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Abstract.    As a first attempt, an inverse hybrid numerical method for small scale parameter estimation of 
functionally graded (FG) nanobeams using measured frequencies is presented. The governing equations are obtained 
with the Eringen’s nonlocal elasticity assumptions and the first-order shear deformation theory (FSDT). The 
equations are discretized by using the differential quadrature method (DQM). The discretized equations are 
transferred from temporal domain to frequency domain and frequencies of the nanobeam are obtained. By applying 
random error to these frequencies, measured frequencies are generated. The measured frequencies are considered as 
input data and inversely, the small scale parameter of the beam is obtained by minimizing a defined functional. The 
functional is defined as root mean square error between the measured frequencies and calculated frequencies by the 
DQM. Then, the conjugate gradient (CG) optimization method is employed to minimize the functional and the small 
scale parameter is obtained. Efficiency, convergence and accuracy of the presented hybrid method for small scale 
parameter estimation of the beams for different applied random error, boundary conditions, length-to-thickness ratio 
and volume fraction coefficients are demonstrated. 
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1. Introduction 
 

The Eringen’s nonlocal elasticity (Eringen 1983) has been widely used in continuum mechanics 
to analyze nanostructures (Malekzadeh and Shojaee 2013, Ansari et al. 2014, Zenkour and 
Abouelregal 2014, 2015, Hosseini-Hashemi et al. 2015). An important parameter in this nonlocal 
elasticity is the small scale parameter. Identification of the small scale parameter has not been 
understood completely yet. So, finding this parameter is of interest of researchers. Eringen (1983) 
obtained the small scale parameter after matching the dispersion curves via the nonlocal elasticity 
theory and the Rayleigh surface wave analysis results. Zhang et al. (2005) found the small scale 
parameter of single-walled carbon nanotubes (SWCNTs) using the Donnell shell theory and the 
molecular mechanics simulations in conjunction with buckling analysis. Wang and Hu (2005) used 
the nonlocal Timoshenko beam model and the molecular dynamic simulations to obtain the small 
scale parameter of SWCNTs. Wang (2005) compared wave propagation of carbon nanotubes 
(CNTs) and the nonlocal continuum mechanics model and found the small scale parameter. Zhang 
et al. (2006) gained the small scale parameter of carbon graphene sheets using elastic interactions 
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analysis between the Stone-Wales and the divacancy defects. Wang et al. (2008) estimated the 
small scale parameter of carbon nanotubes via the molecular dynamic simulations (MDSs) and 
comparing the results with the nonlocal elasticity theory. Shen and Zhang (2010) achieved the 
small scale parameter of CNTs by matching the obtained buckling torque from the molecular 
dynamic simulations (MDSs) with the numerical results from the nonlocal shear deformable shell 
model. Chan and Zhao (2011) achieved the small scale parameter by considering the nonlocal 
elasticity in the spinning CNTs for the nonlocal first-order deformation beam model. 
Khademolhosseini et al. (2012) found the small scale parameter of nanotubes considering torsional 
wave propagation obtained from the MDSs by comparing with the nonlocal dispersion relations. 
Huang et al. (2012) obtained small scale parameter of single-layered graphene sheets for bending 
problem. They found the parameter through comparison of the displacement response under a 
specific load from the MDSs and the nonlocal elasticity theory. 

Besides, Duan et al. (2007) obtained the small scale parameter of the SWCNTs using measured 
frequencies from the MDSs. They used the Timoshenko beam theory and solved the governing 
equations analytically. They found that the obtained small scale parameters from their analysis are 
different from those obtained using their mentioned methods via various conditions. So, 
introducing a hybrid inverse method for determining the small scale parameter of nanostructures 
may yield to find better behavior of these structures. 

On the other hand, sometimes for analysis of nanostructures conservative values of the small 
scale parameter are used. For example, Nazemnezhad and Hosseini-Hashemi (2014) used the 
conservative small scale parameter for vibration analysis of functionally graded nanobeams. 

Based on the above mentioned review and to our best knowledge, there is no publication on 
small scale parameter estimation of naobeams using inverse optimization method. So, here as a 
first attempt, a hybrid inverse optimization numerical method is used to estimate the small scale 
parameter of the FG nanobeams. In the presented inverse method the DQM and the CG method 
are combined. The DQM is used to discretize the governing equations and for a specific small 
scale parameter, by applying random error measured frequencies are onbtained. An objective 
function as a root mean square error between measured frequencies and the calculated frequencies 
from mathematical model by the DQM is defined. Then, the CG method is used to minimize the 
function via finding the small scale parameter. 
 
