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Abstract.    In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular 
double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is 
noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced 
composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face 
sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich 
beams. The connections of every sandwich beam with its surrounding medium and also between them have been 
carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the 
classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional 
material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform 
distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, 
FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are 
varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton’s 
principle, the size-dependent nonlinear governing differential equations of motion and associated boundary 
conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed 
parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness 
ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material 
length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural 
frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models 
on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the 
thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded 
sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural 
frequencies tend to decrease for all amounts of the Winkler spring modulus. 
 
Keywords:    smart materials; nonlinear vibration analysis; double-bonded sandwich Timoshenko 
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Corresponding author, Assistant Professor, E-mail: mmohammadimehr@kashanu.ac.ir 

1



 
 
 
 
 
 

M. Mohammadimehr and S. Shahedi 

1. Introduction 
 

Sandwich structures are being used extensively in aerospace, marine, naval, transportation and 
civil engineering industries. Due to their special characteristics, sandwich structures are being 
considered as primary and secondary structural members. Some of superior qualities of sandwich 
structures consist of: high strength and stiffness to weight ratio, ease of manufacturing, thermal 
and acoustic insulation, and flexibility in design. The widespread range and importance of these 
applications, represents the necessary of accurate model capable of predicting the vibration 
response of sandwich structures. Some researches of this structures subjected to mechanical 
loading are denoted in the literature including Plantema (1966), and Reissner (1948). Many 
classical researches on sandwich structures such as Allen (1969), Zenkert (1995) and Vinson (1999) 
considered that the core material is vertically incompressible. Liew et al. (2015) performed 
mechanical analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) 
and illustrated a review of various investigations in the existing literature in terms of static, free 
vibration, dynamic, buckling and non-linear analyses of FG-CNTRC. Static and dynamic analysis 
of FG Euler–Bernoulli microbeam was investigated by Kahrobaiyan et al. (2012) based on strain 
gradient theory (SGT). Tajalli et al. (2013) performed mechanical behavior analysis of size-
dependent micro-scaled FG Timoshenko beams by SGT. Zhang et al. (2014) considered non-
classical Timoshenko beam element based on the SGT and revealed that lower size effects are 
significant when the beam thickness is small, but become negligible with increasing beam 
thickness. 

Some researchers have been worked about optimization of nanostructures and its applications 
and also to determine the optimal distribution of carbon nanotubes for specific purposes. 
Nanthakumar et al. (2015) presented shape and topology optimization of nanostructures using a 
coupled XFEM/Level set method and investigated a computational method for the optimization of 
nanostructures, where our specific interest is in capturing and elucidating surface stress and 
surface elastic effects on the optimal nanodesign, they obtained results of optimal topologies of a 
nanobeam subject to cantilever and fixed boundary conditions. Also, they showed that the 
importance of size and aspect ratio in determining how surface effects impact the optimized 
topology of nanobeams. Ghasemi et al. (2014a) and (2015) studied optimum fiber content and 
distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization 
approach and concluded that when system unreliability increases, fiber distribution optimization 
becomes more influential. In the other work, Ghasemi et al. (2014b) focused on the uncertainties 
propagation and their effects on reliability of polymeric nanocomposite (PNC) continuum 
structures using stochastic multi-scale modeling, in the framework of the combined geometry and 
material optimization. 

In recent years, static, buckling, and free vibration behavior of sandwich structure has been 
widely investigated by some researchers. The vibration and buckling of FG sandwich beams based 
on a quasi-3D theory has been performed by Vo et al. (2015). Grygorowicz et al. (2015) studied 
the elastic buckling of a sandwich beam with variable mechanical properties of the core. They 
compared the values of the obtained critical load by the analytical and numerical methods. The 
free vibration of the FG sandwich beams by a mesh-free boundary-domain integral equation 
method was analyzed by Yang et al. (2014). Their results demonstrated that the current developed 
method is not only convenient to implement, but also showed higher accuracy, convergence and 
efficiency. Lanc et al. (2015) investigated buckling analysis of thin-walled FG sandwich beams 
and expressed that the power-law index and skin-core-skin thickness ratios play very important 

2



 
 
 
 
 
 

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich... 

role on the buckling analysis of sandwich beams. Rahmani and co-workers (2009) exhibited free 
vibration analysis of sandwich structures with a flexible FG syntactic core. They concluded that 
the eigen-frequenies of the beam decrease with an increase in the l/h ratio. Free vibration analysis 
of sandwich cylindrical panel with FG core using three-dimensional theory of elasticity was 
discussed by Alibeigloo and Liew (2014). Wang and Shen (2011, 2012) illustrated nonlinear 
vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Bui et 
al. (2013) studied transient responses and natural frequencies of sandwich beams with FG core. 
Based on Mori-Tanaka approach, the free vibration of sandwich beam with FG core by using the 
element free Galerkin method was studied by Chehel Amirani et al. (2009). Vo et al. (2014) 
investigated vibration and buckling of sandwich beams with FG skins homogeneous core using a 
refined shear deformation theory. In the other work, static analysis of higher order sandwich beams 
by weak form quadrature element method was carried out by Wang and Wang (2014) and also 
showed that the proposed beam element can yield very accurate displacements and stresses as 
compared to theoretical solutions. Damanpack and Khalili (2012) represented high-order free 
vibration analysis of sandwich beams with a flexible core using dynamic stiffness method and 
revealed that the dynamic stiffness method with small number of elements in solving the 
eigenvalue problem has a good accuracy in the other result. 

