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Abstract.    Third order shear deformation theory is used to evaluate electro-elastic solution of a sandwich plate with 
considering functionally graded (FG) core and composite face sheets made of piezoelectric layers. The plate is resting 
on the Pasternak foundation and subjected to normal pressure. Short circuited condition is applied on the top and 
bottom of piezoelectric layers. The governing differential equations of the system can be derived using Hamilton’s 
principle and Maxwell’s equation. The Navier’s type solution for a sandwich rectangular thick plate with all edges 
simply supported is used. The numerical results are presented in terms of varying the parameters of the problem such 
as two elastic foundation parameters, thickness ratio (hp/2h), and power law index on the dimensionless deflection, 
critical buckling load, electric potential function, and the natural frequency of sandwich rectangular thick plate. The 
results show that the dimensionless natural frequency and critical buckling load diminish with an increase in the 
power law index, and vice versa for dimensionless deflection and electrical potential function, because of the 
sandwich thick plate with considering FG core becomes more flexible; while these results are reverse for thickness 
ratio. 
 

Keywords:    deflection, buckling, and vibration analysis; composite structures; sandwich sandwich reddy 
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1. Introduction 
 

Applying composite material in plate and shell structures is used for new technologies such as 
aerospace, automotive, and shipbuilding industries. These materials made from two or more 
constituent materials with various physical or chemical properties. Rapid progress of these 
materials is because of lightness, strength, when is compared to traditional materials. 

