same direction but for the 2nd frequency
have opposite rotation axis or 1st and 2nd natural frequencies are in-phase and out-phase,
respectively.
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6. Conclusions

In the present study, a magneto-electro-mechanical analysis of size-dependent double-bonded
sandwich Timoshenko beams containing three additional material length scale parameters was
developed based on MSGT. By using the Hamilton’s principle, the non-classical governing
equations of motion were derived. The current double-bonded sandwich Timoshenko beams
formulation can be transformed to MSGT, MCST, and CT models for specific values of material
length scale parameters. By employing GDQM, various numerical results were presented to
indicate the influence of electric and magnetic fields, slenderness ratio, thickness ratio of both
sandwich beams, thickness ratio of every sandwich beam, dimensionless length scale parameter,
Winkler spring modulus and various distribution types of face sheets on the first two natural
frequencies of double-bonded sandwich beams. It was yielded that the thickness ratios of sandwich
beam play an important role in the vibration behavior of the double-bonded sandwich beams. The
obtained main points from the results are as follows:

(1) It is revealed that although both electric and magnetic fields have low effect on the
obtained results but the magnetic field of CNTRC has considerable effect rather than
electric field of BNNTRC.

(2) Using various arrangements of Winkler spring constant, it is found that for different
slenderness ratio, the value of £,,; has most influence on the 1st frequency in comparison to
other Winkler springs, whereas the 2nd frequency has been highly affected with the £,
value.

(3) Assuming geometrical and physical parameters in present work, the following cases have
been investigated as:

(a) With varying similar thickness ratio of both sandwich beams ((h/H)cyrre.se =
(h/H)snnrre-s8), the maximum value of 1st and 2nd natural frequencies of double-
bonded sandwich beams for different beam models occur at thickness ratios 0.48 and
0.50, respectively.

(b) With varying thickness ratio of CNTRC-SB ((h/H)cnrre-ss), the maximum value of
Ist and 2nd natural frequencies of double-bonded sandwich beams for different beam
models occur at thickness ratio 0.46 and 0.48, respectively.

(c) With varying thickness ratio of BNNTRC-SB ((h/H)snntrc.s8), the maximum value of
both 1st and 2nd natural frequencies of double-bonded sandwich beams for different
beam models occur at thickness ratio 0.50.

(4) Increasing the value of H/I, leads to decrease both 1st and 2nd natural frequencies.
Moreover, as the magnitude of %, increases, the obtained values of Ist frequency for
different material length scale parameter have been diverged but the corresponding values
of 2nd natural frequency have been converged. In addition by increasing k.3, the
discrepancies between curves of H//,, decrease slightly.

(5) Considering 1st natural frequency, the distribution type of BNNTRC-SB face sheets has
more remarkable effect for lower values of k,; and higher values of k,; whereas for
various distribution types of CNTRC-SB face sheets, the influence of £,; value is more
prominent rather than £, value.

(6) By increasing the value of k,,, the obtained 2nd natural frequency for different distribution
types of BNNTRC-SB face sheets tends to be converged and its behavior against £,; is
quite linearly, whereas the effect of different distribution types of CNTRC-SB face sheets
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for varying k., value is negligible and also this behavior for higher values of k,; is
considerable than lower ones.

Acknowledgments

The authors would like to thank the referees for their valuable comments. They are also grateful
to the Iranian Nanotechnology Development Committee for their financial support and the
University of Kashan for supporting this work by Grant No. 463855/9.

References

Akgdz, B. and Civalek, O. (2011), “Strain gradient elasticity and modified couple stress models for buckling
analysis of axially loaded micro-scaled beams”, Int. J. Eng. Sci., 49(11), 1268-1280.

Akgdz, B. and Civalek, O. (2012), “Analysis of micro-sized beams for various boundary conditions based
on the strain gradient elasticity theory”, Arch. Appl. Mech., 82(3), 423-443.

Akgdz, B. and Civalek, O. (2013a), “Buckling analysis of functionally graded microbeams based on the
strain gradient theory”, Acta. Mech., 224(9), 1-17.

Akgdz, B. and Civalek, O. (2013b), “A size-dependent shear deformation beam model based on the strain
gradient elasticity theory”, Int. J. Eng. Sci., 70, 1-14.

Alibeigloo, A. and Liew, K.M. (2014), “Free vibration analysis of sandwich cylindrical panel with
functionally graded core using three-dimensional theory of elasticity”, Compos. Struct., 113, 23-30.

