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Abstract.    It is well known that, in order to accurately predict the behaviour of steel structures a requirement the 
definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved 
by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides 
to break up joints in basic components of deformability and resistance. One of the main joint components used to 
model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the 
behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant 
research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular 
attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work 
presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for 
predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some 
complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately 
evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between 
theoretical and experimental results is provided in order to verify its accuracy. 
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1. Introduction 
 

In past years, the actual behaviour of joints in steel structures was frequently disregarded and, 
normally, the structural behaviour was modelled by making the extreme assumptions of rigid or 
flexible behaviour (analysing continuous or pendular frames). Of course, these simplifications 
made structural calculations easier, but the structural model was not able to account for the actual 
behaviour of connections. 

In the last few decades, the interest towards the prediction of the joint rotational behaviour in 
steel structures has significantly grown, as a consequence of the benefits deriving from the 
accuracy of such prediction. As a result, basing on the outcomes of many experimental and 
theoretical studies (Zoetemeijer 1974, Jaspart 1991, Girão Coelho et al. 2004a, b, Piluso et al. 
2001, Bernuzzi et al. 1996, Faella et al. 2000, Latour et al. 2011b, Hantouche et al. 2012a, b, 2013, 
Lemonis and Gantes 2006, Takhirov and Popov 2002, Nair et al. 1974), modern codes have 
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introduced approaches aimed at the accurate prediction of the joint behaviour. In particular, the 
European methodology codified in last version of EC3 is based on the so-called component 
method (CEN 2005a, b), which consists in breaking up the joint in basic components contributing 
to the joint rotational deformability or resistance. Each component is separately modelled in terms 
of force-displacement or moment-rotation law and finally assembled in a mechanical model in 
order to obtain the whole joint behaviour. 

Theoretically, this approach is very general and it is able to describe the behaviour of any kind 
of connection, provided that the basic components of deformability and strength are accurately 
identified and modelled. To date, even though the component method codified in EC3 is already 
very advanced and provides designers with significant information regarding the joint behaviour, it 
still provides some drawbacks especially dealing with the prediction of the plastic deformation 
capacity and of the cyclic behaviour. In fact, even though some authors have already investigated 
some aspects related to the prediction of the plastic deformation capacity (Latour and Rizzano 
2013, Latour et al. 2014, Girão Coelho et al. 2004b, Beg et al. 2004) and of the cyclic behaviour 
of connections (Piluso and Rizzano 2008, Iannone et al. 2011, Latour et al. 2011a, Hu et al. 2012, 
Bravo and Herrera 2014), past experimental and theoretical researches have often focused their 
attention mainly on predicting stiffness and resistance of joints. Therefore, dealing with the 
prediction of the plastic deformation capacity of connections, at the present time, further efforts 
are still needed towards the codification in EC3 of a methodology for the prediction of the 
rotational capacity of joints. 

In particular, in this paper, aiming to provide a contribution towards the codification of a 
procedure for the prediction of the plastic rotation capacity to be included in EC3, the attention is 
focused on bolted connections. In such connection typologies, usually, the most important 
components, such as the column flange or the end plate in bending, are modelled by means of 
equivalent T-stubs, i.e., two equal T-shaped elements connected through the flanges by means of 
one or more bolt rows. Therefore, in order to develop a theoretical approach for predicting the 
whole force-displacement response up to failure of bolted T-stubs, a new refined model is 
presented, starting from the existing literature. 

To this scope, in this paper, the current state-of-the-art is presented and the assumptions and the 
theoretical framework are described, focusing the attention on the main advances of the proposed 
model. Successively, the constitutive laws adopted to define the behaviour of the materials 
composing plate and bolts (the sub-components of the T-stub) are described and the basic 
equations to derive, from the constitutive laws, the force-elongation response of bolts and the 
moment-rotation response of the plastic hinges forming on the T-stub flange plate are reported. 
Finally, the procedure adopted to assembly the sub-components of the T-stub in order to get the 
whole force-displacement response up to failure is described and a comparison with the 
experimental results is provided in order to evaluate the accuracy of the model. A particular 
attention is paid on to the prediction of the T-stub ultimate displacement. 
 
 
2. Previous research 
 

It is well known that the prediction of the force-displacement behaviour of bolted T-stubs is a 
complex matter, because its response is affected by many complicated phenomena, such as 
mechanical and geometrical non-linearities or contacts. As already said, to date, many attempts to 
model the structural behavior of T-stubs have been provided, but past researches have been mainly 
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focused on the prediction of stiffness and resistance, so that there are still some open issues 
especially dealing with the characterization of the T-stub plastic deformation capacity, which is a 
basic parameter in order to get the rotational capacity of bolted connections. 

Historically, the problem of characterizing the force-displacement behaviour of bolted T-stub 
has been addressed by following mainly two approaches: the finite element or the mechanical 
modelling. In particular, in past years, finite element models have been largely applied both to 
structures and structural elements (Abidelah et al. 2014, Saberi et al. 2014). Nevertheless, even 
though, on one side, FE models allow to obtain very accurate predictions, on the other side, they 
need also the introduction of very detailed information regarding mechanical and geometrical non-
linearities. Furthermore, they require specialized users and a high computational effort. Due to 
such reasons, in order to provide simpler and faster approaches, starting from the 60s also many 
simplified mechanical models have been presented by different authors. Looking back to past 
technical literature, models already available could be divided in: models for predicting the 
resistance (Yee and Melchers 1986, Zoetemeijer 1974, Douty and McGuire 1965, Swanson 2002, 
Reinosa et al. 2013), models for predicting the initial stiffness (Swanson 1999, Faella et al. 1998, 
Hantouche and Abboud 2014) and models for predicting the whole force-displacement curve of 
the T-stub up to failure (Jaspart 1991, Piluso et al. 2001, Swanson and Leon 2001). 

