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Abstract.    The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical 
steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear 
buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an 
imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following 
Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the 
elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). 
Initial imperfections in the form of a first eigen-mode for different wall loads and from ‘in-situ’ measurements with 
horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some 
recommendations for the silo dimensioning were elaborated. 
 

Keywords:    silo; corrugated sheet; columns; buckling; stability; numerical modelling; Eurocode; geodetic 
measurements 
 
 
1. Introduction 
 

Silos are engineering structures widely used in industries and farms to store, feed and process 
bulk solids that is essential to agricultural, mining, mineral processing, chemical, shipping and 
other industries (Fayed and Otten 1997, Safarian and Harris 1985). They are mainly built from 
concrete or metal (steel and aluminium). Metal silos can be built of thin-walled isotropic plain 
rolled sheets (which can be welded, riveted or screwed around the silo perimeter) or of thin-walled 
corrugated curved sheets strengthened by vertical stiffeners (columns) distributed uniformly 
around the silo circumference and connected with screws. Those latter are frequently used in the 
engineering practice due to an economical steel consumption and a small silo weight. In these silos, 
it is assumed that horizontally corrugated wall sheets carry circumferential tensile forces caused by 
horizontal wall pressure and columns carry vertical compressive forces due to the vertical wall 
friction traction exerted from bulk solids. 

A common mechanical failure form in all metal silos is a stability loss caused by the 
compressive wall friction force due to the interaction between the silo fill and silo wall, 
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particularly during eccentric filling and discharge (Brown and Nielsen 1998, Rotter 2001) and 
dynamic mass flow (Tejchman and Gudehus 1993, Tejchman 1999, Wilde et al. 2008). In contrast 
to many buckling analyses performed for silo shells with isotropic plain rolled thin-walled walls 
(Brown and Nielsen 1998, Knebel and Schweizerhof 1995, Song and Teng 2003, Sadowski and 
Rotter 2011), the comprehensive buckling analyses of silos consisted of horizontally corrugated 
sheets and vertical stiffeners are still in minority (Wójcik et al. 2011, Iwicki et al. 2011). The 
treatment of the local buckling within the framework of EN 1993-4-1 (2007) provides 2 alternative 
procedures to calculate the buckling strength of vertical columns around the silo circumference 
which significantly differ. In the case of a silo with sparsely distributed columns, the approach in 
EN 1993-4-1 (2007) is very conservative since it does not take into account a real 3D behaviour of 
a silo shell containing a silo fill (Wójcik et al. 2011). In order to capture more realistically a 
buckling process in silos, it is advantageous to apply the finite element method which enables to 
carry out among others linear buckling analyses (LBA), non-linear static analyses or non-linear 
dynamic analyses. LBA is the simplest analysis, used to estimate critical loads. In turn, non-linear 
analyses (based on the equilibrium path between the load and displacement) determine the ultimate 
load by taking into account the effect of the material and geometric characteristics. Sometimes if a 
static solution is impossible to be achieved due to a convergence loss caused by a localized 
instability (e.g., surface wrinkling, local buckling or material instability), a dynamic approach has 
to be applied (Kubiak 2007, Kobayashi et al. 2012, Iwicki et al. 2014), wherein the time history of 
a structure response is traced during growing load. 

In this paper, the comprehensive static global stability FE analyses were performed for a real 
steel silo with corrugated walls strengthened by cold-formed open-sectional thin-walled columns 
by taking initial geometric imperfections into account with a different horizontal amplitude. The 
FE computations were carried out with the commercial FE package ABAQUS (2010). In the first 
computation step (model ‘1’), a single perfect silo column was investigated (in analogy to the 
solution assumed in EN 1993-4-1 (2007)). Then, a simplified numerical silo model ‘2’ composed 
of an equivalent orthotropic plate and beam elements representing columns was studied. Finally, in 
the model ‘3’ 3D shell elements were employed to describe in detail the silo geometry (corrugated 
wall sheets and columns made from open thin-walled profiles). Advantages and disadvantages of 
all models were outlined. The results were directly compared with EN 1993-4-1 (2007) for 
estimating its usefulness in the design practice. 
 
 
2. Silo characteristics 
 

The real cylindrical metal silo belonging to a silo battery built in Poland was analysed (Wójcik 
et al. 2011). The silo was H = 21.48 m high with the diameter D = 5.35 m (called silo ‘1’). The 
cross-section area of the silo was 22.48 m2 and the perimeter was 16.81 m. The silo walls were 
made from corrugated steel sheets strengthened with cold-formed open-sectional thin-walled steel 
profiles fixed to a foundation concrete slab (Fig. 1). The corrugation had the 76 mm pitch and 
18 mm depth. The 18 vertical columns distributed uniformly along the silo circumference (at the 
distance of ds = 0.93 m) were connected to wall sheets by screws. The outflow took place through 
a hopper of the height of 2.25 m which was supported on several additional interior columns. The 
hopper was totally separated from the bin. Its upper part was at the height of 3.44 m above the bin 
bottom. The silo contained wheat and was designed for funnel flow. The filling and empting 
process of the silo was concentric. 
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Fig. 1 Geometric silo characteristics, wall friction, normal pressure and patch pressure (pw, ph, pp) 
and profile cross-sections of silo ‘1’ with corrugated sheets and external vertical columns 