The classical continuum elasticity theory cannot descript the accurate structural behavior at 
micro and nano scale because of lacking of the material length scale parameter. Therefore, during 
past years, several non-classical higher-order continuum theories have been introduced and 
employed to predict size-dependent responses of micro-scaled structures. One of the size-
dependent continuum theories is SGT, introduced by Fleck and Hutchinson (1993). After that, Lam 
et al. (2003) proposed a MSGT with three material length scale parameters relevant to dilatation 
gradient, deviatoric gradient and symmetric rotation gradient tensors. In recent years, this theory 
has been utilized by many researchers to analyze the static and dynamic problems of micro-scale 
structures. For instance, static bending and free vibration behaviors of Euler-Bernoulli and 
Timoshenko homogeneous microbeams have been respectively developed by Kong et al. (2009) 
and Wang et al. (2010). Using SGT and MCST, the bending, buckling and free vibrations of Euler-
Bernoulli microbeams have been employed by Akgöz and Civalek (2011, 2012, 2013a). Moreover, 
a new size-dependent sinusoidal shear deformation beam model based on SGT was proposed by 
them Akgöz and Civalek (2013b). Sahmani et al. (2014) studied nonlinear free vibration analysis 
of FG third-order shear deformable microbeams based on the MSGT and demonstrated that by 
approaching from metal phase to ceramic phase for an FGM microbeam, the linear frequency and 
nonlinear frequency ratio tend to decrease and increase, respectively. Mohammadimehr et al. 
(2015a) studied the vibration analysis of visco-elastic tapered micro-rod based on SGT resting on 
visco-Pasternak foundation using differential quadrature method (DQM). Lei and co-workers 
(2013) analyzed bending and vibration of FG sinusoidal microbeams based on the SGT and 
showed that the FG microbeams exhibit significant size-dependence when the thickness of the 
microbeam approached to the material length scale parameter. Electro-thermal vibration of visco-
elastically coupled BNNT systems conveying fluid embedded on elastic foundation via SGT have 
been carried out by Ghorbanpour Arani and Amir (2013). Size-dependent bending, buckling and 
free vibration of FG Timoshenko microbeams based on the most general SGT has been conducted 
by Ansari et al. (2013). Also, in other work, Ansari et al. (2011) represented free vibration analysis 
of size-dependent FG microbeams based on the strain gradient Timoshenko beam theory and it is 
observed that the value of gradient index play an important role in the vibrational response of the 
microbeams of lower slenderness ratios. Mohammadimehr et al. (2015b) analyzed free vibration 
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of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-CNTs using 
MSGT, sinusoidal shear deformation theory and meshless method and showed that the elastic 
foundation, vdW interaction and magnetic field increase the dimensionless natural frequency of 
the double-bonded nanocomposite plates for CT, MCST and MSGT. Also, in the other work 
(Mohammadimehr et al. 2016b), they investigated modified strain gradient Reddy rectangular 
plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric 
nanocomposite reinforced by FG-CNT and concluded that the elastic foundation and van der 
Waals interaction in contrast to applied voltage increase the dimensionless critical biaxial buckling 
load and vice versa decrease the dimensionless deflection of the double-coupled nanocomposite 
plates. Electro-elastic analysis of a sandwich thick plate considering FG core and composite 
piezoelectric layers on Pasternak foundation using third-order shear deformation theory was 
performed by Mohammadimehr et al. (2016a) and concluded that the natural frequency and 
critical buckling load diminish with an increase in the power law index. In other study, a new 
Euler-Bernoulli beam model based on a simplified SGT and its applications was presented by 
Liang et al. (2014). The obtained numerical results showed the significance of the Poisson’s effect 
and the strain gradient elastic effect. The improved high order analysis of sandwich beams by 
considering a bilinear elasto-plastic behavior of core was investigated by Jedari Salami et al. 
(2015). A simple shear deformation theory for thermo-mechanical behavior of FG sandwich plates 
on elastic foundations was introduced by Taibi et al. (2015). A new simple shear and normal 
deformations theory for FG beams was presented by Bourada et al. (2015). Interfacial shear stress 
optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing 
ingredients was performed by Ghasemi et al. (2014c). They illustrated that adding reinforcements 
homogeneously into polymers will slightly improve the interfacial shear stress but that 
considerable improvements are observed when the distribution of the reinforcement in the core is 
optimized. Bouremana and co-workers (2013) expressed a new first shear deformation beam 
theory based on neutral surface position for FG beams by assuming that the in-plane and 
transverse displacements consist of bending and shear components. A new nonlinear high order 
theory for sandwich beams along with an analytical and experimental investigation was expressed 
by Dariushi and Sadighi (2013). They indicated that nonlinear effects become more significant in 
some cases and the results of linear model are unreliable. 

The objective of the current study is to investigate the nonlinear magneto-electro-mechanical 
free vibration behavior of rectangular double-bonded sandwich beams including sandwich beam 
with carbon nanotube reinforced composite (CNTRC) face sheets including magnetic field and 
sandwich beam with boron nitride nanotube reinforced composite (BNNTRC) face sheets 
consisting of electrical properties based on the MSGT. Considering homogenous core for both 
sandwich beams and assuming connection of every sandwich beam with its surrounding medium 
and also between them by Pasternak foundation, the MSGT is introduced into the classical 
Timoshenko beam theory to develop a size-dependent beam model. For the CNTRC and BNNTRC 
face sheets of sandwich beams, uniform distribution (UD) and four functionally graded 
distribution patterns of CNTs or BNNTs including FG-A, FG-V, FG-O, and FG-X are considered. 
It is assumed that the material properties of face sheets for both sandwich beams are varied in the 
thickness direction and estimated through the extended rule of mixture. By using Hamilton’s 
principle, the size-dependent nonlinear governing differential equations of motion together with 
corresponding boundary conditions are derived. Afterward, by employing GDQM, the higher-
order equations of motion are discretized to calculate first two natural frequencies of double-
bonded sandwich beams. 
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2. Material properties of double-bonded sandwich beams 
 

Sandwich structures represent a special form of a layered structure that consist of two thin stiff 
and strong face sheets separated by a relatively thick, lightweight, and homogenous core material. 
Fig. 1 shows two sandwich microbeams are bounded together and are attached with Pasternak 
foundation from both sides. It is assumed that the homogenous core of two sandwich beams are 
made of pure aluminum metal and face sheets of upper and lower sandwich beams are made of 
FG-BNNTRC and FG-CNTRC, respectively, with different distributions of BNNT and CNT in the 
thickness direction. In this paper, it is assumed that there is no delamination between the core and 
face sheets of both sandwich beams. Herein after, the lower and upper sandwich beams with FG-
CNTRC and FG-BNNTRC face sheets, respectively, have been determined by sub or super-scripts 
“C” and “B” representing the sandwich beam with CNTRC and BNNTRC face sheets, 
respectively. The length of two sandwich beams denote L, and thicknesses of face sheets and the 
core of CNTRC are hf

C and hc
C, respectively and similarly for BNNTRC are hf

B and hc
B. 

The UD and FG distributions (FG-A, FG-V, FG-O and FG-X) of BNNT and CNT in the 
thickness direction of the face sheets for both sandwich beams respectively, are considered, as 
shown in Fig. 2. In this figure, the density of BNNT or CNT within the face sheet area is constant 
and the volume fraction varies through the thickness of the face sheet. The Cartesian coordinate 
systems (x, y, z) is used on the central axis of each sandwich beam where (x1, y1, z1), (x2, y2, z2) 
axes are taken along the length, width and height directions of CNTRC and BNNTRC, 
respectively. The homogenous core of both sandwich beams is modeled as an elastic material that 
its material properties are constant along the z-axis. The mechanical parameters ρc, Ec, Gc, υc are 
denoted the density, Young’s modulus, shear modulus and Poisson’s ratio of the core, respectively. 

 
 

 
Fig. 1 An schematic view of the double-bonded sandwich Timoshenko microbeams 

resting on the Pasternak foundation 
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Fig. 2 Configurations of the sandwich microbeam with various CNT or BNNT 
distribution patterns in face sheets 

 
 
Here, we first determine the effective material properties of both sandwich beams based on the 

extended rule of mixture. The material properties of both BNNTRC and CNTRC were shown to be 
anisotropic by many researchers (Han and Elliott 2007, Zhang and Shen 2006). The effective 
Young’s modulus and shear modulus of CNTRC face sheets through the extended rule of mixture 
can be written as (Yas and Samadi 2012, Mohammadimehr et al. 2016b and c) 
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where E11
cnt, E22

cnt and G12
cnt denote the Young’s modulus and shear modulus of CNT, respectively. 