Classical plate theory (CPT) is extended by a group of scientists to analyze laminated plates 
(Reddy 1984, Whitney 1987). In this theory, it is assumed that the shear modulus of isotropic plate 
in the thickness direction is infinite; as a result shear strains in the thickness direction can be 
neglected. Because the composite plates have usually greater flexibility than isotropic plate or in 
other words they have a lower shear modulus of the isotropic plate. Therefore, the assumption of 
infinite shear modulus for the composite plate is not acceptable. Thus it should be used first-order 
shear deformation theory (FSDT) or Mindlin plate theory (1951). Brunelle (1971) obtained the 
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elastic buckling of transversely isotropic Mindlin plates with two parallel edges simply supported 
and the remaining two edges subjected to a variety of boundary conditions. He investigated the 
effect of different boundary conditions on the critical buckling load. Brunelle and Robertson (1974) 
derived the governing equations of a transversely isotropic subjected to initially stress using 
Mindlin plate theory, and solved the thick plate equations for simply supported rectangular plates. 
Nosier and Reddy (1992) studied the free vibration and buckling problems of transversely 
isotropic symmetrically laminated rectangular plates with various boundary conditions based on 
FSDT using boundary layer function. Third-order shear deformation theory (TSDT) is introduced 
firstly by Reddy (1990). Ma and Wang (2004) employed the TSDT to solve the axisymmetric 
bending and buckling problems of functionally graded (FG) circular plates. They derived the 
relationships between the solutions of axisymmetric bending and buckling of FG plates based on 
the TSDT, and the solutions of the homogeneous plates obtained through the CPT. Kang and 
Leissa (2005) illustrated the exact solutions for the buckling of isotropic rectangular thin plates 
having two opposite edges simply supported subjected to linearly varying in-plane load using the 
CPT. Zenkour (2005) analyzed the buckling and free vibration of the simply supported FG 
sandwich plate. He investigated the effect of the core thickness, relative to the total thickness of 
the plate on the critical buckling load and natural frequencies. Najafizadeh and Heydari (2004, 
2008) studied axisymmetric buckling analysis of thick FG circular plates based on higher-order 
shear deformation plate theory, under uniform radial compression and different types of thermal 
loadings. Samsam Shariat and Eslami (2007) presented the mechanical and thermal buckling 
analysis of thick FG rectangular plate. They used higher-order shear deformation plate theory to 
obtain the closed form solution for the critical buckling load and simply supported boundary 
conditions. Kashtalyan and Menshykova (2009) used the three-dimensional elasticity for analysis 
of sandwich panels with a functionally graded core subjected to transverse loading. The results 
showed that the use of a FG core instead of a conventional homogeneous one eliminates 
discontinuity of the in-plane normal and shear stresses across the face sheet–core interfaces, which 
contribute to the structural failure of the panel. Zenkour and Sobhy (2010) used the sinusoidal 
shear deformation plate theory to study the thermal buckling of FG sandwich plates. Their results 
showed the effects of the gradient index, plate aspect ratio, side-to-thickness ratio, loading type 
and sandwich plate type on the critical buckling for sandwich plates. Bodaghi and Saidi (2012) 
used the first-order shear deformation plate theory and the neutral surface concept, the equilibrium 
and stability equations for functionally graded Mindlin plate. Dozio (2013) analyzed the natural 
frequencies of sandwich plates with FG core via variable-kinematic 2-D Ritz models. His results 
presented the rectangular sandwich FG plates with various thickness-to-length ratios and various 
boundary conditions such as clamped, free and simply-supported edges. Yang et al. (2014) 
analyzed the elastic field in a transversely isotropic FG plate with holes by transforming the 
original three-dimensional (3-D) problem into a two dimensional (2-D) one. They obtained the 
general solutions of the governing equations for the 2-D problem by four analytic functions a(ζ ), 
ß(ζ ), f(ζ ) and ψ(ζ) when there are no transverse forces acting on the plate surfaces. Oktem and 
Chaudhuri (2007) presented Levy-type analytical solution for the problem of deformation of finite-
dimensional general cross-ply thick rectangular plates. Shen and Li (2008) studied postbuckling of 
sandwich plates with FG face sheets and temperature-dependent properties. Their results showed 
that the temperature changes, the volume fraction distribution of FG face sheets, and the substrate-
to-face sheet thickness ratio have a significant effect on the critical buckling load and postbuckling 
behavior of sandwich plates. Palardy and Palazotto (1990) employed the buckling loads and 
fundamental frequencies of laminated cross-ply plates using the Levy method. Nguyen et al. (2015) 
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used a refined higher-order shear deformation theory for bending, buckling, and vibration analysis 
of FG sandwich plate. They obtained the equations of motion based on Hamilton’s principle and 
derived the Navier’s type and finite element solutions for plate with simply-supported and various 
boundary conditions, respectively. Using a sinusoidal plate theory, Hamidi et al. (2015) presented 
the thermo-mechanical bending analysis of FG sandwich plates. They assumed the material 
properties of the sandwich plate faces to vary according to a power law distribution in terms of the 
volume fractions of the constituents, and the material properties of the core layer is made of an 
isotropic ceramic material. Moreover, they compared their results with the obtained results by 
other authors to check the validity of the results. Then, they concluded that the proposed theory is 
accurate and efficient in predicting the thermo-mechanical behavior of FG sandwich plates. Chen 
and Liu (1993) investigated the thermal buckling of antisymmetric angle-ply laminated plates with 
Levy-type boundary conditions by an analytical technique in conjunction with the concept of state-
space. Based on TSDT, Hasani Baferani et al. (2011) illustrated the free vibration analysis of FG 
thick rectangular plate resting on two parameter elastic foundation. Using Hamilton’s principle, 
they derived the governing equations of motion, and obtained the natural frequency using Levy 
type solution. Their results illustrated that the Pasternak (shear) elastic foundation drastically 
changes the natural frequency. Moreover, they observed that in some boundary conditions, the in-
plane displacements have significant effects on natural frequency of thick functionally graded 
plates. Based on FSDT, Bodaghi and Saidi (2011) presented an exact analytical solution for 
stability analysis of vertical moderately thick laminated rectangular plates under self weight and 
top load. Applying an analytical approach, they converted the coupled governing stability 
equations of the laminated plate into two uncoupled partial differential equations in terms of 
transverse displacement and an auxiliary function. Using Levy-type solution, the decoupled 
equations are reduced to two ordinary differential equations. Zenkour and Sobhy (2012) studied 
the static response of simply supported FG material viscoelastic sandwich plates subjected to 
transverse uniform loads. Using TSDT and meshless technique, Neves et al. (2013) considered 
bending, free vibration and buckling analysis of isotropic and sandwich FG plates. Jabbari et al. 
(2014) analyzed the thermal buckling analysis of porous circular plate with piezoelectric actuators 
using FSDT. The obtained results showed that the critical temperature decreases and the plate will 
be unstable by increasing the porosity. Using Levinson plate theory, Hosseini Hashemi et al. (2010) 
described the free vibration of piezoelectric coupled annular plates. Their results showed that the 
natural frequencies increase by increasing the thickness of piezoelectric layers. Sobhy (2013) 
analyzed the buckling and free vibration of exponentially graded sandwich plates using FSDT. 
Their results showed that the presence of elastic foundations leads to a significant increment in the 
variation of the frequencies and buckling loads. Thai et al. (2014) used a new first-order shear 
deformation theory for analysis the bending, buckling and free vibration of rectangular plates 
under various boundary conditions. Sobhy and Zenkour (2015) illustrated thermoelastic 
deformations of a simply supported FG sandwich plates subjected to a time harmonic sinusoidal 
temperature field on the top surface and varying through the thickness. Their results showed the 
influences of the time parameter, power law index, temperature exponent, top-to-bottom surface 
temperature ratio, side-to-thickness ratio and the foundation parameters on the dynamic bending. 