 
2. The governing equations and discretization procedure 
 

Consider a nanobeam with length L and total thickness h (Fig. 1) with continuous change of 
material properties through h with power law distribution. 

 
 

Fig. 1 The geometry of the nanobeam 
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Using the Eringen’s nonlocal elasticity and the first-order shear deformation theories and 
neglecting the axial inertia, the free vibration governing equations of the functionally graded 
nanbeams can be obtained as (Vosoughi 2016) 
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where u, w and φx are the horizontal, vertical displacement component along the x and z-direction 
and the rotation of cross section along the y-direction, respectively. μ = e0l is the small scale 
parameter with a material constant e0, the internal characteristic length l and 
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where Ei (i = m, c), υi (i = m, c) and ρi (i = m, c) are the Young’s modulus, the Poisson ratio and the 
density of the beam at metal and ceramic surfaces, respectively (Vosoughi 2014). Also, n is the 
volume fraction coefficient. 

The boundary conditions for the vibration analysis of the beam are considered as 
 

(a) Simply supported edge case 
 

0     ,0     ,0  nl
xxMwu  (4a-c)

 

(b) Clamped edge case 
 

0     ,0     ,0  xwu   (5a-c)
 

To discretize the above governing equations and the related boundary conditions the 
differential quadrature method is used. Using DQ rules (Vosoughi 2014, 2016, Vosoughi and 
Nikoo 2015) the discretized form of the governing equations can be obtained as 
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Eq. (1) 
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Eq. (2) 
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Eq. (3) 
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In Eqs. (6) to (8) Aij, Bij and Dij are the first, second and fourth-order derivatives weighting 

coefficients, respectively. The Chebyshev-Gauss-Lobatto quadrature points are considered and in 
the above equations is shown with Nx and N′x = Nx ‒ 1. Details for calculation of the weighting 
coefficients can be found in Refs. (Vosoughi 2014, Vosoughi and Nikoo 2015). 

And the discretized form of the boundary conditions can be stated as 
 

Eq. (4a-c) 
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Eq. (5a-c) 
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where i = 1 at x = 0 and i = Nx at x = L. 

To transfer the discretized equations from temporal domain to frequency domain the following 
equations are used (Vosoughi and Nikoo 2015). 
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At last, the discretized form of the governing equations and the related boundary conditions in 

matrix form can be stated as 
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3. Small scale parameter estimation 
 

For small scale parameter estimation of the functionally graded nanobeams the following 
functional is used. 
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where M denotes the number of used frequencies in the estimation problem; ωk and ω*
k are the 

measured and the estimated (computed) frequencies, respectively. 
To obtain the small scale parameter of the functionally graded nanobeam the conjugate gradient 

(CG) method as an optimization method is employed to minimize the functional by obtaining the 
optimum small scale parameter. In the conjugate gradient optimization method, gradient of the 
functional with respect to design variable (small scale parameter in this study) should be calculated. 
Here, the central difference method is used to find sensitivity coefficient of the functional 
according to the small scale parameter. 
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In the conjugate gradient optimization method the optimum solution will be started by selecting 
an initial point. Then, the second point will be obtained by using the search direction and step 
length. This procedure will be continued, till the convergence criteria achieve. 

For solving the presented problem, the following equation is used to obtain the small scale 
parameter in s + 1th iteration from the achieved result from sth iteration. 

 
1s s s sD      (15)

 

where Ds and γs are the search direction and the step length at sth iteration, respectively. 
Also, to solve the problem the first search direction is considered as 

 
0 0D g   (16)

 

And {D}s for the other iterations is obtained as 
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Then, the golden section search algorithm is used to obtain optimum step length. 
The above procedure is continued till the following convergence criterion is satisfied. 

 
1 /s s s       (18)

 

where ωs and ωs+1 are the frequencies in ‘s’ and ‘s+1’ iterations and ε is the convergence error 
criterion. 
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4. Numerical results 
 

In this section, first, the differential quadrature solution procedure is verified by comparing the 
results with those of available in the published articles. Then, applicability of the presented method 
for obtaining the small scale parameter estimation of the functionally graded nanobeams is 
demonstrated via solving some examples. 