Em
C and Gm

C indicate the corresponding properties of the matrix for face sheet. The CNT 
efficiency parameters ηi (i = 1, 2, 3) are introduced in Eq. (1) to consider the size-dependent 
material properties and will be later determined by matching the elastic moduli of CNTRC 
obtained through the molecular dynamics (MD) simulations with the obtained numerical results 
from the rule of mixture. Vcnt

C and Vm
C are the volume fractions for CNT and matrix, respectively, 

which are related by Vcnt
C + Vm

C = 1. Similarly, Poisson’s ratio υ and mass density ρ of the CNTRC 
face sheets for bottom sandwich beam can be determined as 
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In which υcnt
C, υm

C denote the Poisson’s ratios, and ρcnt
C, ρm

C are the densities of the CNT and 
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matrix, respectively. The effective Young’s modulus and shear modulus of BNNTRC face sheets 
for top sandwich beam through the rule of mixture have been denoted as follows 
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The different distributions of the CNT or BNNT along the thickness direction of the face sheets 
of sandwich beam depicted in Fig. 2 are assumed to be as follows (Mohammadimehr et al. 2016b 
and c) 
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where Vrc
* is the volume fraction of reinforced composite which means BNNT or CNT that is 

calculated from 
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Wrc is the mass fraction of BNNT or CNT. 
 
 
3. The double-bonded sandwich Timoshenko beams 
 

With considering the dependency of deformation behavior on the size effects in the 
microbeams, it is essential to consider size dependent effects in the analysis of the behavior of FG 
microbeams at micro scale. Conventional continuum mechanics fails to predict the size-dependent 
response of the structures at micro and nanoscale due to lacking intrinsic length scales. In recent 
years, several higher-order elasticity theories have been introduced to develop size-dependent 
continuum models. The SGT was proposed by Lam et al. (2003) that introduce additional 
dilatation gradient tensor and the deviatoric stretch gradient tensor in addition to the symmetric 
rotation gradient tensor in the MCST of Yang et al. (2002). These tensors can be characterized by 
three independent material length scale parameters (l0, l1, l2) and two classical material constants 
(E, υ) for isotropic linear elastic materials. After that, the strain energy V for an isotropic linear 
elastic material occupying region X (with a volume element Ω) is given by 

7



 
 
 
 
 
 

M. Mohammadimehr and S. Shahedi 

   dvHBEDmpV iiii
s
ij

s
ijijkijkiiijij  )1()1(

2

1
 (10)

 

where εij, γi, ηijk
(1), χij

s, Ei, Hi represent the strain tensor, the dilatation gradient tensor, the deviatoric 
stretch gradient tensor, the symmetric rotation gradient tensor, the electric field and magnetic field, 
respectively which can be defined as (Lam et al. 2003) 
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where ∂,i represents differentiation with respect to the xi. ui denotes the components of the 
displacement vector u, εmm is the dilatation strain. δij and eijk are the Knocker and the alternate 
symbols, respectively, φ and Ω are the scalar functions of electric potential of BNNTRC-SB and 
magnetic potential of CNTRC-SB, respectively. The corresponding classical and higher order 
stress measures for a linear isotropic elastic material can be showed by the following constitutive 
relations (Lam et al. 2003) 
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where l0, l1 and l2 denote the additional independent three material length scale parameters 
associated with dilatation gradients, deviatoric stretch gradients and symmetry rotation gradients, 
respectively. The dielectric permittivity constant and magnetic permeability constant have been 
showed by Є11 and μ11, respectively. The Lame constants λ and G in the constitutive equation of 
the classical stress σij are given by 
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The kinematics of an arbitrary point in the micro beam based on Timoshenko beam theory can 
be represented as follows 
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in which U, W, Ψ represent the axial displacement of neutral axis, the lateral deflection of the 
beam and the rotation angle of the normal to the mid-surface of the beam, respectively. 
Substituting Eq. (14) into Eq. (11), the nonzero components of the von Kármán type nonlinear 
strain-displacement relations are expressed as 
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By inserting Eqs. (14) and (15) into Eq. (11), the following nonzero components of γ, χs and η(1) 

and the nonzero components of the classical stress tensor are defined in Appendix A. By 
substituting Eqs. (A-1) and (A-2) into Eq. (12), the nonzero components of the higher-order 
stresses can be obtained as given in Appendix B. To derive the governing differential equations of 
motion, the Hamilton’s principle is employed as the following form 
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where δV, δW, and δT denote the virtual strain energy, the virtual work done by external forces, 
and the virtual kinetic energy, respectively. In the following, the total strain energy of double-
bonded sandwich beams for both CNTRC-SB and BNNTRC-SB are shown as VC and VB that are 
obtained as follows 
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where superscripts “C” and “B” denote the CNTRC-SB and BNNTRC-SB, respectively 
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The kinetic energy by T can be defined as 
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And the external work due to surrounding elastic medium, Wq, can be obtained as 

(Mohammadimehr et al. 2010) 
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In which ρ and A are the density and the cross-sectional area of every sandwich beam, 
respectively. The stiffness components and inertia related terms of both sandwich beams can be 
defined as 
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Taking the variation of U1, W1, Ψ1 and Ω1 for CNTRC-SB and U2, W2, Ψ2 and Ф2 for 

BNNTRC-SB by using Eqs. (17)-(21) and according to Eq. (16), the governing equations of 
motion for both sandwich beams using the clamped-clamped boundary conditions will be obtained 
that are described in Appendix C. 

The dimensionless mechanical, electrical, magnetic, geometric, size effect, elastic foundation 
parameters are defined as follows 
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In which A110 and I00 denote the values of A11 and I0 for a homogeneous matrix beam. 

Substituting Eq. (24) into Eqs. (C-1) and (C-2), the dimensionless governing equations of motion 
for both sandwich beams are derived that are illustrated in Appendix D. 
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4. Solution method 
 

Different numerical techniques can be employed to solve the governing equations and 
associated boundary conditions. In this study, GDQM (Shu 2000, Shu and Du 1997) is used to 
discretize the governing differential equations of motion. The GDQM has been proved to be an 
efficient higher-order numerical technique for the solution of boundary value problems with 
respect to other numerical technique and has been widely used to achieve acceptable solutions for 
various dynamic and stability problems and different boundary conditions. Since this numerical 
method provides simple and low computational cost. Moreover, the implementation of the GDQM 
is relatively easier and the efforts needed for solving the problem with GDQM is also relatively 
less in comparison to the other numerical methods. The advantages of the GDQM included no 
restriction on the number of grid points used for the approximation and the weighted coefficients 
are determined using simple recurrence relation instead of solving a set of linear algebraic 
equations as in other version of DQM. In this method, the partial derivative of a function with 
respect to spatial variables at a given discrete point are approximated as a weighted linear sum of 
the function values at all discrete points chosen in the solution domain. Thus the partial derivatives 
of a function f at a point xi are expressed as 
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where Cij

(n) are the respective weighting coefficients matrix, N is the number of grid points and f 
can be taken as U, W, Ψ. The weighting coefficients for the first derivative (i.e., n = 1) are 
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For higher-order derivatives, we have 
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Through the procedure of discretizing the problem, the grid points are generated as according 

to Chebyshev-Gauss-Lobatto pattern as (Shu and Du 1997) 
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5. Numerical results 
 