The first attempts to define the mechanical behaviour of T-stubs have been proposed by 
(Zoetemeijer 1974, Douty and McGuire 1965, Yee and Melchers 1986). In a first work developed 
by (Douty and McGuire 1965), after investigating the effect of the material strain-hardening on the 
T-stub resistance, the authors proposed a simplified model for the strength prediction based on the 
adoption of the ultimate strength of the material composing the flange rather than on the yield 
stress. Successively, the role played by 3-D effects on the resistance of the T-stub (Zoetemeijer 
1974) has been investigated. In particular, after presenting an approach based on the yield line 
method, the author found the expressions of the equivalent effective lengths. Practically, the 
approach presented (Zoetemeijer 1974) allows to use simplified beam models to obtain the T-stub 
resistance also for the cases where significant 3-D effects are expected. A methodology to define 
equivalent T-stubs for the column flange and end-plate to be used to model the behaviour of bolted 
connections has been also presented by (Yee and Melchers 1986). In addition, they proposed some 
empirical formulas calibrated on the available experimental tests able to predict the whole force-
displacement behaviour of extended end-plate connections. Afterwards, models for predicting the 
resistance of the flange plate of T-stubs have been presented also in (Kulak et al. 1987) and 
(Jaspart 1991) which, with the previously cited work, represent the main theoretical basis of the 
expressions reported in EC3 part 1-8 (CEN 2005b). In particular, Kulak (Kulak et al. 1987) and 
Jaspart (1991) presented similar models based on simple translational and rotational equilibrium 
equations, whose main differences regard the assumptions made on the position and distribution of 
the forces under the bolt head and on the position of the plastic hinges arising on the flange plate. 
During the 90s significant work dealing with the prediction of stiffness and resistance of bolted T-
stubs has been presented by other research (Swanson 1999, Piluso et al. 2001) facing also the issue 
of the prediction if the plastic deformation capacity. As advances of previous studies (Faella et al. 
1998b; 2000, Swanson and Leon 2001, Swanson 2002), both authors presented a model for the 
prediction of the whole force-displacement behaviour of T-stubs able to predict the behaviour up 
to failure. 

The approach proposed by Swanson (2001) is based on a multi-linear incremental model 
mainly developed for application into a computer program. In particular, such a model includes, 
even though in an approximate way, non-linear material properties, variable tension bolt stiffness 
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and elastic-plastic hinges to model the plate plasticity. Conversely, the limitations of the Swanson 
approach mainly regard the sensitivity to the strain-hardening parameters and to the bolt ductility, 
the approximations made to define the behaviour of the plastic hinges and the definition of the 
strain at failure of the materials composing the plate and the bolt which are not individuated using 
a standardized procedure. In addition, the bolt action is considered concentrated in one point 
consistently with the model proposed by Kulak (Kulak et al. 1987) and, therefore, the actual shape 
of the contact force distribution under the bolt head is not accounted for in the equilibrium 
equations.  

The approach proposed by Piluso et al. (2001), still with some approximations, aims to provide 
a simple model to predict the force-displacement curve of the T-stub in line with Eurocode 3 and 
suitable for hand calculation. Such a model is based on the following hypothesis: geometrical non-
linearities and 3-D effects are neglected, the compatibility between bolt and flange is disregarded 
as well as the shear interaction, prying forces are considered located at the tip of the flange plate 
and secondary flexural effects in the bolts are neglected. The procedure for obtaining the T-stub 
behaviour, in Piluso et al. (2001) model starts from the definition of the potential failure mode 
which is used to define the kinematic mechanism of the T-stub at collapse and the bending 
moment diagram arising on the flange plate. Afterwards, by making the hypothesis of fixed 
position of the point of zero-moment during the whole loading process, the behaviour of the plastic 
hinges arising on the flange plate is defined by means of the integration of the moment-curvature 
diagram of the rectangular cross-section representing the plate. Finally, the relationship between 
forces and displacements is evaluated by means of equilibrium equations and simple geometrical 
considerations. In addition, the failure of the T-stub is related to the ultimate rotation of the plastic 
hinges, which is defined as the rotation corresponding to the attainment of the plastic strain in the 
most extreme fibres of the section where the plastic hinge is located. The comparisons made 
versus the experimental tests show that the model of Piluso et al. (2001) is able to provide a very 
good approximation of the force-displacement curve if the failure mode of the T-stub is type-1, 
while it provides an underestimation of the resistance and an overestimation of the ductility supply 
if the failure mode is type-2 (as specified in the following sections). This is mainly due to the 
approximations the model makes with respect to the bolt. In fact, in the model, the compatibility 
between the elongation of the bolt and the deformation of the plate is neglected and, furthermore, 
the influence due to the bolt head size is not accounted for in the equilibrium equation. 

More recently, a further model was presented (Girão Coelho et al. 2004b). Basically, it contains 
the same principles individuated by Swanson (2001) and Piluso (Piluso et al. 2001) for defining 
the behaviour of plate and bolts, but it introduces some complexities. In particular, the stress-strain 
relationship of the material composing the plate is modelled with a continuous law up to failure 
and the possibility of modelling the bolt action with a distributed load is considered. The 
comparisons made by the author show that the behaviour predicted by the model of Girão Coelho 
(2004b) is accurate in terms of resistance, but it reflects an overestimation of the plastic 
deformation capacity. 
 