 
 

The wall pressure due to the stored granular material was calculated using EN 1991-4 (2006). 
The maximum wall frictional traction and corresponding normal pressure in the bin during 
emptying were pw = 13 kPa and ph = 22 kPa, respectively (at the height of the hopper top). To 
account for asymmetries (e.g., due to asymmetric filling), the additional patch (local) load pp over 
the height of s = 1.05 m was also taken into account (EN 1991-4 2006). A simplified analytical 
procedure (Gallego et al. 2011) was applied for predicting the worst location of the patch load. 
The maximum horizontal tensile normal stress in thee corrugated sheets was equal to 88 MPa and 
was significantly smaller than the permissible steel yield stress equal to 350 MPa. 
 
 
3. Buckling strength according to Eurocode 3 
 

Depending upon the column distance ds, there exist two alternative buckling approaches in EN 
1993-4-1 (2007). The first approach (called ‘A’) should be used for densely distributed columns 
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In this case the critical buckling resultant resistance nx,Rcr per the unit circumference of the 
orthotropic shell should be evaluated at each appropriate level in the silo by minimising the 
expression in Eq. (2) with respect to the critical circumference wave number j and the buckling 
height li 
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where Dy - the flexural rigidity parallel to the corrugation, Cy - the stretching stiffness parallel to 
the corrugation and r - the cylinder radius, j - the circumference wave number, ω - the parameter 
including buckling height li and A1,2,3 - the parameters including the flexural and stretching stiffness 
in orthogonal directions of the equivalent orthotropic cylinder (EN 1993-4-1 (2007)). The 
characteristic buckling resistance nx,Rk for the orthotropic shell should be determined as the smaller 
value of Eqs. (3) and (4) 

, ,x Rk x x Rcrn n , (3)
 

, /x Rk eff y sn A f d , (4)
 

where αx - the elastic buckling imperfection reduction factor (αx = 0.8), Aeff - the effective cross-
sectional area of the stiffener and fy - the yield stress. Assuming that all vertical loads are carried 
by stiffeners only, the characteristic buckling resistance per each column is equal to the lower 
value of Eqs. (5) and (6) 

, ,b Rk x x Rcr sN n d , (5)
 

,b Rk eff yN A f (6)
 
The following assumptions were met to lay down Eq. (2): 

 

 the cylindrical shell is loaded by vertical forces prescribed at both ends only (horizontal 
pressure is not considered), 

 the resulting smeared stiffness is uniformly distributed, 
 the equivalent shell mid-surface is taken as the central axis of corrugation, 
 the cylindrical shell has hinge supports at ends, 
 the buckling mode radial displacements are described by the function 

 

sin cos
m x ny

w w
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, (7)

 

where L - the height of the cylinder, m and n - the wave numbers in the x and y direction, R - the 
radius of the cylinder mid-surface, x - the axial coordinate, y - the circumferential arc-length 
coordinate. 

If the horizontal distance between the columns ds > ds,max, the buckling resistance should be 
determined for individual columns using the second approach (called ‘B’): 

 

(B1) by ignoring the supporting action of wall sheets in resisting buckling displacements 
normal to the wall or 

(B2) by allowing for the stiffness of wall sheets in resisting buckling displacements normal to 
the wall. 

 

The more realistic method ‘B2’ is usually used. The design buckling resistance of a single 
vertical column in the method ‘B’ is given by 
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, 2b Rk yN EI K , (8)
 

where EJy - the flexural rigidity of the columns in the plane perpendicular to the wall and K - the 
bending stiffness of the wall sheets between the vertical columns, calculated as 

 

3

y
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D
K k

d
  (9)

 

with the coefficient ks = 6. The wall bending stiffness Dy equals 
 

20.13yD Etd , (10)
 

where E – the modulus of elasticity of the wall, t – the wall thickness and d – the sheet height. The 
following assumptions were taken into account: 
 

 the 2D behaviour of the column (beam) is considered only, 
 the number of buckling half-waves along the circumference is equal to the half of the 

columns number (if the number of column is a multiple of 4), 
 the column is loaded by vertical forces prescribed at both ends only (horizontal pressure  is 

not considered), 
 the column is supported at one side by elastic springs simulating the presence of corrugated 

sheets, 
 the column has hinges at ends. 

 

Eq. (8) may be analytically derived from the equilibrium equation for a vertical column 
supported by an elastic foundation (Wójcik et al. 2011). 