In this section, based on MSGT, numerical results are presented for determination of first two 
dimensionless nonlinear natural frequencies of double-bonded sandwich beams (Fig. 1) including 
the lower sandwich beam with CNTRC face sheets and the upper sandwich beam with BNNTRC 
face sheets resting on Pasternak foundation. It should be mentioned that letting the material length 
scale parameters l0, l1, l2 equal to zero, the governing equations modeled by the classical theory 
(CT) will be achieved. Also, setting the material length scale parameters l0 and l1 to zero, the 
present model reduces to the MCST. Afterward, numerical results corresponding to each type of 
beam theory are obtained and compared together. The material properties of homogenous core for 
both sandwich beams, made of pure aluminum metal, are considered as follows 

 
3kg/m 2780     ,33.0     ,GPa 70  ccc υE   (29)

 
For top and bottom face sheets of CNTRC-SB with similar wall thickness, poly methyl metha-

crylate (PMMA) and CNTs are considered as the matrix and reinforcement, respectively, where 
their material properties at room temperature (300 K) are assumed to be as the following form (Yas 
and Samadi 2012) 
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where the CNT efficiency parameters are evaluated through matching the obtained Young’s 
modulli E11, E22 and shear modulus G12 of CNTRC from the extended rule of mixture to ones 
predicted from MD simulations (Han and Elliott 2007, Griebel and Hamaekers 2004). Considering 
BNNTs as reinforcement and Polyvinylidene fluoride (PVDF) as matrix of face sheets for 
BNNTRC-SB, their material properties at room temperature are defined as follows (Salehi-Khojin 
and Jalili 2008, Ghorbanpour Arani et al. 2015) 
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Moreover, the other parameters for CNTs and PMMA have been estimated as follows 
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The constant parameters in the following text are in accordance to Table 1. A parametric study 

has been performed and typical results are shown in Table 2 and Figs. 3-15. The first two 
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dimensionless nonlinear frequencies of double-bonded sandwich beams for various distribution 
types of Winkler spring modulus corresponding to different slenderness ratio are listed in Table 2. 
It is revealed that for different slenderness ratio, the values of kw1 have most influence on the first 

 
 

Table 1 The constant parameters in the present work 

Core-to-face sheet thickness ratio of both 

sandwich beams 









C
f

core

h

h
 or 










B
f

core

h

h
 

Dimensionless 
Winkler modulus 

(kw) 

Dimensionless 
Pasternak shear 

modulus 
(Gp) 

Slenderness
ratio 
(L/H) 

3 0.1 0.02 15 

Height of sandwich 
beams (H) 

Temperature 
change (∆T) 

Material length scale 
parameter (lm/H) 

CNT or BNNT volume fraction 

 ** or    BNNTCNT VV  

10 µm 50 C 0.5 0.12 
 
 

Table 2 The effect of Winkler spring modulus on the nonlinear frequency of 
double-bonded sandwich microbeams 

 L/H = 10 L/H = 20 L/H = 30 

(kw1, kw2, kw3) Freq. 1 Freq. 2 Freq. 1 Freq. 2 Freq. 1 Freq. 2 

(0.1, 0.1, 0.1) 1.1447 1.5193 0.8430 1.2194 0.7316 1.1392 

(0.1, 0.1, 0.05) 1.1404 1.5039 0.8282 1.2062 0.7113 1.1271 

(0.1, 0.1, 0.2) 1.1523 1.5503 0.8685 1.2476 0.7665 1.1656 

(0.05, 0.1, 0.1) 1.1209 1.5158 0.8198 1.2088 0.7082 1.1256 

(0.2, 0.1, 0.1) 1.1895 1.5273 0.8833 1.2434 0.7710 1.1694 

(0.1, 0.05, 0.1) 1.1360 1.4855 0.8419 1.1695 0.7315 1.0848 

(0.1, 0.2, 0.1) 1.1576 1.5876 0.8445 1.3139 0.7317 1.2408 
 
 

(a) (b) 

Fig. 3 The effect of slenderness ratio on the nonlinear frequency of double-bonded sandwich microbeams for 
various theories of size dependent effect: (a) 1st frequency; (b) 2nd frequency 
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(1st) natural frequency in comparison to other cases, but the second (2nd) natural frequency has 
been highly affected with the kw2 value. In other words, the extreme values of 1st and 2th natural 
frequencies can be yielded with varying kw1 and kw2, respectively. 

Fig. 3 shows the variation of first two dimensionless natural frequencies of double-bonded 
sandwich beams versus slenderness ratio based on three theories of various size dependent effects 
such as CT, MCST and MSGT. It can be seen that although first two frequencies of double-bonded 
sandwich beams decrease by increasing the slenderness ratio, but in a certain slenderness ratio, the 
obtained frequencies for MSGT and CT beam models predict the maximum and minimum values 
of natural frequencies, respectively, among the various beam models. Moreover, it can be observed 
from these figures that the natural frequency of double-bonded sandwich Timoshenko beams for 

 
 

(a) (b) 

Fig. 4 The effect of electric and magnetic fields of BNNTRC and CNTRC on the nonlinear frequency of 
double-bonded sandwich microbeams versus slenderness ratio: (a) 1st frequency; (b) 2nd frequency 

 
 

(a) (b) 

Fig. 5 The effect of identical thickness ratio of two sandwich microbeams on the nonlinear frequency of 
double-bonded sandwich beams for various theories of size dependent effect: (a) 1st frequency; 
(b) 2nd frequency 
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(a) (b) 

Fig. 6 The effect of thickness ratio of CNTRC-SB on the nonlinear frequency of double-bonded sandwich 
microbeams for various theories of size dependent effect: (a) 1st frequency; (b) 2nd frequency 

 
 

MSGT is higher than the other theories. It is due to that three material length scale parameters 
using MSGT leads to increase the stiffness of double-bonded sandwich Timoshenko beam. 

The influence of electric and magnetic properties of BNNTRC and CNTRC on the first two 
dimensionless natural frequencies of double-bonded sandwich beams against slenderness ratio is 
depicted in Fig. 4. For given values in present work, it is obvious that although both electric and 
magnetic fields have low effect on the obtained results but the magnetic field of CNTRC has 
remarkable effect rather than electric field of BNNTRC. 

The effect of identical thickness ratio of two sandwich beams ((hf/H)CNTRC-SB = (hf/H)BNNTRC-SB) 
on the first two dimensionless frequencies of double-bonded sandwich beams for various beam 
theories is represented in Fig. 5. As can be seen, the variation trend of dimensionless 1st frequency 
predicted by various types of size dependent effect is different with respect to dimensionless 2nd 
frequency. It is shown that with increasing thickness ratio of both sandwich beams, the 1st natural 
frequency increases firstly to achieve a maximum value for specific value of thickness ratio that 
approximately is equal to 0.48 and after this value, with an increase in the thickness ratio, 1st 
natural frequency decreases, whereas the variation of 2nd natural frequency is completely 
ascending for all values of thickness ratio. Moreover, it is found that with rising thickness ratio, the 
difference of 2nd natural frequency between various beam theories increases. It should be 
mentioned that when the thickness ratio of both sandwich beams are set to 0 ((hf/H)CNTRC-SB = 
(hf/H)BNNTRC-SB = 0), this means the case of double-bonded homogenous beams made of core 
material without considering face sheets and while this parameter is considered to 0.5 ((hf/H)CNTRC-

SB = (hf/H)BNNTRC-SB = 0.5), the double-bonded sandwich beams convert to the double-bonded 
beams including CNTRC beam and BNNTRC beam without considering homogenous core. 