 
3. Main features of the proposed model 
 

In general, the mechanical modelling of a T-stub can be provided starting from the definition of 
the geometry of the elements, the boundary conditions and the non-linear behaviour of its sub-
components, i.e., the plate and the bolts. 
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(a) Geometrical discretization of the T-stub (b) Non-linear mechanical model 

Fig. 1 T-stub model 
 
The approach proposed in this paper aims to provide a modelling of the T-stub in line with the 

methodology already individuated by Eurocode 3. To this scope, the flange plate is modelled with 
a simplified beam, whose length is defined according to EC3 criteria, i.e., the distance between the 
bolt line and the plastic hinge arising at the T-stub stem is equal to m = d - 0.8r, while n is defined 
as the distance between the bolt line and the end of the plate (Fig. 1(a)). In order to model the 
influence of the bolt head on the resistance of the T-stub, which can provide a significant 
contribution to the resistance, the bolt action is assumed uniformly spread under the bolt head, 
over a length equal to the washer diameter (dw) (Fig. 1(b)). At the same time, the bolt shank is 
modelled with a translational spring. Such a spring is defined in order to check the resistance of 
the bolt and to evaluate the respect of the compatibility condition between the elongation of the 
bolt and the deformation of the plate. Always in line with the EC3 approach, it is assumed that the 
beam composing the T-stub flange is constrained in correspondence of the stem, due to symmetry 
condition, with a bi-pendulum. To model the contact zone, as an advance on with respect to the 
existing models, the prying forces, which are usually assumed concentrated at the end of the plate, 
are considered applied in a point in between the tip of the plate and the edge of the bolt head. The 
position of such a point is determined by evaluating the compatibility of the vertical displacements 
of the plate in order to respect the horizontal symmetry condition. 

The behaviour of the plate is defined adopting a lumped plasticity approach by means of non-
linear plastic hinges located at the T-stub web and bolt line (Fig. 1). The characteristics of the 
plastic hinges are derived starting from the moment-curvature diagram of the cross-section 
representing the plate, according to the approach already presented by Piluso et al. (2001). In a 
similar way, also the non-linear spring modelling the bolt shank behaviour is characterized starting 
from the knowledge of the stress-strain law of the basic material according to the approach 
reported in the next section. The failure of the sub-components of the T-stub, i.e. the bolts and the 
plate, is modelled by checking the ultimate condition on the stress-strain laws of the materials. In 
particular, the failure of the plastic hinges of the plate is individuated as corresponding to the 
plastic rotation leading to the attainment ultimate strain at the most external fibre, while the failure 
of the bolt is identified in correspondence to the uplift value leading to the fracture elongation of 
the material composing the bolt. 

In conclusion, still providing a simplified approach, the model proposed in this paper aims to 
define the response of the T-stub up to failure including the following advances: 
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● The bolt forces are considered uniformly distributed under the bolt head; 
● The position of the contact forces is determined by evaluating the deformed configuration of 

the plate in the zone contained in between the bolt line and the tip of the plate; 
● Mechanical non-linearities of plate and bolt are accounted for by means of integration of the 

stress-strain laws of the materials by extending the approach proposed by Piluso et al. for 
determining the moment-rotation response of the plastic hinges arising on the plate to the 
bolt force-elongation response; 

● The failure of the T-stubs is modelled by checking the ultimate strain of the basic materials 
composing the plate and the bolts; 

● The compatibility condition between the displacements of the plate and the uplift of the bolt 
is taken into account; 

● The displacements of the T-stub are evaluated step-by-step as the sum of the elastic and 
plastic parts. 

 
Despite these improvements, the following assumptions are still made: 
 
● 3-D effects are neglected; 
● Secondary bending effects on bolts are neglected; 
● The effect of moment-shear interaction on resistance of the materials is neglected; 
● The effect of shear forces in the bolts are neglected; 
● Second order effects are neglected; 
● The compatibility of the deformed shape of the plate in the zone contained between the 

prying force and the tip of the plate is not considered. 
 
It is useful to note that, as far as 3-D effects are not considered, the model presented in this 

paper is mainly devoted to reproduce cases where the yield line pattern is the so-called beam 
pattern, which is, in practical cases, the pattern usually arising in T-stubs modelling the end-plates. 
In order to overcome this limitation, the model could be generalized also to other cases, at least for 
defining the resistance, by adopting the effective lengths already defined in (Zoetemeijer 1974). In 
addition, second order effects and shear forces in bolts are usually arising only at large 
displacements and therefore the model remains enough accurate in the range of sufficiently low 
displacements. In addition the effect of shear forces on the resistance of the materials are neglected 
and, therefore, in cases of T-stubs characterized by small values of the m/tf ratio a slight 
overestimation of the resistance is expected. 

 
3.1 Materials’ constitutive laws 
 
The plastic deformation capacity of steel plates strongly depends on the inelastic properties of 

the material and, above all, on the value of the ultimate strain. For this reason, in order to predict 
the ductility supply of T-stubs, an accurate modelling of the stress-strain relationships up to failure 
of the basic materials composing bolts and plate is necessary. 

Preliminarily, it is useful to note that a conventional stress-strain relationship measured in 
common tensile tests is not representative of the punctual behaviour of the material. In fact, as it is 
well known, during a tensile test, the engineering stress σn, defined as the ratio between the force 
measured during the test (N) and the initial area of the specimen (A0), after necking, starts to 
decrease due to the reduction of the cross-sectional area of the specimen. Notwithstanding, after 
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the beginning of necking, the true (natural) stress σr referred to the actual cross-sectional area A 
increases and the relationship between true stress and true strain of steel always follows an 
hardening behaviour up to failure. 