In this article, the electro-elastic solution of a sandwich thick plate with considering FG core 
and composite face sheets made of piezoelectric layers is considered using third order shear 
deformation theory. Short circuited condition is applied on the top and bottom of piezoelectric 
layers. The governing differential equations of the system can be derived using Hamilton’s 
principle and Maxwell’s equation. The Navier’s type solution for a sandwich rectangular plate with 
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all edges simply supported is used. Moreover, the influences of elastic foundation parameters, 
thickness ratio, various power law index on the dimensionless deflection, critical buckling load, 
electric potential function, and the natural frequency of a sandwich rectangular thick plate. 
 
 
2. The governing equations of a sandwich thick plate 
 

Based on FG core and composite face sheets, a sandwich thick plate with considering 
piezoelectric layers and the length a , width b and thickness of core 2h, thickness of face sheets hp, 
resting on two-parameter elastic foundation is shown in Fig. 1. 

Based on third-order shear deformation plate theory, the displacement fields can be considered 
as follows 

1

4 2( , , ) ( , ) [ ( , ) ( ) ( ( , ) ( , ) )],3

z
u x y z u x y z x y x y w x yx x xH

      (1)

 

2

4 2( , , ) ( , ) [ ( , ) ( ) ( ( , ) ( , ) )],3y y

z
u x y z v x y z x y x y w x y yH

      (2)

 

3 ( , , ) ( , )u x y z w x y  (3)
 

where u, v, w denote the mid-plane displacements of a sandwich thick rectangular plate along the x, 
y, z coordinate directions, respectively, and ψx and ψy are the rotation functions. H is the total 

 
 

 

Fig. 1 A schematic of a sandwich rectangular thick plate considering FG core and composite face sheets 
made of piezoelectric layers resting on Pasternak foundation 
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thickness of sandwich thick plate. 
The linear constitutive equations for FG core of a sandwich thick plate in the plane stress state 

are expressed as the following form 
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 (4)

 

where (σ11, σ22) and (ε11, ε22) are the normal stresses and strains, respectively. (τ12, τ13, τ23) and (γ12, 
γ13, γ23) denote the shear stresses and strains, respectively. 

The effective material properties of sandwich plates which change very smoothly and 
continuously from one surface to another can be expressed by following relations 
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where n is the power law index and subscripts m and c denote the metal and ceramic properties, 
respectively. 

The stiffness matrix coefficients (Qij (i, j = 1, 2, 4, 5, 6)) are defined as follows 
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The strain-displacement relationships are considered as follows 
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31
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Substituting Eqs. (1)-(3) into Eqs. (9)-(14), the following kinetic relations are obtained as 
follows 
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0
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The constitutive equations for composite face sheets of a sandwich plate in piezoelectric layers 
are written as (Arefi and Rahimi 2011, Mohammadimehr et al. 2015, Arefi 2015a, b) 

 

ij ijkl kl ijk kC e E   (34)
 

where, σij and εkl are the stress and strain components, Ek is electric field, Cijkl and eijk are the 
stiffness and piezoelectric coefficients. Extended equations of piezoelectric layers are considered 
as 
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The electric field E is obtained from an electrostatic potential as the following form 
 

, , ,i iE i x y z   (41)
 

For piezoelectric layers, we can use a three dimensional electric potential function (Rouzegar 
and Abad 2015, Arefi and Allam 2015). 
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( , , , ) ( ) ( , , )x y z t f z x y t   (42)
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Short-circuited boundary condition is considered for piezoelectric layers at top and bottom. ϕ(x, 
y) must be derived after solution of the problem with considering the planar boundary conditions. 
Electric displacement for a smart material may be presented as follows (Arefi and Rahimi 2011) 
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And in the extended form, we have 
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The governing differential equations of motion for the sandwich thick plate are derived using 
the Hamilton’s principle which is given by 
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where δT, δU, and δW are the variations of kinetic energy, strain energy, the work done by 
external applied forces, respectively. 