Fig. 6 shows first two dimensionless natural frequencies of double-bonded sandwich beams for 
the different size dependent effect with the thickness ratio of CNTRC-SB beam. It is noted that the 
thickness ratio of BNNTRC-SB beam is constant in this figure. It is observed that the variation 
trend of dimensionless 1st and 2nd natural frequencies for various beam models is similar together 
where first, by enlarging CNTRC-SB thickness ratio, the 1st and 2nd natural frequencies increase 
until to yield its maximum value and then decrease. Also as depicted, the maximum value of 1st 
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(a) (b) 

Fig. 7 The effect of thickness ratio of BNNTRC-SB on the nonlinear frequency of double-bonded sandwich 
microbeams for various theories of size dependent effect: (a) 1st frequency; (b) 2nd frequency 

 
 

and 2nd natural frequencies and associated stiffness for different beam models occur at thickness 
ratio of CNTRC-SB beam ((hf/H)CNTRC-SB) about 0.46 and 0.48, respectively. 

Fig. 7 demonstrates the effect of thickness ratio of BNNTRC-SB beam on both the 
dimensionless 1st and 2nd natural frequencies of double-bonded sandwich beams using different 
size dependent theories. According to this figure, increasing the thickness ratio of BNNTRC-SB 
beam leads to higher values of dimensionless 1st and 2nd frequencies for various size dependent 
theories. It is noted that the thickness ratio of CNTRC-SB beam is constant in this figure. It can be 
seen that maximum frequency and associated stiffness can be obtained with thickness ratio equal 
to 0.5 ((hf/H)BNNTRC-SB = 0.5). Also, the difference values of 2nd frequency between various beam 
models become larger when the thickness ratio increases. Furthermore, it is revealed that the 

 
 

(a) (b) 

Fig. 8 The effect of kw1 on the nonlinear frequency of double-bonded sandwich microbeams for strain 
gradient theory with different dimensionless material length scale parameter H/lm: (a) 1st frequency;
(b) 2nd frequency 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

(h
f
/H) of BNNTRC-SB

D
im

an
si

on
le

ss
 1

st
 F

re
q

u
en

cy

 

 

CT

MCST

MSGT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

(h
f
/H) of BNNTRC-SB

D
im

an
si

on
le

ss
 2

n
d

 F
re

q
u

en
cy

 

 

CT

MCST

MSGT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

k
w1

D
im

an
si

on
le

ss
 1

st
 F

re
q

u
en

cy

 

 

H/L
m

=2

H/L
m

=3

H/L
m

=5

H/L
m

=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

k
w1

D
im

an
si

on
le

ss
 2

n
d

 F
re

q
u

en
cy

 

 
H/L

m
=2

H/L
m

=3

H/L
m

=5

H/L
m

=10

17



 
 
 
 
 
 

M. Mohammadimehr and S. Shahedi 

(a) (b) 

Fig. 9 The effect of kw3 on the nonlinear frequency of double-bonded sandwich microbeams for strain 
gradient theory with different dimensionless material length scale parameter H/lm: (a) 1st 
frequency; (b) 2nd frequency 

 
 

increasing magnitude of 1st frequency for lower values of thickness ratio is more rate than that of 
2nd frequency and this trend for higher values of thickness ratio become slight whereas this 
behavior for 2nd frequency is vice versa. 

Fig. 8 shows the variation of dimensionless 1st and 2nd frequencies with the Winkler spring 
foundation no.1 (kw1) calculated by MSGT beam model. It can be seen that by increasing the value 
of H/lm, both the dimensionless 1st and 2nd frequencies decrease. Also, the concavity of curves for 
every frequency is contrary to other one or in other word, the concavity of 1st frequency curves is 
downward and negative whereas the concavity of 2nd frequency curves is upward and positive. In 
addition, it is clear that as the magnitude of kw1 increases, the obtained values of 1st frequency for 
different material length scale parameter have been diverged but the corresponding values of 2nd 
natural frequency have been converged. 

The effect of Winkler spring foundation no. 3 (kw3) on the dimensionless 1st and 2nd natural 
frequencies based on MSGT beam theory is indicated in Fig. 9. As illustrated in this figure, 
increasing in the Winkler spring modulus and dimensionless length scale parameter (H/lm) leads to 
increase and decrease values of both the 1st and 2nd natural frequencies, respectively. It is found 
that the variation trend of dimensionless 1st frequency has been depicted as curves with negative 
concavity that the discrepancies between curves of H/lm decrease slightly whereas the 
dimensionless 2nd frequency change linearly with respect to kw3 for different values of H/lm and 
there is constant value of discrepancy between lines of H/lm as kw3 value increases. 

Figs. 10 and 11 show the variation of dimensionless 1st and 2nd natural frequencies of double-
bonded sandwich beams versus Winkler spring modulus no. 1 (kw1) and no. 3 (kw3), respectively 
based on SGT with UD face sheets of CNTRC-SB and different distribution face sheets of 
BNNTRC-SB. As illustrated, for all cases, the FGA and FGV distribution types of BNNTRC-SB 
face sheets have the highest and lowest both the 1st and 2nd frequencies, respectively and for other 
them from up-to-down trend is followed by FGX, UD and FGO face sheets. It is revealed that the 
1st natural frequency in both figures increases with enlarging the Winkler spring modulus, so that 
by decreasing kw1 and increasing kw3, the 1st frequency for various cases of distribution are closed 
to each other and converged. For the dimensionless 2nd frequency, it can be seen that the 
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(a) (b) 

Fig. 10 The effect of kw1 on the nonlinear frequency of double-bonded sandwich microbeams for strain 
gradient theory with UD face sheets of sandwich beam #1 and different face sheets of sandwich 
beam #2: (a) 1st frequency; (b) 2nd frequency 

 
 

(a) (b) 

Fig. 11 The effect of kw3 on the nonlinear frequency of double-bonded sandwich microbeams for strain 
gradient theory with UD face sheets of sandwich beam #1 and different face sheets of sandwich 
beam #2: (a) 1st frequency; (b) 2nd frequency 

 
 

variation trend versus kw1 has been plotted as curves which by increasing the kw1 value, these 
curves for different distribution types tend to be converged but the behavior of 2nd frequency 
against kw3 is quite linearly that for all amount values of kw3, the difference between various 
distribution types is a constant value. In other word, the distribution type of face sheet has more 
remarkable effect on the 1st frequency for lower values of kw3 and higher values of kw1. 