Therefore, normally, in order to get the true stress–true strain behaviour starting from the 
results of coupon tensile tests, in the range before the necking phenomenon starts, it is necessary to 
transform the engineering values of stress and strain in actual values by means of the following 
relationships (Malvern 1969, Pozzati 1980, Davids et al. 1982) 

 

   nnrnr ε σ     σε ε  1;1ln  (1)
 

where εr is the actual (material) strain and εn is the nominal strain. In addition, in order to define 
the behaviour of the material in the range after necking up to failure, it is necessary to evaluate the 
ultimate natural stress σf at fracture and the corresponding natural deformation εu (RILEM 1990) 
by means of the following expressions 
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σ 0ln;   (2)

 

where Ff is the force measured by the testing machine at fracture and Af is the area in the necking 
zone at the end of the test. The relationships here reported can be applied to obtain the actual 
stress-strain behaviour of steel provided that the results of coupon tensile tests are available. Such 
tests, are usually carried out only for the plates but not for the bolts some simplifying assumptions 
concerning the bolt material modelling have to be made. 

The material composing the flange plate, as far as the results on coupon tensile tests are 
available, can be modelled in terms of actual strain vs. actual stress by means of a quadri-linear 
approximation, which can be derived starting from the experimental results by simply equating the 
area under the experimental curve with the area under the simplified quadri-linear curve (Fig. 2(a)). 

Conversely, the material composing the bolts is not easy to accurately characterize as far as no 
experimental results are usually available. Nevertheless, bolt elongation is very important for the 
prediction of the ductility of joints. In fact, it may increase significantly the ultimate plastic 
deformation, allowing the uplift of the plate, in case of mechanisms type-2 or type-3. Also in 

 
 

 
(a) Flange plate (b) Bolts 

Fig. 2 Stress-strain laws of the materials composing the T-stub 
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EC3 no information is given with reference to the ultimate displacement of bolts and, since bolts 
are designed to remain in elastic range, in technical literature there are only few studies dealing 
with the characterization of the ultimate deformation of bolts. Within a wide experimental program 
dealing with the assessment of the behaviour of isolated T-stubs subjected to tension, four series of 
tests on high strength bolts axially loaded have been carried out (Girão Coelho et al. 2004a). The 
average ultimate deformation resulting from experimental tests indicated by the authors for short-
threaded bolts of 8.8 and 10.9 class, is contained in the range 0.11-0.13. Other research, in a work 
devoted to propose a model to predict the ductility supply of joints, the authors indicated a value of 
the ultimate bolt deformation capacity equal to 0.1 (Beg et al. 2004). 

Considering that, in technical literature, there is a common approach and usually the tests on 
the material composing the bolts used in the T-stub specimens are not available, in this work a 
simplified approach based on the application of an approximate tri-linear law is adopted (Fig. 2(b)). 
In particular, the proposed simplified tri-linear law is defined starting from the knowledge of the 
average values of the yield and ultimate stress of the material composing the bolt (i.e., for bolts 
class 8.8 [CoV = 0.07]: fy,ave = 723 MPa, fu,ave = 904 MPa; bolts class 10.9 [CoV=0.02]: fy,ave = 930 
MPa, fu,ave = 1034 MPa), the stiffness of the second branch, which is characterized by a value of the 
Young modulus equal to 0.1E (Leon and Swanson 2000) and from the ultimate strain of the bolts. 
Such a strain value, since there are no specific indications in technical literature, is assumed equal 
to the elongation at fracture provided by the manufacturer of the bolts. This value, according to the 
manufacturer may vary in a minimum/maximum range according to prescribed values of the 
coefficient of variation. In particular, it is assumed that for bolt class 8.8, CoV = 0.1, Amin = 0.12, 
Amax = 0.18, while for bolt class 10.9, CoV = 0.1, Amin = 0.09, Amax = 0.14 (Fontana 2004). 

 
3.1.1 Flexural behavior of the flange plate 
Classically, the failure mechanisms of a bolted T-stub is dependent on the resistance of the 

composing elements, i.e. the bolts and the plate. In particular, in failure mechanism type-1, which 
is the most ductile as it provides the formation of significant plastic deformations in the flange 
plate under bending, the collapse is due to the formation of four plastic hinges contemporarily 
arising in correspondence of the flange-to-web connection and bolt line. Conversely, in failure 
mechanism type-3, the failure mechanism is characterized only by the bolt collapse. Finally, 
failure mechanism type-2 is intermediate between mechanisms type-1 and type-3, as it provides 
the collapse of the T-stub due to the failure of the bolt or of the flange plate due to the attainment 
of the ultimate rotation of the plastic hinges arising at the flange-to-web connection (Fig. 3). 

Considering the classical definition of failure modes and their kinematic mechanisms, it is clear 
that, in order to accurately predict the complete behaviour of a bolted T-stub, first of all, it is 
important to accurately define both the rotational capacity of the plastic hinges arising in the flange 
plate and the force-elongation relationship for the bolt. In fact, in case of mechanism type-1, as the 
collapse is due to the plate failure, the behaviour and the ductility capacity of the T-stub mainly 
depends on the ability of the plastic hinges to rotate and, in particular, on their moment-rotation 
response, while, in case of mechanism type-3, as failure is governed by bolts, it mainly depends on 
their force-elongation response. Obviously, in case of mechanism type-2, which is intermediate 
between mechanism type-1 and type-3, both the rotational response of the plastic hinges and the 
force-elongation response of bolts are of concern, because in this case the failure of the bolt or of 
the plate mainly depends on the relative resistance and ductility of the two components. 

In particular, in the proposed model the plate behaviour is characterized by following an 
approach similar to that already provided in (Piluso et al. 2001). Within this approach, the 
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Fig. 3 Classical definition of the failure modes 
 

moment-rotation behaviour of the plastic hinges is derived passing from the true stress-true strain 
response of the basic material composing the plate to the moment-curvature relationship of the 
plate and, afterwards, it is obtained by means of integration of the curvatures along the plate. 