Variations of the kinetic energy for sandwich plate can be described as follows 
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Variations of the strain energy for sandwich thick plate can be expressed as 
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U dV dV                       (59)

 

Variations of work done due to the external load and elastic foundation can be considered as 
follows 

( , ) elasticW P x y w dx F w dx       (60)
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According to Fig. 1, the force due to the elastic medium is obtained as (Mohammadimehr et al. 
2010, Ghorbanpour Arani et al. 2011) 

 

2( )elasticF Kw w KG w    (61a)
 

where Kw and KG are the spring constant of Winkler type and the shear constant of Pasternak type 
for elastic foundation, respectively. The Eq. (61a) is known to Pasternak foundation that in 
addition to the transverse force (Kw (w)), the shear force (KG 2

w) can be also withstands, while 
the Winkler foundation can be endure only the transverse force in which is defined as the 
following form 

( )elasticF Kw w  (61b)
 

The equilibrium equations of sandwich resting on Pasternak foundation using the Hamilton’s 
principle can be derived as the following form 

 

1, 6, 0 1 1 3: ( )x y x x

w
u N N I u I C I

x
   

    



   (62)

 

2, 6, 0 1 1 3: ( )y x y y

w
v N N I v I C I

y
   

    



   (63)

 

1, 6, 1 1, 6, 1 1 22 2

2
1 3 4 4 1 6

4 4
: ( )

3

( 2 ) ( )

x x y x y x

x x

M M Q P P R I u I
H H

w w
C I u I I C I

x x

  

 

      

 
    

 



 
 

 (64)

 

2, 6, 2 2, 6, 2 1 22 2

2
1 3 4 4 1 6

4 4
: ( )

3

( 2 ) ( )

y y x y x y

y x

M M Q P P R I v I
H H

w w
C I v I I C I

y y

  

 

      

 
    

 



 
 

 (65)

 

2
1, 2, 1, 2, 6, 2, 1,2 2

2 2
2

1 3 1 4 1 6 02 2

4 4
: ( 2 ) ( ) ( ( ) ) ( , )

3

( ) ( ) ( ) )

x y xx yy xy y x

y yx x

w Q Q P P P R R Kw w KG w P x y
H H

u v w w
C I C I C I I w

x y x y x y x y

 

  

          

     
        

       

     


(66)

 

where the λ parameter is equal to one and zero for TSDT and FSDT, respectively. Ni, Mi (i = 1, 2, 
6) denote the resultant forces and moments, respectively, also Ri, Pi are the  higher order resultant 
shear forces and moments, respectively, and Qi is the transverse shear forces which are defined by 
the following expressions 

 

1 1 1 11
2

3
2 2 2 22

26 6 6 12

( , , ) (1, , )

H

H

i

N M P

N M P z z dz

N M P





       
               
        
       

 (67)
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2 131 1 2

2 2 23
2

( , ) (1, )

H

H

Q R
z dz

Q R



    

      
     

 (68)

 

Substituting Eqs. (9)-(14) and (35) into Eqs. (67) and (68) yields 
 

1 11 , 12 , 1x yN A u A v      (69)
 

2 11 , 12 , 1y xN A v A u      (70)
 

6 66 , ,( )x yN A v u   (71)
 

1 11 , 12 , 11 , 12 , 2x x y y xx yyM B B D w D w         (72)
 

2 22 , 12 , 12 , 22 , 2y y x x xx yyM B B D w D w         (73)
 

6 11 , , 12 ,( )x y y x xyM F F w     (74)
 

1 11 , 12 , 11 , 12 , 3x x y y xx yyP H H K w K w         (75)
 

2 12 , 22 , 12 , 11 , 3x x y y xx yyP H H K w K w         (76)
 

6 11 , , 12 ,( )x y y x xyP L L w     (77)
 

1 11 ,( )x xQ S w   (78)
 

2 11 ,( )y yQ S w   (79)
 

1 22 ,( )x xR S w   (80)
 

2 22 ,( )y yR S w   (81)
 

where the above coefficients are defined in Appendix A. 
The electric potential in piezoelectric layers satisfies Maxwell’s equation as the following 

integral form (Arefi 2015a, b) 
 