Allen, H.G. (1969), Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, UK

Ansari, R., Gholami, R. and Sahmani, S. (2011), “Free vibration analysis of size-dependent functionally
graded microbeams based on the strain gradient Timoshenko beam theory”, Compos. Struct., 94(1), 221-
228.

Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013), “Size-dependent
bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most
general strain gradient theory”, Compos. Struct., 100, 385-397.

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A new simple shear and normal
deformations theory for functionally graded beams”, Steel Compos. Struct., Int. J., 18(2), 409-423.

Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), “A new first shear
deformation beam theory based on neutral surface position for functionally graded beams”, Steel Compos.
Struct., Int. J., 15(5), 467-479.

Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), “Dynamic analysis of
sandwich beams with functionally graded core using a truly meshfree radial point interpolation method”,
Eng. Struct., 47, 90-104.

Chehel Amirani, M., Khalili, S.M.R. and Nemati, N. (2009), “Free vibration analysis of sandwich beam with
FG core using the element free Galerkin method”, Compos. Struct., 90(3), 373-379.

Damanpack, A.R. and Khalili, S.M.R. (2012), “High-order free vibration analysis of sandwich beams with a
flexible core using dynamic stiffness method”, Compos. Struct , 94(5), 1503-1514.

Dariushi, S. and Sadighi, M. (2013), “A new nonlinear high order theory for sandwich beams: An analytical
and experimental investigation”, Compos. Struct., 108, 779-788.

Fleck, N.A. and Hutchinson, J.W. (1993), “A phenomenological theory for strain gradient effects in
plasticity”, J. Mech. Phys. Solids., 41(12), 1825-1857.

Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014a), “Optimization of fiber
distribution in fiber reinforced composite by using NURBS functions”, Comput. Mater. Sci., 83(15), 463-
473.



24 M. Mohammadimehr and S. Shahedi

Ghasemi, H., Rafiee, R., Zhuang, X., Muthu, J., Rabczuk, T. (2014b), “Uncertainties propagation in
metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-
scale modeling”, Comput. Mater. Science, 85, 295-305.

Ghasemi, H., Kerfriden, P., Bordas, S.P.A., Muthu, J., Zi, G. and Rabczuk, T. (2014c), “Interfacial shear
stress optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing
ingredients”, Compos. Struct., 120, 221-230.

Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2015), “Optimal fiber content and
distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization
approach”, Struct. Multidisc. Optim., 51(1), 99-112.

Ghorbanpour Arani, A. and Amir, S. (2013), “Electro-thermal vibration of visco-elastically coupled BNNT
systems conveying fluid embedded on elastic foundation via strain gradient theory”, Physica B, 419, 1-6.
Ghorbanpour Arani, A., Haghparast, E., Heidari Rarani, M. and Khoddami Maraghi, Z. (2015), “Strain
gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube

reinforced composite micro-tubes conveying viscous fluid”, Comput. Mater. Sci., 96, 448-458.

Griebel, M. and Hamaekers, J. (2004), “Molecular dynamics simulations of the elastic moduli of polymer—
carbon nanotube composites”, Comput. Meth. Appl. Mech. Eng., 193, 1773-1788.

Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), “Elastic buckling of a sandwich beam with
variable mechanical properties of the core”, Thin-Walled Struct., 87, 127-132.

Han, Y. and Elliott, J. (2007), “Molecular dynamics simulations of the elastic properties of polymer/carbon
nanotube composites”, Comput. Mater. Sci., 39(2), 315-323.

Jedari Salami, S., Sadighi, M. and Shakeri, M. (2015), “Improved High order analysis of sandwich beams by
considering a bilinear elasto-plastic behavior of core: An analytical and experimental investigation”, Int. J.
Mech. Sci., 93, 270-289.

Kahrobaiyan, M.H., Rahaecifard, M., Tajalli, S.A. and Ahmadian, MT. (2012), “A strain gradient
functionally graded Euler—Bernoulli beam formulation”, Int. J. Eng. Sci., 52, 65-76.

Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), “Static and dynamic analysis of microbeams based on
strain gradient elasticity theory”, Int. J. Eng. Sci., 47(4), 487-498.

Lam, D.C.C,, Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), “Experiments and theory in strain
gradient elasticity”, J. Mech. Phys. Solids, 51(8), 1477-1508.

Lanc, D., Vo, T.P., Turkalj, G. and Lee, J. (2015), “Buckling analysis of thin-walled functionally graded
sandwich box beams”, Thin-Wall. Struct., 86, 148-156.

Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), “Bending and vibration of functionally graded
sinusoidal microbeams based on the strain gradient elasticity theory”, Int. J. Eng. Sci., 72, 36-52.

Liang, X., Hu, S. and Shen, S. (2014), “A new Bernoulli-Euler beam model based on a simplified strain
gradient elasticity theory and its applications”, Compos. Struct., 111, 317-323.

Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), “Mechanical analysis of functionally graded carbon
nanotube reinforced composites: A review”, Compos. Struct., 120, 90-97.

Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2010), “Torsional
buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory”, J. Mech.
Sci. Technol., 24(6), 1289-1299.

Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015a), “Vibration analysis of viscoelastic tapered
micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM”, J. Mech.
Sci. Technol., 29(6), 2297-2305.

Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015b), “Free vibration of viscoelastic
double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal
shear deformation theory and meshless method”, Compos. Struct., 131, 654-671.

Mohammadimehr, M., Rostami, R. and Arefi, M. (2016a), “Electro-elastic analysis of a sandwich thick plate
considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT”, Steel
Compos. Struct., Int. J., 20(3), 513-543.

Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016b), “Modified strain gradient
Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric



Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich... 25

polymeric nanocomposite reinforced by FG-SWNT”, Compos. Part B, 87, 132-148.

Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016¢), “Bending, buckling, and free vibration
analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent
material properties under hydro-thermo-mechanical loadings using DQM”, Compos. Struct., 138, 361-380.

Nanthakumar, S., Valizadeh, N., Park, H.S. and Rabczuk, T. (2015), “Shape and topology optimization of
nanostructures using a coupled XFEM/level set method”, Comput. Mech., 56(1), 97-112.

Plantema, F.J. (1966), Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates and
Shells, John Wiley and Sons, New York, NY, USA.

Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), “Free vibration analysis of
sandwich structures with a flexible functionally graded syntactic core”, Compos. Struct., 91(2), 229-235.

Reissner, E. (1948), “Finite deflections of sandwich plates”, J. Aeronaut. Sci., 15(7), 435-440.

Sahmani, S. Bahrami, M. and Ansari, R. (2014), “Nonlinear free vibration analysis of functionally graded
third-order shear deformable microbeams based on the modified strain gradient elasticity theory”, Compos.
Struct., 110, 219-230.

Salehi-Khojin, A. and Jalili, N. (2008), “Buckling of boron nitride nanotube reinforced piezoelectric
polymeric composites subject to combined electro-thermo-mechanical loadings”, Compos. Sci. Technol.,
68(6), 1489-1501.

Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer Publication, New York,
NY, USA.

Shu, C. and Du, H. (1997), “Implementation of clamped and simply supported boundary conditions in the
GDQ free vibration analysis of beams and plates”, J. Sound Vib., 34(7), 819-835.

Taibi, F.Z., Benyoucef, S., Tounsi, A., Bouiadjra, R.B., Bedia, A.A. and Mahmoud, S. (2015), “A simple
shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on
elastic foundations”, J. Sandw. Struct. Mater., 17, 99-129.

Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013),
“Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by
strain gradient elasticity theory”, Compos. Struct., 102, 72-80.

Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic
Publishing Co. Inc., Lancaster, England.

Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), “Finite element model for vibration and
buckling of functionally graded sandwich beams based on a refined shear deformation theory”, Eng.
Struct., 64, 12-22.

Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), “A quasi-3D theory for vibration and
buckling of functionally graded sandwich beams”, Compos. Struct., 119, 1-12.

Wang, Z.X. and Shen, H.S. (2011), “Nonlinear analysis of sandwich plates with FGM face sheets resting on
elastic foundations”, Compos. Struct., 93(10), 2521-2532.

Wang, Z.X. and Shen, H.S. (2012), “Nonlinear vibration and bending of sandwich plates with nanotube-
reinforced composite face sheets”, Compos. Part B, 43(2), 411-421.

Wang, Y. and Wang, X. (2014), “Static analysis of higher order sandwich beams by weak form quadrature
element method”, Compos. Struct., 116, 841-848.

Wang, B., Zhao, J. and Zhou, S. (2010), “A microscale Timoshenko beam model based on strain gradient
elasticity theory”, Eur. J. Mech. A-Solid, 29(4), 591-599.

Yang, F., Chong, A.C.M. and Lam, D.C.C. (2002), “Couple stress based strain gradient theory for elasticity”,
Int. J. Solid. Struct., 39(10), 2731-2743.

Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), “Free vibration analysis of the functionally graded
sandwich beams by a meshfree boundary-domain integral equation method”, Compos. Struct., 117, 32-39.

Yas, M.H. and Samadi, N. (2012), “Free vibrations and buckling analysis of carbon nanotube-reinforced
composite Timoshenko beams on elastic foundation”, Int. J. Pressure Vessels Pip., 98, 119-128.

Zenkert, D. (1995), An Introduction to Sandwich Construction, Chameleon Press Ltd., London, UK.

Zhang, C.L. and Shen, H.S. (2006), “Temperature-dependent elastic properties of single-walled carbon
nanotubes: prediction from molecular dynamics simulation”, Appl. Phys. Lett., 89(8), 081904.



26 M. Mohammadimehr and S. Shahedi

Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2014), “Non-classical Timoshenko beam element based on
the strain gradient elasticity theory”, Finite Elem. Anal. Des., 79, 22-39.

cC



Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich...

Nomenclature

A
BNNT
BNNTRC
BNNTRC-SB
CNT
CNTRC
CNTRC-SB
CcT
DOM
FG
FG-BNNTRC
FG-CNTRC
GDOM
H
L
MCST
MD
MSGT
PMMA
PVDF
SGT
UD
U, Uy, Us
Wrc
ks
he, hE
e, nt

C C
pm pcnt: pm

cross-sectional area of sandwich beam

Boron nitride nanotube

Boron nitride nanotube reinforced composite

Sandwich beam with boron nitride nanotube reinforced composite face sheets
Carbon nanotube

Carbon nanotube reinforced composite

Sandwich beam with carbon nanotube reinforced composite face sheets
Classical theory

Differential quadrature method

Functionally graded

Functionally graded boron nitride nanotube reinforced composite
Functionally graded carbon nanotube reinforced composite
Generalized differential quadrature method

Total thickness of sandwich beam

Length of sandwich beam

Modified couple stress theory

Molecular dynamics

Modified strain gradient theory

Poly methyl methacrylate

Poly vinylidene fluoride

Strain gradient theory

Uniform distribution

x, y and z components of displacement vector

Mass fraction of BNNT or CNT

Shear correction factor

Thicknesses of face sheet and core of CNTRC-SB, respectively
Thicknesses of face sheet and core of BNNTRC-SB, respectively

Density of the core, carbon nanotube and matrix of CNTRC-SB, respectively
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C C
Ucs Uents Um

cn cn C
E ET, ESES

11 >~22 >
cnt C
Gc ’ G12 ’ Gm

M M2, 13
Vcnt > Vbnnt > v,

m

B

C C B
a s Cpnt > Cy

cnt?~"m

Exxs Vxz

oV, oW, oT
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Poisson’s ratio of the core, carbon nanotube and matrix of CNTRC-SB,
respectively

Young’s modulus of core, carbon nanotube and matrix of CNTRC-SB,
respectively

Shear modulus of core, carbon nanotube and matrix of CNTRC-SB,
respectively

Efficiency parameters of carbon nanotube

Volume fractions of CNT, BNNT and matrix, respectively

Thermal expansion coefficient of CNT, PMMA, BNNT, PVDF, respectively
Normal and shear strain, respectively

Virtual strain energy, virtual work done by external forces, virtual kinetic
energy, respectively
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Appendix A
By inserting Eqs. (14) and (15) into Eq. (11), the following nonzero components of y, " and 4" that are
defined as the following form
_oU, oW oW oW N d
Toox? or o ax ax?’ & ox
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Also, the nonzero components of the classical stress tensor are expressed as follows:
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The correction shear factor &, which is depends on the shape of cross-section of beam, is multiplied into the
shear stress 7., to take the non-uniformity of the shear strain into account over the beam cross-section.
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Appendix B

By substituting Egs. (A-1) and (A-2) into Eq. (12), the nonzero components of the higher-order stresses can

be obtained follows
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Appendix C

31

Taking the variation of U}, W, ¥| and Q, for CNTRC-SB and U,, W,, ¥, and @, for BNNTRC-SB by using
Egs. (17)-(21) and according to Eq. (16), the governing equations of motion for both sandwich beams

using the clamped-clamped boundary conditions are obtained as follows

For CNTRC-SB:
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oY :
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Appendix D

Substituting Eq. (24) into Egs. (C-1) and (C-2), the dimensionless governing equations of motion for both
sandwich beams are derived as the following form

For CNTRC-SB:
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