In the case of the considered silo ‘1’ (with the number of columns n = 18), the distance ds = 
0.933 m is very close to ds,max = 0.943 m. Thus, two Eurocode approaches (‘A’ and ‘B’) may be 
applied at the same time. Table 1 includes the profile cross-sectional characteristics calculated with 
the rounded corners (marked as ‘rc’) and without them (marked as ‘sc’). The effective cross-
section area was calculated including the local and distortional buckling (EN 1993-4-1 2007). 

The characteristic maximum normal forces in each profile during silo filling and discharge are 
listed in Table 2 (calculated according to EN 1991-4 (2006) by taking into account the worst 
location of the patch load). 

The critical buckling resistance Nb,rk and load bearing capacity factors are shown in Table 3. 
The differences between the normal forces calculated with the increased substitute uniform 

 
 

Table 1 Columns cross-section properties: area and inertia moments (‘rc’-section with rounded corners and 
‘sc’-section with sharp corners 

Profile Arc [cm2] Aeff [cm2] Asc [cm2] Jy,rc [cm4] Jy,sc [cm4] Jz,rc [cm4] Jz,sc [cm4]

C1.5 3.50 2.57 3.56 18.7 19.3 46.4 47.5 

C2.0 4.66 4.07 4.76 25.1 26.1 62.5 64.5 

C2.5 5.84 5.53 6.00 31.9 33.5 79.1 82.2 

C4.0 9.39 9.39 9.80 53.1 57.4 130.8 139.1 

V4.0 15.11 15.11 15.28 221.5 224.8 709.3 720.5 
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Table 2 Resultant normal forces in column during filling ‘f’ and emptying ‘e’ at level ‘z’ due to uniform 
pressure ‘Nw’, patch load ‘Np’ and substitute uniform pressure ‘Nw,u’ (EN 1991-4 2006) 

Profile 
z 

[m] 
Filling Discharge 

Nwf [kN] Npf [kN] Nwf+Npf [kN] Nwf,u [kN] Nwe [kN] Npe [kN] Nwe+Npe [kN] Nwe,u [kN]

C1.5 2.51 8 1 9 9 9 2 11 11 

C2.0 7.53 49 6 55 57 54 13 67 70 

C2.5 10.04 75 9 84 86 82 20 103 107 

C4.0 15.06 129 16 146 149 142 37 180 185 

V4.0 16.73 148 19 167 170 163 44 206 212 
 
 

Table 3 Buckling forces according to EN 1993-4-1 (2007): Nb,Rk(1) - Eq. (6), Nb,Rk(2) - Eq. (5), Nb,Rk(3) - Eq. (8) 
(Nb,Ek - discharge force with substitute uniform pressure Nwe,u) 

Profile Nb,Rk(1) [kN] Nb,Rk(2) [kN] Nb,Rk(3) [kN] Nb,Ek/Nb,Rk(1) Nb,Ek/Nb,Rk(2) Nb,Ek/Nb,Rk(3) 

C1.5 124 444 89 0.13 0.03 0.13 

C2.0 167 516 103 0.49 0.14 0.68 

C2.5 210 589 117 0.55 0.18 0.91 

C4.0 343 779 153 0.56 0.23 1.21 

V4.0 535 1047 304 0.40 0.19 0.70 
 
 

Fig. 2 Change of buckling force Nb,rk of single column (C4.0) against column number n (Nb,Rk(1) - 
Eq. (6), Nb,Rk(2) - Eq. (5), Nb,Rk(3) - Eq. (8)) 

 
 
pressure or with the method considering the worst patch load location are negligible. With an 
increase of the column number, the stability strength of a single column decreases (Nb,rk(2), Eq. (5)) 
or increases (Nb,rk(3), Eq. (8)) (Fig. 2). The buckling force Nb,rk(2) in the silo ‘1’ is 5 times higher on 
average than Nb,rk(3) because of an undesired discontinuity between Eqs. (5) and (8) (Fig. 2). The 
buckling resistance Nb,rk(2) is by 270% higher on average than the plastic resistance (including 
buckling local effects) Nb,rk(1) and Nb,rk(3) and is by 40% lower on average than Nb,rk(1). The strengths 
by Eqs. (5) and (8) are continuous only for the very high column number n = 40 (Fig. 2). A 
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significant discrepancy between Eqs. (5) and (8) indicates the weakness of EN 1993-4-1 (2007). 
Our 3D FE analyses prove that the results with a classical solution of the equivalent orthotropic 
cylindrical shell (Eq. (2)) produce more realistic results than the a solution based on the single 
beam resting on the elastic foundation (Eq. (8)). 
 