Figs. 12 and 13 represent the variation of dimensionless 1st and 2nd natural frequencies of 
double-bonded sandwich beams against Winkler spring modulus no. 1 (kw1) and no. 3 (kw3), 
respectively based on SGT with different distribution face sheets of CNTRC-SB and UD face 
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(a) (b) 

Fig. 12 The effect of kw1 on the nonlinear frequency of double-bonded sandwich microbeams for strain 
gradient theory with different face sheets of sandwich beam #1 and UD face sheets of sandwich 
beam #2: (a) 1st frequency; (b) 2nd frequency 

 
 

(a) (b) 

Fig. 13 The effect of kw3 on the nonlinear frequency of double-bonded sandwich microbeams for strain 
gradient theory with different face sheets of sandwich beam #1 and UD face sheets of sandwich 
beam #2: (a) 1st frequency; (b) 2nd frequency 

 
 

sheets of BNNTRC-SB. As plotted in these figures, the influence of kw3 value on the 1st frequency 
is more prominent for different distribution types rather than kw1 value so that for higher values of 
kw1 there is no noticeable difference amount between obtained 1st frequencies of various 
distribution types. Another point in this figure is that the 2nd frequency varies linearly respect to 
kw3 and the face sheet distribution type has not considerable effect. It is also found that the 
variation trend of 2nd frequency against kw1 and kw3 is curvature and linear, respectively where the 
effect of different distribution types of face sheets for varying kw3 value is negligible and also this 
behavior for higher values of kw1 is considerable than lower ones. 
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(a) (b) 

Fig. 14 The nonlinear mode-shapes of deflection w for the both sandwich microbeams: 
(a) 1st frequency; (b) 2nd frequency 

 
 

(a) (b) 

Fig. 15 The nonlinear mode-shapes of rotation ψ for the both sandwich microbeams: 
(a) 1st frequency; (b) 2nd frequency 

 
 
The nonlinear mode-shapes of the displacement (w) and rotation (ψ) for the lower (CNTRC-SB) 

and upper (BNNTRC-SB) sandwich microbeams corresponding to first two nonlinear natural 
frequencies are shown in Figs. 14 and 15, respectively. 

From Fig. 14, it can be seen that the maximum amplitude of transverse vibration of each 
sandwich microbeam is located at the middle of it. Also, as plotted in Fig. 15, the 1st mode-shape 
of rotation behavior along the both lower and upper sandwich microbeams is similar together 
whereas this trend for 2nd mode shape of them is vice versa. On the other hand, the both sandwich 
microbeams for the 1st natural frequency rotate in the same direction but for the 2nd frequency 
have opposite rotation axis or 1st and 2nd natural frequencies are in-phase and out-phase, 
respectively. 
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6. Conclusions 
 
In the present study, a magneto-electro-mechanical analysis of size-dependent double-bonded 

sandwich Timoshenko beams containing three additional material length scale parameters was 
developed based on MSGT. By using the Hamilton’s principle, the non-classical governing 
equations of motion were derived. The current double-bonded sandwich Timoshenko beams 
formulation can be transformed to MSGT, MCST, and CT models for specific values of material 
length scale parameters. By employing GDQM, various numerical results were presented to 
indicate the influence of electric and magnetic fields, slenderness ratio, thickness ratio of both 
sandwich beams, thickness ratio of every sandwich beam, dimensionless length scale parameter, 
Winkler spring modulus and various distribution types of face sheets on the first two natural 
frequencies of double-bonded sandwich beams. It was yielded that the thickness ratios of sandwich 
beam play an important role in the vibration behavior of the double-bonded sandwich beams. The 
obtained main points from the results are as follows: 

 
(1) It is revealed that although both electric and magnetic fields have low effect on the 

obtained results but the magnetic field of CNTRC has considerable effect rather than 
electric field of BNNTRC. 

(2) Using various arrangements of Winkler spring constant, it is found that for different 
slenderness ratio, the value of kw1 has most influence on the 1st frequency in comparison to 
other Winkler springs, whereas the 2nd frequency has been highly affected with the kw2 
value. 

(3) Assuming geometrical and physical parameters in present work, the following cases have 
been investigated as: 
 

(a) With varying similar thickness ratio of both sandwich beams ((hf/H)CNTRC-SB = 
(hf/H)BNNTRC-SB), the maximum value of 1st and 2nd natural frequencies of double-
bonded sandwich beams for different beam models occur at thickness ratios 0.48 and 
0.50, respectively. 

(b) With varying thickness ratio of CNTRC-SB ((hf/H)CNTRC-SB), the maximum value of 
1st and 2nd natural frequencies of double-bonded sandwich beams for different beam 
models occur at thickness ratio 0.46 and 0.48, respectively. 

(c) With varying thickness ratio of BNNTRC-SB ((hf/H)BNNTRC-SB), the maximum value of 
both 1st and 2nd natural frequencies of double-bonded sandwich beams for different 
beam models occur at thickness ratio 0.50. 

 

(4) Increasing the value of H/lm leads to decrease both 1st and 2nd natural frequencies. 
Moreover, as the magnitude of kw1 increases, the obtained values of 1st frequency for 
different material length scale parameter have been diverged but the corresponding values 
of 2nd natural frequency have been converged. In addition by increasing kw3, the 
discrepancies between curves of H/lm decrease slightly. 

(5) Considering 1st natural frequency, the distribution type of BNNTRC-SB face sheets has 
more remarkable effect for lower values of kw3 and higher values of kw1 whereas for 
various distribution types of CNTRC-SB face sheets, the influence of kw3 value is more 
prominent rather than kw1 value. 

(6) By increasing the value of kw1, the obtained 2nd natural frequency for different distribution 
types of BNNTRC-SB face sheets tends to be converged and its behavior against kw3 is 
quite linearly, whereas the effect of different distribution types of CNTRC-SB face sheets 
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for varying kw1 value is negligible and also this behavior for higher values of kw3 is 
considerable than lower ones. 

 
 
Acknowledgments 
 

The authors would like to thank the referees for their valuable comments. They are also grateful 
to the Iranian Nanotechnology Development Committee for their financial support and the 
University of Kashan for supporting this work by Grant No. 463855/9. 

 
 

References 
 
Akgöz, B. and Civalek, Ö. (2011), “Strain gradient elasticity and modified couple stress models for buckling 

analysis of axially loaded micro-scaled beams”, Int. J. Eng. Sci., 49(11), 1268-1280. 
Akgöz, B. and Civalek, Ö. (2012), “Analysis of micro-sized beams for various boundary conditions based 

on the strain gradient elasticity theory”, Arch. Appl. Mech., 82(3), 423-443. 
Akgöz, B. and Civalek, Ö. (2013a), “Buckling analysis of functionally graded microbeams based on the 

strain gradient theory”, Acta. Mech., 224(9), 1-17. 
Akgöz, B. and Civalek, Ö. (2013b), “A size-dependent shear deformation beam model based on the strain 

gradient elasticity theory”, Int. J. Eng. Sci., 70, 1-14. 
Alibeigloo, A. and Liew, K.M. (2014), “Free vibration analysis of sandwich cylindrical panel with 

functionally graded core using three-dimensional theory of elasticity”, Compos. Struct., 113, 23-30. 
Allen, H.G. (1969), Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, UK 
Ansari, R., Gholami, R. and Sahmani, S. (2011), “Free vibration analysis of size-dependent functionally 

graded microbeams based on the strain gradient Timoshenko beam theory”, Compos. Struct., 94(1), 221-
228. 

Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013), “Size-dependent 
bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most 
general strain gradient theory”, Compos. Struct., 100, 385-397. 

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A new simple shear and normal 
deformations theory for functionally graded beams”, Steel Compos. Struct., Int. J., 18(2), 409-423. 

Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), “A new first shear 
deformation beam theory based on neutral surface position for functionally graded beams”, Steel Compos. 
Struct., Int. J., 15(5), 467-479. 

Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), “Dynamic analysis of 
sandwich beams with functionally graded core using a truly meshfree radial point interpolation method”, 
Eng. Struct., 47, 90-104. 

Chehel Amirani, M., Khalili, S.M.R. and Nemati, N. (2009), “Free vibration analysis of sandwich beam with 
FG core using the element free Galerkin method”, Compos. Struct., 90(3), 373-379. 

Damanpack, A.R. and Khalili, S.M.R. (2012), “High-order free vibration analysis of sandwich beams with a 
flexible core using dynamic stiffness method”, Compos. Struct , 94(5), 1503-1514. 

Dariushi, S. and Sadighi, M. (2013), “A new nonlinear high order theory for sandwich beams: An analytical 
and experimental investigation”, Compos. Struct., 108, 779-788. 

Fleck, N.A. and Hutchinson, J.W. (1993), “A phenomenological theory for strain gradient effects in 
plasticity”, J. Mech. Phys. Solids., 41(12), 1825-1857. 

Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014a), “Optimization of fiber 
distribution in fiber reinforced composite by using NURBS functions”, Comput. Mater. Sci., 83(15), 463-
473. 

23



 
 
 
 
 
 

M. Mohammadimehr and S. Shahedi 

Ghasemi, H., Rafiee, R., Zhuang, X., Muthu, J., Rabczuk, T. (2014b), “Uncertainties propagation in 
metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-
scale modeling”, Comput. Mater. Science, 85, 295-305. 

Ghasemi, H., Kerfriden, P., Bordas, S.P.A., Muthu, J., Zi, G. and Rabczuk, T. (2014c), “Interfacial shear 
stress optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing 
ingredients”, Compos. Struct., 120, 221-230. 

Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2015), “Optimal fiber content and 
distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization 
approach”, Struct. Multidisc. Optim., 51(1), 99-112. 

Ghorbanpour Arani, A. and Amir, S. (2013), “Electro-thermal vibration of visco-elastically coupled BNNT 
systems conveying fluid embedded on elastic foundation via strain gradient theory”, Physica B, 419, 1-6. 

Ghorbanpour Arani, A., Haghparast, E., Heidari Rarani, M. and Khoddami Maraghi, Z. (2015), “Strain 
gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube 
reinforced composite micro-tubes conveying viscous fluid”, Comput. Mater. Sci., 96, 448-458. 

Griebel, M. and Hamaekers, J. (2004), “Molecular dynamics simulations of the elastic moduli of polymer–
carbon nanotube composites”, Comput. Meth. Appl. Mech. Eng., 193, 1773-1788. 

Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), “Elastic buckling of a sandwich beam with 
variable mechanical properties of the core”, Thin-Walled Struct., 87, 127-132. 

Han, Y. and Elliott, J. (2007), “Molecular dynamics simulations of the elastic properties of polymer/carbon 
nanotube composites”, Comput. Mater. Sci., 39(2), 315-323. 

Jedari Salami, S., Sadighi, M. and Shakeri, M. (2015), “Improved High order analysis of sandwich beams by 
considering a bilinear elasto-plastic behavior of core: An analytical and experimental investigation”, Int. J. 
Mech. Sci., 93, 270-289. 

Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A. and Ahmadian, MT. (2012), “A strain gradient 
functionally graded Euler–Bernoulli beam formulation”, Int. J. Eng. Sci., 52, 65-76. 

Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), “Static and dynamic analysis of microbeams based on 
strain gradient elasticity theory”, Int. J. Eng. Sci., 47(4), 487-498. 

Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), “Experiments and theory in strain 
gradient elasticity”, J. Mech. Phys. Solids, 51(8), 1477-1508. 

Lanc, D., Vo, T.P., Turkalj, G. and Lee, J. (2015), “Buckling analysis of thin-walled functionally graded 
sandwich box beams”, Thin-Wall. Struct., 86, 148-156. 

Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), “Bending and vibration of functionally graded 
sinusoidal microbeams based on the strain gradient elasticity theory”, Int. J. Eng. Sci., 72, 36-52. 

Liang, X., Hu, S. and Shen, S. (2014), “A new Bernoulli-Euler beam model based on a simplified strain 
gradient elasticity theory and its applications”, Compos. Struct., 111, 317-323. 

Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), “Mechanical analysis of functionally graded carbon 
nanotube reinforced composites: A review”, Compos. Struct., 120, 90-97. 

Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2010), “Torsional 
buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory”, J. Mech. 
Sci. Technol., 24(6), 1289-1299. 

Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015a), “Vibration analysis of viscoelastic tapered 
micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM”, J. Mech. 
Sci. Technol., 29(6), 2297-2305. 

Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015b), “Free vibration of viscoelastic 
double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal 
shear deformation theory and meshless method”, Compos. Struct., 131, 654-671. 

Mohammadimehr, M., Rostami, R. and Arefi, M. (2016a), “Electro-elastic analysis of a sandwich thick plate 
considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT”, Steel 
Compos. Struct., Int. J., 20(3), 513-543. 

Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016b), “Modified strain gradient 
Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric 

24



 
 
 
 
 
 

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich... 

polymeric nanocomposite reinforced by FG-SWNT”, Compos. Part B, 87, 132-148. 
Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016c), “Bending, buckling, and free vibration 

analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent 
material properties under hydro-thermo-mechanical loadings using DQM”, Compos. Struct., 138, 361-380. 

Nanthakumar, S., Valizadeh, N., Park, H.S. and Rabczuk, T. (2015), “Shape and topology optimization of 
nanostructures using a coupled XFEM/level set method”, Comput. Mech., 56(1), 97-112. 

Plantema, F.J. (1966), Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates and 
Shells, John Wiley and Sons, New York, NY, USA. 

Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), “Free vibration analysis of 
sandwich structures with a flexible functionally graded syntactic core”, Compos. Struct., 91(2), 229-235. 

Reissner, E. (1948), “Finite deflections of sandwich plates”, J. Aeronaut. Sci., 15(7), 435-440. 
Sahmani, S. Bahrami, M. and Ansari, R. (2014), “Nonlinear free vibration analysis of functionally graded 

third-order shear deformable microbeams based on the modified strain gradient elasticity theory”, Compos. 
Struct., 110, 219-230. 

Salehi-Khojin, A. and Jalili, N. (2008), “Buckling of boron nitride nanotube reinforced piezoelectric 
polymeric composites subject to combined electro-thermo-mechanical loadings”, Compos. Sci. Technol., 
68(6), 1489-1501. 

Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer Publication, New York, 
NY, USA. 