 
Moment–curvature relationship 
Following the same methodology provided by (Piluso et al. 2001), the behaviour of the plastic 

hinges arising on the flange plate is defined starting from the moment-curvature M-χ relationship 
of the rectangular cross-section representing the flange plate. Such a relationship assumes four 
different mathematical laws in correspondence of the boundary strains εy, εh, εm, εu (Fig. 2(a)). 
Under the hypothesis of pure bending, the significant values of the curvatures can be defined as 

 

         
t

 
t

 
tt f

u
u

f

m
m

f

h
h

f

y
y




 2
         

2
         

2
          

2
  (3)

 

where tf is the flange plate thickness. For each one of these curvature values, by writing the 
equilibrium equations the following branches, expressed in terms of non-dimensional bending 
moment vs non-dimensional curvature M/My – χ/χy, can be obtained: 

 

 Elastic Branch (χ/χy < 1): 
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 Yield Plateau (1 < χ/χy < χh/χy): 
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 Hardening Branch (χh/χy < χ/χy < χm/χy): 
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Fig. 4 Example of non-dimensional moment-curvature diagram 
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 Post-necking (χm/χy < χ/χy < χu/χy): 
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where My = (bt2
f /6) fy is the T-stub width and fy is the material yield stress. From the previous 

equations, it is useful to observe from previous equations that the Mh/My, Mm/My, Mu/My ratios 
depend only on the properties of the material composing the flange plate (Fig. 4). 

 
Moment-rotation behaviour of the plastic hinges 
By exploiting the definition of the moment-curvature relationships, the moment-rotation curves 

of the plastic hinges modelling the non-linear behaviour of the T-stub flange plate can be 
determined. Following the same approach provided by Piluso et al. (2001) such plastic rotations 
can be evaluated by means of the following steps: 

 

● Evaluation of the bending moment diagram along the T-stub flange; 
● Definition of the curvatures along the flange plate by inverting the moment-curvature 

relations previously defined; 
● Integration of the curvatures on single cantilever beams in order to obtain the rotations of 

the plastic hinges. 
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Fig. 5 Assumed kinematic collapse mechanism 
 
 
The diagram of the bending moment arising on the T-stub flange plate is not known a priori and 

it depends on the system of equilibrium and compatibility equations to be solved according to the 
procedure reported in next section. Nevertheless, it is useful to note that the shape of such a 
diagram, in any point of the force-displacement T-stub curve, depends only on the applied loads 
and on the value of the bending moment arising in correspondence of the plastic hinges, whose 
ratio, consistently with the kinematic collapse mechanism reported in Fig. 5 can be defined as ψMu. 

Therefore, it is linear in the zone in between the plastic hinge arising at the web and the tip of 
the bolt head, parabolic in the zone of the bolt head and again linear in the zone contained in 
between the bolt head and the prying force (Fig. 6). 

Following Piluso et al. (2001) approach, starting from the moment distribution arising along 
the T-stub flange depicted in Fig. 6, the mathematical laws defining the rotations of the plastic 
hinges can be obtained by considering, in a simplified way, the three simple cantilever schemes 
reported in Fig. 6, which are characterized by a maximum value of the bending moment equal to 
M1 = M, M2 = M3 = ψM and lengths L1, L2 and L3 equal to 

 

*nL          
ψ

mψ
L          

ψ

m
L 





 121 11

 (8)

 

Within this work, the parabolic part of the bending moment diagram is approximated with a 
linear segment internal to the actual diagram. This approximation is made in order to simplify the 
expressions of the mathematical laws providing the values of the rotations of the plastic hinges. It 
is worth observing that, this approximation leads to a slight overestimation of the rotation of the 
plastic hinge arising at the T-stub web ϑp1 and a slight underestimation of the plastic rotation 
arising at the bolt line ϑp2. 

Therefore, for each simple cantilever scheme, the value of the plastic rotation is obtained from 
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Fig. 6 Cantilever scheme for evaluating the plastic rotations 
 
 

the inversion of the moment-curvature diagram reported in previous paragraph and the integration 
of the curvatures along the cantilever. Such an integration provides the values of the following 
functions already defined by Piluso et al. (2001): 

 

Case 1: 
u

y

M

M
 1  

0p  (9)
 

Case 2: 
u

h

M

M
 21   
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t

L

f
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u

m

M

M
 32   

  F
t

L

f
p   (11)

 

Case 4: 13    

  G
t

L

f
p   (12)

 

where ξ is equal to the ratio between the bending moment and Mu and the functions D(ξ), F(ξ) and 
G(ξ) depend only on the mechanical properties of the plate. For the sake of clarity, the complete 
expressions of the functions are reported in the Annex A of this paper. A typical non-dimensional 
moment-rotation behaviour of the plastic hinge is delivered in Fig. 7. 

With reference to the kinematic collapse mechanism reported in Fig. 5, it is easy to verify by 
means of geometrical considerations, that the plastic displacement of the T-stub can be expressed 
as a function of the plastic hinges rotation by means of the following relationship 

 
  *

211, nm pppstubTp    (13)
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Fig. 7 Typical moment-rotation behavior of the plastic hinge 

 
 

where ϑp1 is the plastic rotation of the first cantilever scheme characterized by the length L1 and the 
bending moment M1; ϑp2 is equal to the sum of the plastic rotations of the other two cantilever 
schemes defined in Fig. 6. In addition, due to compatibility requirements with the vertical 
displacement of the plate in the contact zone, ϑp1 has to be greater than ϑp2, otherwise ϑp1 = ϑp2. 