 
4. Measured geometric imperfections of real silo 
 

Since the measurements of initial geometric imperfections were not feasible in the considered 
silo of Section 2 (Fig. 1), we measured them in a similar newly-built cylindrical metal silo with 
corrugated sheets stiffened by columns (called silo ‘2’). The silo was 29 m high with the diameter 
of 15.4 m and included 34 cold-formed open-sectional column profiles at the distance of ds = 1.4 
m. The height of the column was H = 25 m. The corrugation had the 76 mm pitch and 18 mm 
depth. The silo contained barely. As other similar silos, the silo was built with the use of 17 lifts 
(Fig. 3(a)) from the top to the bottom. First, the roof was constructed at the ground and in the next 
steps the silo structure was sequentially lifted (by every second column). During each step the 
corrugated sheets were assembled (Fig. 3(b)) and the screws were fixed to the sheets. In the final 
stage, the columns were fixed to the concrete foundation. The applied forces needed for the silo 
lifting generated some displacements (due to rotations of column joints) which were clearly seen 
(Fig. 3(c)). 

The measurements of column displacements were performed twice: shortly after the silo 
erection and before the first solid filling and next after the first filling (with 2500 t of barely). The 
accuracy of displacement measurements was ± 3 mm. The displacements were measured along the 
silo height every 2.5 m, i.e., between the column connections (Fig. 3(c)). The mean displacements 
along the silo height before and after filling are presented in Fig. 4(a). The maximum radial 
displacements of columns varied between − 50 mm (to the silo inside) and + 34 mm (to the silo 
outside). The shape of the relative mean displacements (Fig. 4(b)) of the wall was in good 
agreement with the FE calculations. The measured initial radial displacements (shown in Figs. 
5(a)-(b) for the empty silo ‘2’) were introduced into the FE model of the silo ‘1’ in Section 2 (18 
columns) with the aid of the approximation spline function by keeping the same maximum initial 
displacements (− 50 mm - + 34 mm). The approximated circumferential imperfections at the height 
H = 12.5 m are shown in Fig. 5(c). The same technique was used to transfer the measured 
displacements along the silo height. 

 
 

 
(a) silo during erection (b) assembly of corrugated sheets (c) column imperfections

Fig. 3 Erection of silo ‘2’ in Gdańsk (Poland) 
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(a) Mean initial radial displacements (b) Relative radial displacements 

Fig. 4 Measured geometric imperfections of columns in silo ‘2’ in Poland 
 
 
5. Simplified FE analyses of silo 
 

5.1 Single column on elastic foundation 
 
The initial FE calculations were carried out with 2 numerical models of columns: 1) composed 

of beam elements and 2) composed of shell elements. In the first case, 240 beam elements B31 
were employed and in the second case 8000 4-node rectangular shell elements (ABAQUS 2010). 
The columns were fixed at the bottom. The stiffness of the elastic foundation provided by the 
corrugated sheet walls was calculated with Eq. (9). The first eigen-mode calculated from a linear 
buckling analysis (LBA) was chosen as the initial geometric imperfection. The Riks method 

 
 

 
(a) General 3D view 

 
 

(b) Mid-cross-section (scale 20:1)
 
 

(c) Approximation of measured displacement 
along silo circumference ( - pole angle 
and u - horizontal displacement) 

Fig. 5 Measured radial column displacements in empty cylindrical metal silo ‘2’ (H = 29 m, D = 
15.4 m) transferred to silo ‘1’ 
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(a) Beam elements (b) Shell elements 

Fig. 6 Non-linear static analyses GMNIA of single column on elastic foundation: evolution of load 
factor λ versus vertical column top displacement u against different horizontal amplitude w of 
initial geometric imperfection in form of first eigen-mode 

 
 

Fig. 7 Non-linear static analyses (GNIA and GMNIA) of single column on elastic foundation: limit load 
factor λ versus initial imperfection amplitude w for imperfection in form of first eigen-mode 

 
 

(ABAQUS (2010)) with the automatic load increment was used to determine the force-deflection 
curve and load factor λ, defined as the ratio between the buckling wall pressure and wall pressure 
due to axisymmetric emptying (EN 1991-4 2006). The maximum force increment was taken as 5% 
of the total vertical force by EN 1991-4 2006. 

Fig. 6 shows the influence of the horizontal imperfection amplitude on the load factor λ for 2 
numerical models of a single column, i.e., with the beam and shell elements, as a function of the 
vertical displacement of the column top u for the different amplitudes w of the initial geometric 
imperfection (from LBA). The change of the limit load for the geometric non-linear analysis with 
the elastic (GNA) and perfectly-plastic material (GMNIA) is presented in Fig. 7. The imperfection 
amplitude in GMNIA had a significant influence on the column load. In the range of the maximum 
initial horizontal wall imperfection amplitude of w = 0-20 cm, the limit load factor λ was the same 
as for the column described with the beam or shell elements. The column resistance for w = 5-8 cm 
corresponded well to the buckling resistance following EN 1993-4-1 (2007) (λ = 0.83, Eq. (8)). 
The lowest load factor λ = 0.49 at w = 20 cm was by 73% lower than for the perfect column. The 

155



 
 
 
 
 
 

Mateusz Sondej, Piotr Iwicki, Michał Wójcik and Jacek Tejchman 

limit load factor for the perfect column was λ = 1.8 and was equal to Nb,Rk(1)/Nb,Ek = 1.8 (profile C 
4.0). The critical resistance Nb,Rk(2) (λ = 4.3, Eq. (5)) was 2.4-times higher than the limit load for the 
perfect column in the non-linear FE analysis. The buckling resistance was the same in GNIA and 
GMNIA for the perfect column (Fig. 7). The minimum load factor in GNA at w = 20 cm was λ = 
0.83 and was by 26 % lower than for the perfect column. The load factor in GNA was much less 
sensitive to imperfections than in GMNIA. 