The convergence and accuracy of the presented differential quadrature solution procedure for 
simply supported (SS), simple-clamped (SC) and fully clamped (CC) boundary conditions are 
investigated in Table 1. The nonlocal to local (with μ = 0) frequency ratio results for two different 
small scale parameters are compared with analytical solution of the Euler-Bernoulli beam theory 
presented by Nazemnezhad and Hosseini-Hashemi (2014). The following material properties are 
used to generate the numerical results. 

Silicon material properties (Zhu et al. 2006) 
 

3210 , 0.24, 2370c c cE GPa kg m     
 

Aluminum material properties (Ogata et al. 2002) 
 

370 , 0.3, 2700m m mE GPa kg m     
 
 

Table 1 Comparison between the obtained results using the DQM and analytical method for the nonlocal 
to local frequency ratio of FG nanobeams for different boundary conditions and small scale 
parameters (n = 3, L/h = 1000) 

Nx μ2 
Boundary condition 

SS SC CC 

7 2 0.9139 0.9014 0.8954 

11  0.9139 0.9014 0.8954 

17  0.9139 0.9014 0.8954 

Nazemnezhad and Hosseini-Hashemi (2014) 0.9139 0.9013 -------- 

7 4 0.8468 0.8269 0.8175 

11  0.8467 0.8269 0.8175 

17  0.8467 0.8269 0.8175 

Nazemnezhad and Hosseini-Hashemi (2014) 0.8467 0.8267 -------- 
 
 

Table 2 The convergence and accuracy of the presented hybrid inverse method for small scale parameter 
estimation of functionally graded nanobeams with different boundary conditions using the first 
measured frequency (n = 3, L/h = 20, μ2

exact = 0) 

Ε (μ-2)exact 
Boundary condition 

SS SC CC 

10-3 2 1.5450 1.5450 1.5450 

10-6  1.9990 2.0001 2.0001 

10-3 4 3.4550 3.4550 3.4550 

10-6  3.9996 3.9996 3.9996 
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Table 3 The average (AVE) and standard deviation (SD) of the random error for generating the measured 
frequencies 

Random error (%) 
 Number of used measured frequency 

 One Two Three 

+5 
AVE 4.42 4.48 3.09 

SD 0 0.04 1.14 

+10 
AVE 6.78 8.18 7.41 

SD 0 0.99 0.91 

 
 
 

(a) SS (b) CS 
 
 

(c) CC 

Fig. 2 Influence of start point on convergence and robustness of the conjugate gradient method for small
scale parameter estimation of functionally graded nanobeams with different boundary conditions 
(μ2

start = 2, n = 3, L/h = 20, ε = 10-6) μ2
start = 0:  ; μ2

start = 10:  ; μ2
start = 100:  
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(a) SS (b) CS 
 

(c) CC 

Fig. 3 Influence of start point on convergence and robustness of the conjugate gradient method for small
scale parameter estimation of functionally graded nanobeams with different boundary conditions 
(μ2

start = 4, n = 3, L/h = 20, ε = 10-6) μ2
start = 0:  ; μ2

start = 10:  ; μ2
start = 100:  

 
 
According to Table 1 the fast rate of convergence and accuracy of the differential quadrature 

method for free vibration analysis of the FG nanobeam are clarified. So, hereafter Nx = 11 is 
selected to solve the small scale effect parameter estimation problem. 

To show convergence and accuracy of the presented hybrid inverse method for the small scale 
parameter estimation of functionally grade nanobeams Table 2 is prepared. In this table the small 
scale parameters of FG nanobeams with different boundary conditions are estimated using the first 
measured frequency without applying any random error. In this table by increasing the 
convergence criteria the good estimation of the parameter is achieved and so, in the following 
solved examples ε = 10-6 considered to generate numerical results. 

Convergence of the presented method for the parameter estimation of the nanobeams for two 
sets of the small scale parameters are investigated in Figs. 2 and 3. In these figures influences of 
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different boundary conditions and initial small scale parameters on convergence of the problem are 
studied. From these figure one can see that by decreasing the initial small scale parameter, more 
rapid convergence is obtained. So, μ2

start = 0 is selected to generate the other numerical results. 
In Table 3 the average and standard deviation of used applied random error for generating 

measured frequencies are shown. In this table, the average and standard deviation for generating 
three sets of number of frequencies are tabulated. 