 
3.1.2 Axial behavior of the bolt 
As aforesaid, analogously to the flange plate, the force-elongation behaviour of the bolt can be 

characterized starting from the definition of the stress-strain law of the basic material. It is easy to 
understand that, in this case, the translational spring representing the bolt behaviour can be defined 
by multiplying the strains and the stresses of the constitutive law by the length (Lb) and the net 
section area (Ares) of the shank respectively. Consistently with the Eurocode 3 approach, the 
conventional length of the bolt can be defined as 

 

w
bhn

fb t
tt

tL 2
2

2 


  (14)

 

where tn is the nut thickness, tbh is the thickness of the bolt head and tw is the thickness of the 
washer. 

Therefore, the force-elongation behaviour of the bolt can be characterized by means of the 
following tri-linear behaviour: 

 
 1st Branch: Elastic (δ ≤ δy): 
 

 0KB  (15)
 

 2st Branch: Inelastic (δy < δ ≤ δh): 
 

 0K10.0B (16)
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 3st Branch: Plateau (δ > δh): 
 

uBB  (17)
 

where the contribution of the initial stiffness of the bolt, with reference to the single tee element, is 
equal to 

b

res

L

EA
K

2
0   (18)

 

while the boundary displacements, dividing the different branches are 
 

E

Lf by
y 2
  

 
010.0 K

BB yu
yh


   

buu L   

(19)

 

Finally, the yielding and ultimate bolt forces are given by 
 

yresy fAB   

uresu fAB   
(20)

 
 
4. Model assembling 
 

As far as the basic assumptions and the mathematical laws defining the non-linear behaviour of 
flange plate and bolt are defined, it is possible to define the procedure to assembly the sub-
components of the T-stub (i.e., the plate and the bolt) in order to get the whole force-displacement 
curve up to failure. According to the assumptions made and to the bending moment distribution 
depicted in Fig. 6, for a fixed value of the bending moment Mj = M1 acting in correspondence of 
the T-stub web, there are five unknown parameters (Fig. 1(b)). The force transmitted through the 
T-stub web (F), the prying force (Q), the value of the distributed load corresponding to the action 
provided by the bolt head (q), the ratio between the bending moment acting at the bolt line and that 
arising at the T-stub web (ψ) (Fig. 6) and the location of the prying forces in the contact zone (n*). 
In order to solve the problem, five equations can be written: the translational equilibrium, the 
rotational equilibrium around the plastic hinge located in correspondence of the web, the rotational 
equilibrium of the left portion of the plate beam around the point of application of the bolt force, 
the compatibility equation between the T-stub flange and the elongation of the bolt at the bolt line 
and the compatibility equation of the vertical displacements in the contact zone. Therefore, the 
system of equations to be solved, in its general form, can be written as follows: 
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where δb,el is the elastic part of the vertical displacement evaluated at the bolt line, Ksec is the value 
of the bolt secant stiffness determined on the force-elongation curve previously defined, ϑp1(ψ) and 
ϑp2(ψ) are the plastic rotations of the hinges to be evaluated according to the procedure previously 
reported, whose values depend on the parameter ψ, v1(z1) is the distribution of the plate elastic 
displacements in the contact zone and z1 is the value of the abscissa starting from the tip of the 
plate. 

 
 

(a) Elastic 
 

(b) Plastic 
 

 
(c) Total 

Fig. 8 Deformed shape of the flange 
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It is worth noting that fourth and fifth equation of system (21) depend on the elastic part of the 
plate displacement (Fig. 8(a)) and, due to this reason, it is necessary to define the mathematical 
laws of the vertical deflections of the plate in a closed form. To this scope, the static beam 
equations for the three portions 0 ≤ z1 ≤ n*- dw/2, 0 ≤ z2 ≤ dw and 0 ≤ z3≤ m - dw⁄2 have been written 
imposing appropriate boundary conditions. For the sake of clarity, the solutions providing the 
deflections of the plate, are reported in Annex B. 

Observing Eq. (21), it is easy to understand that the solution of the system is untrivial in a 
closed form. In fact, the equations providing the expressions of the flange plate plastic rotation are 
quite complicated (Annex A) and, in addition, the point where the prying force is applied is not 
directly evaluable because it depends on the expression of the vertical deflection of the plate in the 
contact zone (Annex B). 

 

Fig. 9 Flow-chart for solving the system of Eq. (21) 
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Nevertheless, the system can be solved incrementally by means of the algorithm reported in Fig. 
9. In particular, following this algorithm, for every assigned value of the bending moment Mj, the 
system of equations can be iteratively solved by preliminarily fixing n* and an attempt value of ψ 
in order to determine ϑp1 and ϑp2 and, from the first four equations of the system, the values of q, F, 
Q, and a new value ψ = ψ′ of the parameter, providing the bending moment of the bolt axis. In 
particular, q can be calculated from the following equations, whose application range depends on 
the deformation state of the bolt: 

 

Case 1 – Bolt in the elastic range 
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Case 2 – Bolt in the plastic range 
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Case 3 – Bolt in the plateau range 
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while F, Q and ψ’ can be calculated by exploiting the following relationships 
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Afterwards the accuracy of the solution can be evaluated by checking the respect of last 
equation of the system and the difference between ψ and ψ’. 

As far as the force-displacement curve of the T-stub is obtained by progressively increasing the 
bending moment acting on the flange, at the end of each loading step it is possible to check also 
for the deformation state of plastic hinges and bolt. In this way it is possible to control if the 
rotations and the elongations are compatible with the plastic deformation capacity provided by the 
basic materials. 

In order to verify the accuracy of the model, the authors have developed a specific program 
based on the reported algorithm in Visual Basic for Application. 
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5. Comparison with experimental results 
 

In order to evaluate the accuracy of the theoretical model, some comparisons with the 
experimental tests already carried out at Laboratory of Materials and Structures of the Department 
of Civil Engineering of Salerno University (Piluso et al. 2001) have been considered. The tests 
concern eleven specimens fabricated by coupling T-stubs obtained from hot-rolled profiles of HEA 
and HEB series and one specimen obtained by welding two plates according to a T-shape. 