 
5.2 3D silo model with equivalent orthotropic shell 
 
The full shell silo 3D FE model of corrugated sheets and thin-walled columns requires a huge 

amount of elements (see Section 5). In order to significantly reduce the computation time, a so-
called equivalent orthotropic shell 3D model was used. The corrugated sheet wall panels were 
replaced by the orthotropic shell panels. The 3D FE buckling analysis of the entire silo structure 
was performed with a silo shell described by shell elements possessing equivalent properties as 
corrugated walls and with vertical columns represented by beam elements. The elastic constitutive 
equation of the equivalent orthotropic plate is (Xia et al. 2012) 

 

11 12

12 22

33

44 45

5545

66

0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

x x

y y

xy xy

x x

y y

xy xy

N C C
N C C
N C

D DM
D DM

DM








    
    
    
    
    
    
    
    
        

  , (11)

 
The full shell silo 3D FE model of corrugated sheets and thin-walled columns requires a huge 

amount of elements (see Section 5). In order to significantly reduce the computation time, a so-
called equivalent orthotropic shell 3D model was used. The corrugated sheet wall panels were 
replaced by the orthotropic shell panels. The 3D FE buckling analysis of the entire silo structure 
was performed with a silo shell described by shell elements possessing equivalent properties as 
corrugated walls and with vertical columns represented by beam elements. The elastic constitutive 
equation of the equivalent orthotropic plate is (Xia et al. 2012) 
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where E – the Young modulus, v – the Poisson ratio, G – the shear modulus, l – the wall 
corrugation length, t – the plate thickness and d – the wall corrugation height. 

The connection between columns and wall was assumed as fixed. The separated hopper and 
roof were neglected due to their an insignificant effect on results. The silo steel was assumed to be 
elastic-perfectly plastic. Two different element types (available in ABAQUS (2010)) were adopted 
to describe the columns: the usual Euler-Bernoulli beam elements (B33) with six degrees of 
freedom per node and the Timoshenko beam elements (B31OS) with one additional degree of 
freedom (in order to capture the element warping). The linear shape functions were used for 
B31OS elements and the cubic functions for B33. In order to describe the equivalent orthotropic 
plain shell silo mantle, the 4-node fully integrated shell element S4 and 4-node shell element with 
the reduced integration S4R were considered. The cylinder mesh for rectangular elements was 
divided into 18×6 = 108 elements in a circumferential direction and 120 elements in an axial 
direction. 

The following 3 different analysis types were conducted: 
 

(1) linear buckling analysis of a perfect silo (LBA), 
(2) geometrically non-linear analysis of a perfect (GNA) and an imperfect silo (GNIA),  
(3) geometrically and materially non-linear analysis of a perfect (GMNA) and an imperfect 

silo (GMNIA). 
 

The linear and nonlinear analyses were performed for 3 various silo wall loads for determining 
the most detrimental initial geometric imperfections: (1) vertical wall friction stress (‘V’); (2) 
vertical wall friction stress and horizontal wall pressure (‘V+H’); and (3) vertical wall friction 
stress, horizontal normal wall pressure and patch wall load (‘V+H+P’). The first silo eigen-mode 
from LBA and geodetic measurements were assumed as the initial geometric imperfections. 

 
5.2.1 Linear buckling analyses (LBA) 
The first buckling eigen-mode of a silo with shell elements S4 obtained from LBA for the 

different silo wall loads are presented in Fig. 8. The lowest buckling factor λ = 5.5 was for the wall 
load ‘V’ with a symmetric buckled form (Fig. 8(b)). The maximum deformation occurred in the 
lower silo-half. The buckled silo included 4 half-waves in a vertical direction and 18 half-waves in 
a circumferential direction (Fig. 8(b)). Assuming other wall loads, the silo deformations were 
concentrated near the bottom (Figs. 8(c)-(d)). For the wall load ‘V+H’, 3 half-waves in a vertical 
direction and 12 half-waves in a circumferential direction were calculated (λ = 10.5) (Fig. 8(c)). 
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The buckled form for the wall load ‘V+H+P’ was asymmetric and had 3 half-waves in a vertical 
direction and 5 half-waves in a circumferential direction (λ = 9.2) (Fig. 8(d)). The mesh size effect 
was negligible on the LBA results - smaller than 2% for a finer mesh. Surprisingly, the first eigen-
mode of the silo described by the shell elements S4R (for the wall load ‘V’) indicated a spurious 
buckle forms for the load factor λ < 1. The LBA results showed that the fully integrated elements 
(S4) were the most suitable for calculations since they created an axisymmetric mesh and were not 
sensitive to spurious modes. They were used in further computations in this section. 