In Tables 4-6 influences of number of measured frequencies with different applied random 
error on small scale parameter estimation of the nanobeams with different boundary conditions are 
investigated. From these tables, it is obvious that the estimated parameters are sensitive with the 
inserted random error. Also, by increasing the number of measured frequencies the better 

 
 

Table 4 Influence of the number of measured frequencies (NMF) on the small scale parameter estimation 
of SS supported functionally graded nanobeams for different random error (n = 3, L/h = 20, ε = 10-6) 

(μ2)exact NMF Random error (%) Estimated parameter (µ2) J × 10-6 

2 

1 

0 1.9990 8.4737 (12)* 

+5 1.0973 9.3082 (12) 

+10 0.6627 7.0341 (13) 

2 

0 2.0001 8.6107 (17) 

+5 1.6424 8.7264 (17) 

+10 1.2969 9.4548 (15) 

3 

0 2.0001 8.6108 (17) 

+5 1.9825 9.9908 (18) 

+10 1.6790 9.1787 (16) 

4 

1 

0 3.9996 2.9110 (9) 

+5 2.9305 6.5014 (8) 

+10 2.4197 1.8325 (14) 

2 

0 4.0002 9.1755 (16) 

+5 3.4733 6.5647 (15) 

+10 2.9634 2.6880 (10) 

3 

0 4.0002 9.1755 (16) 

+5 3.9710 2.2624 (17) 

+10 3.4637 5.4606 (15) 

* The number in parentheses shows the number of iteration in which convergence is occurred 
 
 

Table 5 Influence of the number of measured frequencies (NMF) on the small scale parameter estimation 
of CS functionally graded nanobeams for different random error (n = 3, L/h = 20, ε = 10-6) 

(μ2)exact NMF Random error (%) Estimated parameter (µ2) J × 10-6 

2 1 

0 2.0020 2.7883 (13)* 

+5 1.8384 1.3598 (11) 

+10 0.7935 9.1408 (12) 
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Table 5 Continued 

(μ2)exact NMF Random error (%) Estimated parameter (µ2) J × 10-6 

2 

2 

0 2.0002 7.2621 (14) 

+5 1.6463 5.1652 (15) 

+10 1.3045 2.5683 (17) 

3 

0 2.0001 9.9872 (17) 

+5 1.9825 3.2603 (18) 

+10 1.6774 4.2281 (15) 

4 

1 

0 3.9996 4.8775 (9) 

+5 3.0261 1.6333 (12) 

+10 2.5551 3.7471 (14) 

2 

0 4.0002 6.8095 (16) 

+5 3.4722 9.5103 (14) 

+10 2.9638 7.7284 (17) 

3 

0 4.0000 1.9148 (18) 

+5 3.9705 7.7460 (17) 

+10 3.4589 9.0912 (14) 

* See footnote of Table 4 
 
 

Table 6 Influence of the number of measured frequencies (NMF) on the small scale parameter estimation 
of CC functionally graded nanobeams for different random error (n = 3, L/h = 20, ε = 10-6) 

(μ2)exact NMF Random error (%) Estimated parameter (µ2) J × 10-6 

2 

1 

0 2.0001 2.3883 (19)* 

+5 1.1653 6.4752 (15) 

+10 0.7640 3.0295 (16) 

2 

0 2.0001 9.0029 (14) 

+5 1.6493 9.3066 (16) 

+10 1.3093 6.6940 (18) 

3 

0 2.0000 1.3992 (19) 

+5 1.9822 4.9671 (14) 

+10 1.6741 5.9567 (19) 

4 

1 

0 3.9996 6.9482 (9) 

+5 3.0041 51.2918 (4) 

+10 2.5252 4.3422 (12) 

2 

0 4.0002 8.4844 (6) 

+5 3.4813 3.0069 (16) 

+10 2.9794 3.7822 (17) 

3 

0 4.0000 2.2053 (18) 

+5 3.9699 4.5331 (18) 

+10 3.4539 5.1914 (17) 

* See footnote of Table 4 
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Table 7 Influence of length-to-thickness ratio on small scale parameter estimation of functionally graded 
nanobeams for different boundary conditions (BC) and random error by using the first 
three measured frequencies (n = 3, ε = 10-6) 