With reference to the notation given in Fig. 10, the measured values of the geometrical 
properties of tested specimens are reported in Tab.1. The value of r provided for specimen-12 (the 
welded T-stub) corresponds to the value of the throat thickness of the weld connecting the T-stub 
web to the flange. 

 
 

 
Fig. 10 Geometrical configuration of the specimens 

 
 
 

Table 1 Geometrical properties of tested specimens (Piluso et al. 2001) 

T-stub 1 2 3 4 5 6 7 8 9 10 11 12 

db (mm) 20.00 20.00 20.00 24.00 24.00 24.00 27.00 24.00 27.00 20.00 20.00 20.00

dh (mm) 33.53 33.53 33.53 39.98 39.98 39.98 45.20 39.98 45.20 30.00 33.53 33.53

dw (mm) 37.00 37.00 37.00 44.00 44.00 44.00 56.00 44.00 56.00 37.00 37.00 37.00

tbh (mm) 12.72 12.72 12.72 14.78 14.78 14.78 17.35 14.78 17.35 12.72 12.72 12.72

tn (mm) 16.00 16.00 16.00 19.00 19.00 19.00 27.00 19.00 27.00 16.00 16.00 16.00

tf (mm) 14.40 14.60 13.00 12.30 13.80 16.3 13.90 13.30 12.50 10.85 9.50 12.20

tw (mm) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

m (mm) 39.30 39.30 42.30 48.95 49.75 45.65 52.45 45.20 54.05 32.60 36.40 53.50

n (mm) 40.80 40.80 22.20 58.10 74.90 45.20 71.70 19.30 53.00 58.50 38.00 49.90

r (mm) 18.00 18.00 15.00 24.00 27.00 18.00 27.00 15.00 24.00 18.00 15.00 7.50

b (mm) 126.50 119.00 124.00 118.80 115.00 120.00 122.80 112.50 125.10 125.00 159.00 90.25

284



 
 
 
 
 
 

Bolted T-stubs: A refined model for flange and bolt fracture modes 

Table 2 Mechanical properties of tested specimens (Piluso et al. 2001) 

T-stub 1 2 3 4 5 6 7 8 9 10 11 12 

fy (MPa) 291.16 264.95 273.15 299.76 317.72 280.46 307.58 269.42 300.97 293.10 324.33 346.50

fu (MPa) 517.21 501.11 504.33 543.59 546.84 527.76 543.57 482.70 552.27 514.87 530.93 460.77

Eh (MPa) 3276 3171 3087 2877 3339 3360 3423 3276 3234 2163 2184 2310

Eu (MPa) 371.11 378.32 435.95 465.24 483.15 488.11 516.05 476.80 466.65 406.32 347.93 383.02

εh (%) 1.358 1.135 1.171 1.285 1.362 1.202 1.318 1.055 1.290 0.600 2.040 0.870

εu (%) 49.18 48.12 58.70 76.77 78.43 63.83 77.88 69.40 67.75 92.50 96.98 95.29

fub (MPa) 904 904 904 904 904 904 904 904 904 1034 904 904

 
 
The mechanical properties of the materials composing the flange plates of the specimens have 

been obtained in terms of true stress-true strain starting from the results of coupon tensile tests 
(Table 2). 

For all the specimens, the proposed mechanical model has been applied and compared with the 
corresponding experimental results (Fig. 11). In particular, in the graphs, the predicted curves are 
represented by indicating three displacement values corresponding to the attainment of: (1) the bolt 
fracture calculated by considering the lower limit of the elongation at break suggested by the 
producer (bolt class 8.8/10.9, Amin = 0.12/0.09); (2) the bolt fracture calculate by considering the 
upper limit of the elongation at break suggested by the producer (bolt class 8.8/10.9, Amin = 0.18 

 
 

  

Fig. 11 Comparison between experimental results and theoretical predictions 
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Fig. 11 Continued 
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Table 3 Mechanical model vs Experimental tests 

T-stub 1 2 3 4 5 6 7 8 9 10 11 12 

δu,exp (mm) 21.91 22.71 39.3 63.71 68.16 40.80 70.81 47.61 59.41 38.03 59.08 81.00

δu,th_min (mm) 13.91 14.01 18.41 - - 25.59 - 32.24 - - 39.25 - 

δu,th_max (mm) 22.30 22.72 28.08 - - 36.70 - 42.38 - - 63.18 - 

δu,th (mm) 18.11 18.37 23.24 67.49 62.27 31.25 70.24 37.31 64.73 42.84 51.22 90.97

δu,th /δu,exp 0.83 0.81 0.59 1.06 0.91 0.76 0.99 0.78 1.09 1.13 0.87 1.12

Fu,exp (kN) 342.39 337.14 281.46 343.32 423.61 445.76 479.40 348.75 378.01 323.81 250.41 195.95

Fu,th_min (kN) 304.21 302.76 232.09 - - 420.18 - 279.36 - - 278.22 - 

Fu,th_max (kN) 311.96 310.89 239.46 - - 425.05 - 283.46 - - 299.22 - 

Fu,th (kN) 308.09 305.49 235.78 308.27 353.09 422.61 399.56 281.41 325.81 350.27 288.72 190.80

Fu,th /Fu,exp 0.90 0.91 0.84 0.90 0.83 0.95 0.83 0.81 0.86 1.08 1.15 0.97
 
 

Table 4 Main results obtained by solving the system of Eq. (21) 

T-stub 1 2 3 4 5 6 7 8 9 10 11 12 

ϑp1 0.114 0.115 0.179 0.663 0.617 0.206 0.662 0.313 0.593 0.644 0.251 0.842

ϑp2 0.002 0.003 0.001 0.621 0.591 0.068 0.636 0.088 0.559 0.615 0.116 0.816

ψ′ 0.516 0.536 0.469 0.834 0.799 0.635 0.818 0.695 0.863 0.756 0.764 0.866

Q [kN] 67.154 67.96 103.313 116.415 80.362 111.005126.384178.280169.108 56.495 101.951 86.528

q [kN] 5.987 5.987 5.987 6.149 5.892 7.250 5.859 9.016 5.955 6.277 6.159 4.921

n* [mm] 40.800 40.800 22.200 35.720 59.031 42.881 47.667 19.300 31.751 54.501 25.132 32.631

 
 

/0.14); (3) the flange fracture. 
The comparisons of the model with the experimental tests show a very satisfactory agreement 

in terms of shape of the force-displacement curve and in terms of prediction of the plastic 
deformation capacity. 