 
5.2.2 Geometrically non-linear static analyses 
The load increment in GNIA was set as 1% of the critical load from LBA. The results for two 

types FE elements (B31OS and B33) were similar but in many cases, the B33-element indicated 
the convergence lack at the low load level. The maximum load factor for the perfect silo was λ = 
12.9 and was greater by 40% as compared to LBA. 

Fig. 9 shows the diagrams of the load factor λ against the amplitude w of imperfections 
obtained from GNIA for the different wall load. The wall loads: ‘V, ‘V+H’ and ‘V+H+P’ were the 
same as in linear buckling computations. Two types of initial imperfections were taken into 
account: 1) in the form of the 1-st buckling mode as in Section 4.1.1 (Fig. 8) and 2) based on the 
approximated geodetic measurements (Fig. 5). 

The GNIA results (Fig. 9) showed that the silo with the only vertical load ‘V’ was more 
sensitive to imperfections and had the lowest buckling strength (λ = 1.8-4.3). In the range of the 
amplitude w = 0-5 cm (Fig. 9(a)), the limit load factor, λ = 4, was by 27% lower than in LBA, and 
for w = 20 cm the load factor was λ = 1.8 and was by 67% lower than in LBA.  

For the silo with the imperfection from LBA (Fig. 8) and wall loads ‘V+H’ and ‘V+H+P’, the 
change of the limit load factor was similar for the range w = 0-5 cm (λ = 8-8.5), but for the range w 
= 5-20 cm some differences occurred (Fig. 9(a)). The curve shape was generally smooth (Fig. 9(a)). 

 
 

 
(a) FE mesh (b) ‘V’ (= 5.5) (c) ‘V+H’ (= 10.5) (d) ‘V+H+P’ (= 9.2) 

Fig. 8 First buckling mode (LBA) of silo model with equivalent orthotropic mantle and external columns
subjected to different wall load (‘V’ – frictional traction, ‘H’ - normal horizontal wall pressure and ‘P’
- patch load) and the calculated load factor 
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The limit load factor for w = 20 cm (λ = 6.9) was by about 25% lower than in LBA (λ = 9.2). 
For the measured imperfections, the limit load factor for the wall loads ‘V+H’ and ‘V+H+P’ (λ = 7-
10) was more random (Fig. 9(b)). The silo with the vertical wall load (‘V’) had a higher buckling 
resistance in the entire range of w = 0-20 cm than with the imperfection from LBA. 

Note that EN 1993-4-1 (2007) estimates a negative effect of imperfections in Eq. (5) by 
introducing the constant αx = 0.8 which corresponds well with GNIA results. 

The presence of the horizontal wall load ‘H’ had a significant positive influence on the silo 
strength. The silo with the wall loads ‘V+H’ and ‘V+H+P’ had the about 2-3-times higher the limit 
load factor than the silo with the vertical load ‘V’. The effect of the patch load ‘P’ was negative for 
the silo stability, however its effect was rather marginal (Fig. 9), especially for a silo with initial 
imperfections based on geodetic measurements. 

Figs. 10-11 presents the load factor λ against the vertical displacement u of the silo top for 4 
different imperfection amplitudes (w =2 0, w = 50, w = 100 and w = 200 mm). In some cases the 
silo after a first bifurcation point had a stable behaviour (Fig. 10(b)). The post-critical solutions in 
many numerical cases were not obtained due to some convergence problems. Figs. 10-11 show 
that the relationship λ-u before the first instability was more linear for the geodetic initial 
imperfections. In general, the silo stiffness after each critical point decreased. 

 
5.2.3 Geometrically and materially non-linear static analyses 
The silo buckling resistance for the perfect silo was λ = 2.3. Fig. 12 presents the change of the 

limit load factor as the function of the imperfection amplitude w for 2 different shapes of the initial 
deformation. The highest influence of the initial imperfections on the ultimate load induced by the 
different wall load (Fig. 12) was observed for the ‘V’-load. Fig. 12(b) shows that for the different 
loads and the same shape of the initial imperfection, the effect of the patch load is negligible. The 
silo ultimate loads were significantly smaller than in the calculations of GNA and GNIA (λ = 2-12). 
Comparing with EN 1993-4-1 (2007), the limit load for the perfect silo was by 30% higher than 
Nbrk,1 (Eq. (6)), by 45% lower than Nbrk,2 (Eq. (5)) and by 180% higher than Nbrk,3 (Eq. (8)). 
The load factor-vertical displacement curves obtained from geometrically and materially non- 
linear analyses were obviously different as compared to analyses without the material non-linearity 
because of the occurrence of plastic deformations (Figs. 13 and 14). 