( ) ( ) 0
p

p

h h hy yx z x z

h h h

D DD D D D
dz dz

x y z x y z

 

 

    
     

        (82)

 

Substituting Eqs. (46)-(48) into Eq. (82) yields 
 

1 , , 2 , , 3( ) ( ) 0x x y y xx yyw w           (83)
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1 , , 2 , ,
3

1
( ( ) ( ))x x y y xx yyw w    




     (84)

 

4 , , 5 , ,( ) ( ))x x y y xx yyw w          (85)
 

By substituting Eqs. (69)-(81) into Eqs. (62)-(66), the governing equations of motion for 
sandwich thick plate based on TSDT embedded in an elastic medium are obtained as follows 

 

11 , 12 66 , 66 , 1 4 , , 5 , ,

0 1 1 3

: ( ) ( ( ) ( ))

( )

xx xy yy x xx y xy xxx xyy

x x

u A u A A v A u w w

w
I u I C I

x

     

 

       


   




 
 (86)

 

11 , 12 66 , 66 , 1 4 , , 5 , ,

0 1 1 3

: ( ) ( ( ) ( ))

( )

yy xy xx x xy y yy xxy yyy

y y

v A v A A u A v w w

w
I v I C I

y

     

 

       


   




 
 (87)

 

11 , 12 , 11 , 12 , 2 4 , , 5 , ,

11 , 11 , 12 , 11 11 , 11 , 12 ,2

11 , 12 , 3 4 , , 5 , , 11

: ( ( ) ( ))

4
(

3
( ( ) ( ))

x x xx y xy xxx xyy x xx y xy xxx xyy

x yy y xy xyy x x x xx y xy

xxx xyy x xx y xy xxx xyy x

B B D w D w w w

F F F w S S w H H
H

K w K w w w L

       

    

     

       

      

        , 11 ,

2
12 , 22 22 , 1 2 1 3 4 4 1 62

4
) ( ) ( 2 ) ( )

yy y xy

xyy x x x x x

L

w w
L w S S w I u I C I u I I C I

H x x



   



 
         

 
 

   

(88)

 

22 , 12 , 22 , 12 , 2 4 , , 5 , ,

11 , 11 , 12 , 11 11 , 22 , 12 , 11 ,2

12 , 3 4 , , 5 , , 11

: ( ( ) ( ))

4
(

3
( ( ) ( ))

y y yy x xy yyy xxy x xy y yy xxy yyy

x xy y xx xxy y y y yy x xy yyy

xxy x xy y yy xxy yyy x

B B D w D w w w

F F F w S S w H H K w
H

K w w w L

       

    

     

       

       

       , 11 , 12 ,

2
22 22 , 1 2 1 3 4 4 1 62

)

4
( ) ( 2 ) ( )

xy y xx xxy

y y y y x

L L w

w w
S S w I v I C I v I I C I

H y y



   

 

 
        

 
 

   

 (89)

 

11 , 11 , 11 , 11 , 11 , 12 , 11 , 12 ,2

3 4 , , 5 , , 22 , 12 , 11 , 12 ,

3 4 , , 5 , ,

4
: (

3
( ( ) ( ))

( ( ) ( )

x x xx y y yy x xxx y xxy xxxx xxyy

x xxx y xxy xxxx xxyy y yyy x xyy yyyy xxyy

x xyy y yyy xxyy yyyy

w S S w S S w H H K w K w
H

w w H H K w K w

w w

    

      

    

      

        

     11 , 11 , 12 ,

2
22 , 22 , 22 , 22 ,2

2 2
2

1 3 1 4 1 6 02 2

) 2 2 2 )

4
( ) ( ) ( , )

( ) ( ) ( ) )

x xyy y xxy xxyy

y y yy x x xx

y yx x

L L L w

S S w S S w Kw w KG w P x y
H

u v w w
C I C I C I I w

x y x y x y x y

 

 

  

  

        

     
        

       

     


(90)
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3. The Navier’s type solution for sandwich thick plate 
 

Analytical solutions for a simply supported rectangular sandwich plate are obtained using 
Navier’s solution technique. Simply supported boundary conditions of all edges for sandwich plate 
are given by 

( ,0) ( , ) 0u x u x b   (91)
 

( ,0) ( , ) 0X Xx x b    (92)
 