Shu, C. and Du, H. (1997), “Implementation of clamped and simply supported boundary conditions in the 
GDQ free vibration analysis of beams and plates”, J. Sound Vib., 34(7), 819-835. 

Taibi, F.Z., Benyoucef, S., Tounsi, A., Bouiadjra, R.B., Bedia, A.A. and Mahmoud, S. (2015), “A simple 
shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on 
elastic foundations”, J. Sandw. Struct. Mater., 17, 99-129. 

Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), 
“Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by 
strain gradient elasticity theory”, Compos. Struct., 102, 72-80. 

Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic 
Publishing Co. Inc., Lancaster, England. 

Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), “Finite element model for vibration and 
buckling of functionally graded sandwich beams based on a refined shear deformation theory”, Eng. 
Struct., 64, 12-22. 

Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), “A quasi-3D theory for vibration and 
buckling of functionally graded sandwich beams”, Compos. Struct., 119, 1-12. 

Wang, Z.X. and Shen, H.S. (2011), “Nonlinear analysis of sandwich plates with FGM face sheets resting on 
elastic foundations”, Compos. Struct., 93(10), 2521-2532. 

Wang, Z.X. and Shen, H.S. (2012), “Nonlinear vibration and bending of sandwich plates with nanotube-
reinforced composite face sheets”, Compos. Part B, 43(2), 411-421. 

Wang, Y. and Wang, X. (2014), “Static analysis of higher order sandwich beams by weak form quadrature 
element method”, Compos. Struct., 116, 841-848. 

Wang, B., Zhao, J. and Zhou, S. (2010), “A microscale Timoshenko beam model based on strain gradient 
elasticity theory”, Eur. J. Mech. A-Solid, 29(4), 591-599. 

Yang, F., Chong, A.C.M. and Lam, D.C.C. (2002), “Couple stress based strain gradient theory for elasticity”, 
Int. J. Solid. Struct., 39(10), 2731-2743. 

Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), “Free vibration analysis of the functionally graded 
sandwich beams by a meshfree boundary-domain integral equation method”, Compos. Struct., 117, 32-39. 

Yas, M.H. and Samadi, N. (2012), “Free vibrations and buckling analysis of carbon nanotube-reinforced 
composite Timoshenko beams on elastic foundation”, Int. J. Pressure Vessels Pip., 98, 119-128. 

Zenkert, D. (1995), An Introduction to Sandwich Construction, Chameleon Press Ltd., London, UK. 
Zhang, C.L. and Shen, H.S. (2006), “Temperature-dependent elastic properties of single-walled carbon 

nanotubes: prediction from molecular dynamics simulation”, Appl. Phys. Lett., 89(8), 081904. 

25



 
 
 
 
 
 

M. Mohammadimehr and S. Shahedi 

Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2014), “Non-classical Timoshenko beam element based on 
the strain gradient elasticity theory”, Finite Elem. Anal. Des., 79, 22-39. 

 
CC 
 
 
 
  

26



 
 
 
 
 
 

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich... 

Nomenclature 
 

A  cross-sectional area of sandwich beam 

BNNT  Boron nitride nanotube 

BNNTRC  Boron nitride nanotube reinforced composite 

BNNTRC-SB  Sandwich beam with boron nitride nanotube reinforced composite face sheets 

CNT  Carbon nanotube 

CNTRC  Carbon nanotube reinforced composite 

CNTRC-SB  Sandwich beam with carbon nanotube reinforced composite face sheets 

CT  Classical theory 

DQM  Differential quadrature method 

FG  Functionally graded 

FG-BNNTRC  Functionally graded boron nitride nanotube reinforced composite 

FG-CNTRC  Functionally graded carbon nanotube reinforced composite 

GDQM  Generalized differential quadrature method 

H  Total thickness of sandwich beam 

L  Length of sandwich beam 

MCST  Modified couple stress theory 

MD  Molecular dynamics 

MSGT  Modified strain gradient theory 

PMMA  Poly methyl methacrylate 

PVDF  Poly vinylidene fluoride 

SGT  Strain gradient theory 

UD  Uniform distribution 

U1, U2, U3  x, y and z components of displacement vector 

wRC  Mass fraction of BNNT or CNT 

ks  Shear correction factor 

hf
C , hc

C  Thicknesses of face sheet and core of CNTRC-SB, respectively 

hf
B , hc

B  Thicknesses of face sheet and core of BNNTRC-SB, respectively 

ρc, ρ
C
cnt, ρ

C
m  Density of the core, carbon nanotube and matrix of CNTRC-SB, respectively 
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υc, υ
 C
cnt, υ

 C
m  

Poisson’s ratio of the core, carbon nanotube and matrix of CNTRC-SB, 
respectively 

C
mEEEE cntcnt

c ,,, 2211   
Young’s modulus of core, carbon nanotube and matrix of CNTRC-SB, 
respectively 

C
mGGG cnt

c ,, 12   
Shear modulus of core, carbon nanotube and matrix of CNTRC-SB, 
respectively 

η1, η2, η3  Efficiency parameters of carbon nanotube 

mVVbnntcntV ,,   Volume fractions of CNT, BNNT and matrix, respectively 

BBCC
mbnntmcnt  ,,,   Thermal expansion coefficient of CNT, PMMA, BNNT, PVDF, respectively 

εxx, γxz  Normal and shear strain, respectively 

δV, δW, δT  
Virtual strain energy, virtual work done by external forces, virtual kinetic 
energy, respectively 
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Appendix A 
 
 
By inserting Eqs. (14) and (15) into Eq. (11), the following nonzero components of γ, χs and η(1) that are 

defined as the following form 
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Also, the nonzero components of the classical stress tensor are expressed as follows: 
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The correction shear factor ks, which is depends on the shape of cross-section of beam, is multiplied into the 

shear stress τxz to take the non-uniformity of the shear strain into account over the beam cross-section. 
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Appendix B 
 
 
By substituting Eqs. (A-1) and (A-2) into Eq. (12), the nonzero components of the higher-order stresses can 

be obtained follows 
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Appendix C 
 
 
Taking the variation of U1, W1, Ψ1 and Ω1 for CNTRC-SB and U2, W2, Ψ2 and Ф2 for BNNTRC-SB by using 

Eqs. (17)-(21) and according to Eq. (16), the governing equations of motion for both sandwich beams 
using the clamped-clamped boundary conditions are obtained as follows 
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Appendix D 
 
 
Substituting Eq. (24) into Eqs. (C-1) and (C-2), the dimensionless governing equations of motion for both 

sandwich beams are derived as the following form 
 
 
For CNTRC-SB: 
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Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich... 

2
1

2

12
1

2

2

2
1

2

3
1

3

5532
1

2

3
1

3
2

5524
1

4

551

4
1

4
1

3
1

3

2
1

2

4
1

4

551

1
12

552
1

2
1

2
1

2

112
1

2

11

ˆ

4
2ˆ

13ˆ

11








































































































































u
II

w
aK

w
aKdK

wwwwu
aK

w
ak

wwu
bd

BC

BBB

B

BsBB

 (D-1)

 
 
 
For BNNTRC-SB: 
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