 
 

 
(a) Imperfection shape: 1-st eigen-mode (LBA) (b) Imperfection shape: geodetic measurements 

Fig. 9 Change of limit load factor λ against various amplitude of initial imperfection w (non-linear static 
analyses GNIA for silo model with equivalent orthotropic shell with different shape of initial
imperfections and different wall load) 
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(a) wall load: ‘V’ (b) wall load: ‘V+H’ (c) wall load: ‘V+H+P’ 

Fig. 10 Change of limit load factor λ against vertical top column displacement u (non-linear static analyses 
GNIA for silo model with equivalent orthotropic shell and initial imperfections (1-st buckling mode 
from LBA) subjected to different wall load 

 
 

 
(a) Wall load: ‘V’ (b) Wall load: ‘V+H’ (c) Wall load: ‘V+H+P’ 

Fig. 11 Change of limit load factor λ against vertical top column displacement u (non-linear static 
analyses GNIA for silo model with equivalent orthotropic shell and initial imperfections 
(geodetic measurements) subjected to different wall load 

 
 

 
(a) Imperfection shape: 1-st eigen-mode (LBA) (b) Imperfection shape: geodetic measurements 

Fig. 12 Limit load factor λ for different amplitudes of initial imperfection w (non-linear static analyses 
GMNIA for silo model with equivalent orthotropic shell with different shapes of initial 
imperfections and wall load 
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(a) Wall load: ‘V’ (b) Wall load: ‘V+H’ (c) Wall load: ‘V+H+P’ 

Fig. 13 Change of limit load factor λ against vertical top column displacement u (non-linear static analyses 
GMNIA for silo model with equivalent orthotropic shell and initial imperfections (1-st buckling 
mode from LBA) subjected to different wall load 

 
 

 

(a) Wall load: ‘V’ (b) Wall load: ‘V+H’ (c) Wall load: ‘V+H+P’ 

Fig. 14 Change of limit load factor λ against vertical top column displacement u (non-linear static analyses 
GMNIA for silo model with equivalent orthotropic shell and initial imperfections (geodetic 
measurements) subjected to different wall load 

 
 
6. Full 3D silo model with shell elements 
 
The FE linear and non-linear stability calculations of a silo with corrugated wall sheets and 

thin-walled column profiles were performed for the same load and boundary conditions as the 
previous studies (Section 4). The silo geometry slightly differed from the previous FE models. The 
cross-sectional centre line for all ‘C’ profiles were assumed to be the same as for the C1.5 (Fig. 1). 
Due to this simplification the limit loads were by about 10% smaller than for the real geometry. 
The corrugated walls were fixed to the columns at the sheet wave top at a constant distance of 
0.076 m. In order to describe the corrugated walls and columns, the 4-node shell elements S4R 
were employed (ABAQUS 2010). The preliminary FE simulations showed that these elements did 
not indicate spurious forms (in contrast to the results in Section 4) and provided the same results as 
with the S4 elements. The total amount of finite elements of the finest silo mesh was huge, i.e., 3.7 
millions with the smallest shell element of corrugated sheets 5×19 mm2 and columns 10×10 mm2. 
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(a) Discription of n- and 

m-number 
 

(b) Buckling load factor  against element number n along 
corrugated wave for different number of m-elements 
between columns 

Fig. 15 Effect of mesh discretization on load factor λ (LBA) 
 
 

Two kinds of initial geometrical imperfections were again taken into account: (a) equal to the first 
eigen-mode from LBA; and (b) based on the geodetic measurements. 

 
6.1 Initial imperfections from linear buckling analyses (LBA) 
 
The linear buckling analysis was performed with the 10-times higher modulus of elasticity of 

columns in order to suppress their local buckling and with the vertical wall load ‘V’ to avoid the 
local buckling of corrugated wall sheets. The FE discretization significantly affected the shape of 
the first buckling mode. The buckled forms for the coarse meshes (2 and 3 elements along the wall 
half-wave) included the 14 half-waves along the circumference and were non-symmetric. The 
buckled forms for the meshes with the minimum 4 elements along the wall half-wave had the 12 
half-wave along the circumference and were less non-symmetric. An increase of the element 
amount along the vertical and a decrease of the element number along the silo circumference 
contributed to a higher limit load factor λ from λ = 13.2-15.6 up to λ = 14.3-16.5 (Fig. 15(b)). The 
maximum difference of the buckling load factor λ for all analysed meshes was about 25%. Fig. 
15(b) shows that the element numbers (n = 3 and m = 6) were sufficient for this silo to realistically 
predict the buckling load factor. 