( ,0) ( , ) 0w x w x b   (93)
 

(0, ) ( , ) 0v y v a y   (94)
 

(0, ) ( , ) 0y yy a y    (95)
 

(0, ) ( , ) 0w y w a y   (96)
 
Using Navier’s type solution, one can be written as follows 

 

1 1

( , , ) cos( )sin( ) i t
mn

m n

u x y t U x y e  
 

 

  (97)

 

1 1

( , , ) sin( )cos( ) i t
mn

m n

v x y t V x y e  
 

 

  (98)

 

1 1

( , , ) cos( )sin( ) i t
x x mn

m n

x y t x y e   
 

 

   (99)

 

1 1

( , , ) sin( )cos( ) i t
y y mn

m n

x y t x y e   
 

 

   (100)

 

1 1

( , , ) sin( )sin( ) i t
mn

m n

w x y t W x y e  
 

 

  (101)

 

1 1

( , , ) sin( )sin( ) i t
mn

m n

p x y t Q x y e  
 

 

  (102)

 

where for rectangular uniformly distributed load (p(x, y, t) = P0), thus we have 
 

00 0

4
sin sin

b a

mnQ P x ydxdy
ab

     (103)

 

Substituting Eqs. (97)-(103) into Eqs. (86)-(90), the matrix form of bending equations for a 
sandwich thick plate is written as 
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11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0

0

0

0

mn

mn

x

y

mn mn

S S S S S U

S S S S S V

S S S S S mn

S S S S S mn

S S S S S W Q

     
     
             
         
         

 (104)

 
The dimensionless deflection of sandwich plate is defined as follows (Kim and Reddy 2013) 
 

3

4
0

mE h
w w

P a
  (105)

 
The matrix form of free vibration equations for a sandwich plate is considered as 
 

       2 0S M U   (106a)

 
where the elements of the mass and stiffness matrices are given in Appendix B. 

To obtain the natural frequency for Eq. (106a), the determinant of coefficient matrix should be 
equal to zero, thus we have 

 

         2 20 or det =0 S M S M     (106b)

 
The dimensionless natural frequency of sandwich plate is defined as follows (Kim and Reddy 

2013) 
4

2
m

m

a

E h

   (107)

 
The matrix form of buckling equations for a sandwich plate is written as 
 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45
2 2

51 52 53 54 55 0

0

0

,0

0

( ) 0

mn

mn

xx
x

yy
y

mn

S S S S S U

S S S S S V
N

S S S S S kmn
N

S S S S S mn

S S S S S N k W 

     
     
              
          
         

 (108)

 

 

15

25

35

45

mn

mn

mn
x

y

U S

V S
C W

mn S

mn S

   
   
           
      

 (109)

where 
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1

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

S S S S

S S S S
C

S S S S

S S S S


 
 
      
 
 

(110)

 
Using Eq. (108), we obtain the expression for the critical buckling load N0 of sandwich plate as 

follows 

51 15

52 25
0 552 2

53 35

54 45

1

T
S S

S S
N S C

S Sk

S S

 

    
    
                 

        

 (111)

 
The dimensionless buckling load of sandwich plate is written as follows (Kim and Reddy, 2013) 
 

2

0 03
m

a
N N

E h
  (112)

 
 
4. Numerical results and discussions 
 

Numerical results for bending, buckling, and free vibration are presented for symmetric 
rectangular FG core and composite piezoelectric layer plate resting on two-parameter elastic 
foundations with all edges simply supported. 

 
 

Table 1 The mechanical and electrical properties of sandwich plate 

Property 
Core plate Piezoelectric layer 

Al Alumina PZT- 4 

E (GPa) 70 380 -- 

υ 0.3 0.3 -- 
C11 (GPa) -- -- 132 
C12 (GPa) -- -- 71 
C33 (GPa) -- -- 115 
C13 (GPa) -- -- 73 
C55 (GPa) -- -- 26 
e31 (Cm-2) -- -- -4.1 
e33 (Cm-2) -- -- 14.1 
e15 (Cm-2) -- -- 10.5 

η11 (n.F.m-1)  -- -- 7.124 

η33 (n.F.m-1)  -- -- 5.841 

ρ (Kg.m-3)  2707 3800 7500 
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Table 2 Natural frequencies of the simply supported sandwich plate 