In particular, in Table 3, the predicted values of the T-stub displacement capacity and ultimate 
resistance have been compared with the experimental ones in terms of ratio δu,th/δu,exp and Fu,th/Fu,exp. 
Dealing with the prediction of the displacement capacity, the mean value of ratio δu,th/δu,exp is equal 
to 0.91 with a standard deviation equal to 0.17. Conversely, dealing with the T-stub ultimate 
resistance, the mean value of the ratio Fu,th/Fu,exp is equal to 0.92 with a standard deviation equal to 
0.11. This results correspond to a slight underestimation of the resistance and ductility supply of 
the T-stub. Nevertheless, the obtained results are almost always on the safe side. For the sake of 
clarity, in Table 4, the value of the parameters ϑp1, ϑp2, ψ′, q and n* are summarized for all the 
experimental tests simulated. 

 
 

6. Conclusions 
 
Starting from an analytical model previously developed, a refined model to analyse the whole 

force-displacement curve of bolted T-stubs has been proposed. The basic assumptions and the 
governing equations, whose solution requires a non-linear incremental procedure, have been also 
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presented. 
The accuracy of the proposed model has been investigated by means of a comparison with 

twelve experimental tests, both in terms of resistance and of plastic deformation capacity. 
The results obtained are satisfactory and on safe side. In fact, regarding the prediction of the 

ultimate resistance, the average ratio between the value predicted by the model and the 
experimental one is equal to 0.92. Similarly, the ratio between the predicted ultimate displacement 
and the experimental value is equal to 0.91. These results, compared to the complexity of the 
analysed connection component, are enough accurate for practical application. In particular, it has 
to be underlined that the model allows to predict with sufficient accuracy the plastic deformation 
capacity of bolted T-stubs which is currently not covered by codified rules. Therefore, the model 
can be effective in providing a safe side estimation of the plastic rotation capacity of extended end-
plate connections as the ratio between the ultimate plastic deformation of the end-plate component 
at the tensile flange level (modelled by means of an equivalent T-stub) and the level arm. 
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Annex A 
 
The basic formulations for computing plastic rotations can be obtained with reference to the 

simple cantilever scheme depicted in Fig. 7. Four cases can be identified as follows: 
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Case 2: 
u

h

M

M
 21   

 

The rotation corresponding to the attainment of the bending moment ξMu can be evaluated through 
the following relationship 
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where χξ is the curvature corresponding to the bending moment ξMu. 
Taking into account that 
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the following relationship is attained 
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where the coefficient C1,ξ is given by 
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The rotation corresponding to the occurrence of the first yielding is given by 
2
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y


  ; therefore, 

the plastic rotation is given by 
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By combining Eq. (6a) with Eqs. (2a), (4a) and (5a), the plastic rotation p  can be computed 
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where χξ = function of ξ. 
Obviously, for ξ = ξ2 (which corresponds to χξ = χh), the function D(ξ) provides a value D(ξ2) that 

depends on the material properties only. 
 

Case 3: 
u

m

M

M
 32   

In this case, the rotation corresponding to the attainment of the bending moment ξMu can still be 
evaluated using the Eq. (2a) considering that 
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where the coefficient C1 is given by the Eq. (5a) with χξ = χh; and the coefficient C2,ξ is given by 
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The plastic rotation can be still computed by means of Eq. (6a) so that, combining Eqs. (6a), (2a), 
(9a) and (10a), the plastic rotation p  can be computed 
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Obviously, for ξ = ξ3 (which corresponds to χξ = χm), the function F(ξ) provides a value F(ξ3) that 
depends on the material properties only. 

 

Case 4: 13    
 

In this case, the rotation θ can still be evaluated using the Eq. (2a), considering that 
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where C2 = value of C2,ξ for χξ = χm; and the coefficient C3,ξ is given by 
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By solving the integrals, the Eq. (14a) can be simplified 
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Finally, combining Eqs. (6a), (2a), (13a) and (15a), the plastic rotation p  is given by 
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Obviously, for ξ =1 (which corresponds to χξ = χu), the function G(ξ) provides a value C = G(1) 
that depends on the material properties only. 

 
  

292



 
 
 
 
 
 

Bolted T-stubs: A refined model for flange and bolt fracture modes 

Annex B 
 
With reference to the scheme in Fig. 12, the expressions of the displacements has been computed 
by dividing the plate in three parts and writing the static beam equations 
 

 
Fig. 12 Static scheme for the evaluation of the elastic displacements 
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where F is the load level, q is the bolt action, E is the Young modulus, I the inertial moment of the 
bolt section, m, n* and dw are the geometrical parameters first shown. 
Starting from the definition of the plate deflections it is possible also to determine the value of the 
δb,el to be used in Eq. (2.b) (by imposing z2 = dw / 2) 
 

    
EI

nmnqdqdnmnmFnqd www
elb 384

38263216 **32**2*4

,


  (4b)

 

293