 
6.2 Geometrically and materially non-linear stability analyses 
 

The silo failure (Fig. 16) was always initialized by some local plastic regions located at junctions 
of two different column profile (C4.0 and V4.0 (Fig. 1)) The limit load factor with the measured 
geometric imperfections of Fig. 5 was higher than this with the imperfections in the form of a first 
buckling shape-mode from LBA (with the vertical wall friction load). For w = 5 cm (the maximum 
measured horizontal amplitude) it was higher by 12%. For w = 5 cm, the limit load factor, λ = 2.0, 
was significantly higher than in a numerical model of a single column on the elastic foundation, λ 
= 0.83 (Eq. (8)) and slightly lower than for a silo with the equivalent orthotropic shell of Section 4 
(λ = 2.3). 
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Fig. 16 Calculated deformed silo shell with von Mises stresses for perfect silo during local plastic-buckling 
from geometrically and materially nonlinear buckling analyses (full 3D silo model) 

 
 

Fig. 17 Limit load factor λ against initial imperfection amplitude w (full 3D silo model, GMNIA) for 2 
different imperfections: from measurements (Fig. 5) and first buckling shape-mode from LBA 

 
 

(a) First buckling shape-mode from LBA (b) From measurements 

Fig. 18 Deformed silo shape from non-linear analysis GMNIA for initial imperfection amplitude w = 20 cm 
(full 3D silo model) for 2 different imperfection types 

 
 
The local yield stress of 350 MPa appeared before the buckling load factor from LBA was 

achieved. In the range of w = 0-5 cm, the silo deformations were similar for the both shapes of 
initial imperfections, i.e., the profile junctions ‘C’ and ‘V’ were found to be the weakest (the first 
local yield stress occurred for the load factor already for λ = 1.0, Fig. 16). The plastic deformation 
in corrugated wall sheets was observed in a post-buckling stage only independently of the 
imperfection type (Fig. 18). 

163



 
 
 
 
 
 

Mateusz Sondej, Piotr Iwicki, Michał Wójcik and Jacek Tejchman 

The major differences in the stability strength of the silo FE models occurred at w = 20 cm, 
where some local effects became of a major importance. The lowest limit load factor was obtained 
for a single column supported by the elastic foundation and the highest for the FE model with 
equivalent orthotropic shell and beam elements. 

 
 

7. Conclusions 
 
The following conclusions can be derived from our stability analyses for cylindrical metal silos 

with corrugated sheets and open-sectional column profiles: 
 
 The strongly simplified FE model of a silo column supported by the elastic foundation 

without initial imperfections estimates a global buckling strength on a very safe side. The 
calculated limit load factor with the initial imperfection amplitude range w = 6-8 cm 
corresponds to the limit load factor following Eurocode 3 (λ = 0.83, Eq. (80). If a local 
stability occurs, this model obviously overestimates the strength. 

 The most realistic stability strength and buckling form are determined based on non-linear 
analyses of a silo modelled completely with shell elements (S4R) by assuming geometric 
and material non-linearity. The numerical model is able to capture the both global and 
local buckling failure type. Some convergence problems are met during both 
geometrically and materially non-linear static analyses. The mesh discretization of 
columns is crucial for the buckling strength. The smaller the element size in columns, the 
lower is the stability strength. The effect of the mesh density of the corrugated wall sheets 
was observed in linear buckling analyses only. The appropriate buckling strength results 
may be already achieved using 3 shell elements along the half-wave and 6 shell elements 
in a circumferential direction between columns and column elements 10×10 mm2. 

 The simplified silo model with the equivalent orthotropic plate and beam columns turns 
out to be effective to assess the stability using the fully integrated shell elements (S4). The 
limit load is comparable with a complex full shell silo model. The beam model is thus 
sufficient for the stability analyses when thin-walled columns are insensitive to local 
buckling effects. The computations time is significantly shorter (2-5-times) than for the 
full 3D silo model. 

 Due to a specific assembly method of silos with corrugated sheets and thin-walled 
columns, the measured imperfection pattern significantly differs from those assumed in FE 
models based on eigen-modes from LBA. It is recommended to model the assembly 
process in order to obtain realistic initial geometric imperfections. 

 The initial geometric imperfections may be taken in the form of a first eigen-mode since 
the strength of a shell silo model is smaller solely by 0-20% than of the silo with measured 
imperfections (although its form is completely different). It is recommended to introduce 
into FE analyses initial geometric imperfections in the form of the first silo eigen-mode 
induced by wall friction (with eventually stiffened columns) for the maximum amplitude 
of w = 5 cm in order to provide a sufficient safety margin for the silo design. 

 The EN 1993-4-1 (2007) approach based on a beam supported by the elastic foundation 
(Eq. (8)) is not realistic. The formulae for 2 alternative standard approaches are not 
continuous. Eq. (8) is significantly too conservative if ds is small. It is reasonable to use a 
FE analysis especially in the case of ds < ds,max. 
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 The buckling resistance in EN 1993-4-1 (2007) based on an anisotropic cylinder theory 
(Eq. (5)) is in good agreement with FE results for a silo with the equivalent orthotropic 
shell with the vertical wall load ‘V’ in the range of the imperfection amplitude w = 0-5 cm. 

 
The normal wall pressure has a significant positive influence for the silo stability. 
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