Power 
law index a

h2
 

a

hp

2  
 Various theory First natural frequency

0 

0.05 

0.1 
Present 

VRPT (Rouzegar and Abad 2015) 
FSDT (Askari Farsangi and Saidi 2013) 

426.645 
426.818 
426.662 

0.2 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

417.938 
408.836 
408.475 

0.1 

0.1 
Present 

FRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

827.364 
827.520 
826.463 

0.2 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

788.495 
788.433 
786.011 

0.5 

0.05 

0.1 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

364.562 
369.195 
369.015 

0.2 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

365.849 
362.655 
362.269 

0.1 

0.1 
Present 

FRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

718.344 
716.563 
715.319 

0.2 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

718.344 
716.563 
715.319 

1 

0.05 

0.1 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

344.644 
340.006 
339.859 

0.2 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

346.344 
340.673 
340.311 

0.1 

0.1 
Present 

FRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

660.345 
659.565 
658.555 

0.2 
Present 

VRPT(Rouzegar and Abad 2015) 
FSDT(Askari Farsangi and Saidi 2013) 

657.243 
656.105 
653.652 

 
 
A simply supported FG plates coupled with piezoelectric layers is considered. The FG core 

plate is made of aluminum and alumina, and two PZT-4 piezoelectric layers are attached to its top 
and bottom surfaces with the side of 40 cm. The mechanical and electrical of aluminum, Alumina 
and PZT-4 are listed in Table 1 (Rouzegar and Abad 2015). 
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4.1 Natural vibration of sandwich plate 
 
The natural frequencies of the simply supported sandwich plate are obtained using Eq. (106). 

The fundamental natural frequency is obtained when m = 1 and n = 1. 
First natural frequency for different theories of plate and power law indices is presented in 

Table 2. It is shown that the present results without considering electric fields in x and y directions 
has a good agreement with the obtained results by variable refined plate theory (VRPT) (Rouzegar 

 
 

 

Fig. 2 The effect of spring constant of Winkler type on dimensionless first natural frequency 
(a = b = 400 mm, 2h = 5 mm, n = 2, KG = 0) 

 
 

 

Fig. 3 The effect of shear constant of Pasternak type on dimensionless first natural frequency 
(a = b = 400 mm, 2h = 5 mm, n = 2, Kw = 0) 
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Fig. 4 The effect of power law index on the dimensionless deflection 

(a = b = 400 mm, h = 2.5 mm, hp = 1, Kw = 0, KG = 0, P0 = 100 N/m2) 
 
 
and Abad 2015) and FSDT (Askari Farsangi and Saidi 2013). It is observed that with increasing 
power law indices, the natural frequency decreases and vice versa for hp/2a in which the power 
law index is constant. 

The natural frequencies of the simply supported sandwich plate are obtained using Eq. (106). 
In Figs. 2 and 3, we can see the effects of spring and shear constants on dimensionless 

fundamental natural frequency of sandwich plate. With increasing of the spring (Kw) and shear KG 
constants and thickness ratio, the dimensionless natural frequency of sandwich plate increases. It is 
due to that with increasing these parameters, the sandwich plate becomes stiffer. 

 
 

 
Fig. 5 The effect of thickness ratio on the dimensionless deflection 

(a = b = 400 mm, h = 2.5 mm, Kw = 0, KG = 0, P0 = 100 N/m2) 
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Fig. 6 The effect of spring constant of Winkler type on dimensionless deflection 
(a = b = 400 mm, h = 2.5 mm, hp = 1, n = 3, KG = 0, P0 = 100 N/m2) 

 
 

 

Fig. 7 The effect of shear constant of Pasternak type on dimensionless deflection 
(a = b = 400 mm, h = 2.5 mm, hp = 1, n = 3, Kw = 0, P0 = 100 N/m2) 

 
 
4.2 Bending of sandwich plate 
 
For bending analysis of sandwich plate, the uniformly distributed load is applied on top surface 

z = H/2 in Fig. 4. This figure shows that with increasing power law index, dimensionless deflection 
of the sandwich plate increases. Fig. 5 shows that with increasing thickness ratio, dimensionless 
deflection of sandwich plate decreases. Figs. 6 and 7 show that the effect of the foundation elastic 
on the dimensionless deflection of sandwich plate. It is concluded that the dimensionless deflection 
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of sandwich plate with considering FG core and composite piezoelectric layers reduces with a 
change the elastic foundation constants. It is observed that the boundary conditions for edges 
simply supported is satisfied as well as. 