BC (μ2)exact Random error 
L/h 

100 20 10 

SS 

2 

0 2.0001 2.0001 2.0001 

+5 1.9816 1.9825 1.9840 

+10 1.6643 1.6790 1.7085 

4 

0 4.0002 4.0002 4.0002 

+5 3.9701 3.9710 3.9714 

+10 3.4489 3.4637 3.4801 

SC 

2 

0 2.0001 2.0001 2.0001 

+5 1.9818 1.9825 1.9830 

+10 1.6692 1.6773 1.6904 

4 

0 4.0002 4.0000 4.0002 

+5 3.9696 3.9705 3.9705 

+10 3.4511 3.4589 3.4598 

CC 

2 

0 2.0001 2.0000 2.0001 

+5 1.9820 1.9822 1.9822 

+10 1.6738 1.6741 1.6745 

4 

0 4.0002 4.0000 4.0002 

+5 3.9701 3.9699 3.9701 

+10 3.4530 3.4539 3.4548 

* See footnote of Table 4 
 
 

Table 8 Influence of fraction volume coefficients on small scale parameter estimation of functionally graded 
nanobeams for different boundary conditions (BC) and random error by using the first three 
measured frequencies (L/h = 10, ε = 10-6) 

BC (μ2)exact 
Random 

error 
L/h 

100 20 10 

SS 

2 

0 2.0000 2.0000 2.0001 

+5 1.9840 1.9840 1.9840 

+10 1.7085 1.7085 1.7085 

4 

0 4.0000 4.0000 4.0002 

+5 3.9714 3.9714 3.9714 

+10 3.4801 3.4801 3.4801 

SC 

2 

0 2.0000 2.0000 2.0001 

+5 1.9829 1.9830 1.9830 

+10 1.6903 1.6904 1.6904 

4 

0 4.0000 4.0000 4.0002 

+5 3.9702 3.9702 3.9705 

+10 3.4598 3.4598 3.4598 
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Table 8 Influence of fraction volume coefficients on small scale parameter estimation of functionally graded 
nanobeams for different boundary conditions (BC) and random error by using the first three 
measured frequencies (L/h = 10, ε = 10-6) 

BC (μ2)exact 
Random 

error 
L/h 

100 20 10 

CC 

2 

0 2.0000 2.0000 2.0001 

+5 1.9822 1.9822 1.9822 

+10 1.6745 1.6745 1.6745 

4 

0 4.0000 4.0000 4.0002 

+5 3.9701 3.9701 3.9701 

+10 3.4548 3.4548 3.4548 

* See footnote of Table 4 
 
 
estimation of the parameter is obtained. 

In Table 7 influences of length-to-thickness ratio on the small scale parameter estimation of the 
functionally graded nanobeams are investigated for different boundary conditions. In this table the 
first three measured frequencies are considered. It is obtained that in the three cases of length-to-
thickness ratio with different measured frequencies and same applied random error similar small 
scale parameters are obtained. In Table 8 influences of the volume fraction coefficients on the 
small scale parameter estimation of the functionally graded nanobeams using the first three 
measured frequencies are investigated. In this table different boundary conditions are considered. 
From this table, it is obvious that the volume fraction coefficients of the nanobeams cannot affect 
estimation of the small scale parameter. 
 
 
5. Conclusions 
 

As a first attempt, a hybrid inverse numerical method for small scale parameter estimation of 
functionally grade nanobeam is introduced. The first-order shear deformation and the Eringen’s 
nonlocal elasticity theories are used to obtain the governing equations. The equations are 
discretized using the differential quadrature method (DQM). After transferring the discretized 
equations from temporal domain to frequency domain the frequencies of the nanobeam are 
calculated. By applying random error to the calculated frequencies measured frequencies are 
generated. Then, a functional as root mean square error between the measured and the calculated 
frequencies is defined. The conjugate gradient (CG) method is adopted to minimize the functional 
by selecting the small scale parameter as a design variable. Convergence and accuracy of the 
presented method for solving the problem with different length-to-thickness ratio, volume fraction 
coefficient and boundary conditions are demonstrated. It can be concluded that the presented 
hybrid inverse method can be used to estimate small scale parameter of the nanobeams using 
measured frequencies. 
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