 
4.3 The Buckling analysis of sandwich plate 
 
The critical buckling loads of sandwich plate are obtained using Eq. (111). The compressive 

loads Nxx and Nyy are assumed that is equal to each other for sandwich plate. The minimum critical 
 
 

 
Fig. 8 The effect of power law index on the dimensionless critical buckling load 

(a = b = 400 mm, h = 2.5 mm, hp = 1, Kw = 0, KG = 0) 
 
 

 
Fig. 9 The effect of Kw on dimensionless critical buckling load 

(a = b = 400 mm, h = 2.5 mm, hp = 1, n = 2, KG = 0) 
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load is obtained when m = 1 and n = 1. Fig. 7 shows that with increasing the power law index, the 
dimensionless critical buckling load decreases and vice versa for elastic foundation parameters in 
Figs. 8 and 9 because of the sandwich plate becomes stiffer. 
 

4.4 Electric potential function 
 

The electrical potential function for sandwich plate is obtained using Eq. (85). Figs. 11 and 12 
 
 

 

 
Fig. 10 The effect of KG on dimensionless critical buckling load 

(a = b = 400 mm, h = 2.5 mm, hp = 1, n = 2, Kw = 0) 
 
 

 

Fig. 11 Effect of power law indices on electrical potential function 
(a = b = 400 mm, h = 2.5 mm, hp = 1, Kw = 0, KG = 0, P0 = 1000 N/m2) 
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Fig. 12 Effect of normal load on electrical potential function 

(a = b = 400 mm, h = 2.5 mm, hp = 1, Kw = 0, KG = 0, n = 2) 
 
 

depict that with increasing the power law index and the normal pressure, the electrical potential 
function of sandwich plate increases, respectively. Fig. 13 shows the effect of thickness ratio on 
electric potential function. It can be seen from this figure that the maximum electric potential of 
sandwich thick plate reduces with an increase in the thickness ratio. Figs. 14 and 15 illustrate the 
influence of the Winkler and Pasternak coefficients on electrical potential function. It is shown that 

 
 

 
Fig. 13 Effect of thickness ratio on electrical potential function 

(a = b = 400 mm, h = 2.5 mm, Kw = 0, KG = 0, P0 = 1000 N/m2) 
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Fig. 14 Effect of Winkler parameter on electrical potential function 
(a = b = 400 mm, h = 2.5 mm, hp = 1, n = 2, KG = 0, P0 = 10 N/m2) 

 
 
 

 

Fig. 15 Effect of Pasternak parameter on electrical potential function 
(a = b = 400 mm, h = 2.5 mm, hp = 1, n = 2, Kw = 0, P0 = 10 N/m2) 

 
 
 
with increasing Winkler and Pasternak coefficients, the electrical potential function of sandwich 
plate reduces. As presented in these figures, electric potential is reduced with increasing the both 
parameters of elastic foundation. This decreasing is due to increasing the stiffness of the structure 
by increasing the parameters of elastic foundation. Increasing two parameters of elastic foundation 
tend to decrease the deflection and consequently decrease electric potential. 
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5. Conclusions 
 

In this paper, based on TSDT, the bending, free vibration, buckling analysis and electric 
potential function of the sandwich thick plate considering FG core and composite piezoelectric 
layers on Pasternak foundation was investigated. Using variational method, the governing 
equations of motion for the sandwich thick plate considering FG core and composite piezoelectric 
layers were derived. Then to satisfy all edges simply supported boundary conditions, the Navier’s 
type solution is used to obtain the dimensionless deflection, critical buckling load and natural 
frequency of the sandwich thick plate were obtained. 

The results of this research showed that with increasing the elastic foundation parameters, the 
dimensionless natural frequency and critical buckling load increase and vice versa for 
dimensionless deflection and electrical potential function, because of the sandwich thick plate 
considering FG core and composite piezoelectric layers become stiffer. Moreover, the 
dimensionless natural frequency and critical buckling load diminish with an increase in the power 
law index, and vice versa for dimensionless deflection and electrical potential function, because of 
the sandwich thick plate becomes more flexible. The dimensionless deflection of sandwich plate 
decreases with an increase in the thickness ratio (hp/2h) and this result is similar to maximum 
electric potential function and vice versa for dimensionless natural frequency and critical buckling 
load. 
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