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Abstract.  This paper proposes a model for analysing the non-linear behaviour of steel concrete comp
beams prestressed by external slipping cables, taking into account the deformability of the interface 
connection. By assuming a suitable admissible displacement field for the composite beam, the ba
condition is obtained by the virtual work principle. The solution is numerically achieved by approximating
unknown displacement functions as series of shape functions according to the Ritz method. The mo
applied to real cases by showing the consequences of different connection levels between the concre
and the steel beam. Particular attention is focused on the limited ductility of the shear connection that m
the cause of premature failure of the composite girder.

Key words:  external prestressing; composite beams; flexible shear connection; shear connection 
tility; non-linear analysis; steel-concrete composite bridges.

1. Introduction

The use of external prestressing cables in steel-concrete composite structures is of great intere
rehabilitation of existing under-strength bridges in that it is extremely effective, easy to impleme
relatively inexpensive (Dunker et al. 1986, Dunker et al. 1990). Furthermore, such a technique find
significant application in the construction of new bridges with continuous girders where prestres
advantageously adopted both to control cracking over the interior supports, and to achieve high
carrying capacity by limiting the steel beam dimensions (Troitsky 1990). 

In the simplest case, prestressing is performed by means of a number of rectilinear cables 
above the bottom flange at the sagging regions and under the top flange at the hogging regio
makes it possible to induce constant bending moments opposing those produced by the extern
More effective prestressing of the whole girder can be attained by shaping the cable path so as t
variable bending moments by placing deviators (saddle points) along the beam axis (Li et al. 1995). In
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this last case, in order to avoid prestressing losses during cable tensioning, the friction betwee
and deviators is minimised by suitable devices.

The analysis of such structures raises some difficulty with the coupling that arises between th
cable strain and the structure global deformation. The usual sectional analysis cannot be 
determine the cable elongation that must thus be calculated considering the deformation of the entire
structure. As a consequence, local formulations are not effective and global formulations are
natural for the problem in question.

In the last forty years, the work of many researchers has been dedicated to developing an
models in order to describe the behaviour of girders prestressed by external cables. The early th
models reported in literature date back to the 60s and deal with simply supported beams prestre
rectilinear cables (Szilard 1959, Hoadley 1963, Reagan and Krahl 1967). Troitsky et al. (1989)
extended the analysis to continuous beams, under the assumption of linear elastic behaviour of the
materials, by considering the cable traction and the redundant reactions of the external restr
unknowns according to the deformability method. Again, with reference to simply supported beam
prestressed by rectilinear cables, an experimental and theoretical study on the non-linear beha
composite beams subjected both to positive and negative bending moments was presented
Saadatmanesh et al. (1989a-c). In these works, the differences obtained between the experiment
the theoretical results were attributed to the flexibility of the shear connection. Virlogeux (1
continued the analysis of simply supported beams, prestressed by cables with a generic p
proposing a non-linear compatibility condition between the cable and the girder. Later, Ton
Saadatmanesh (1992) employed the same formulation to analyse the linear behaviour of con
composite beams. Ayyub et al. (1992a, b) also contributed to understanding the behaviour of
hogging regions of prestressed continuous composite beams. Once again, they observed 
analytical results were in good agreement with the experimental results only in the linear range
non-linear range the proposed analytical model, based on the stiff shear connection assumption,
underestimates the real deformability of the structure. More recently, Dall’Asta and Dezi (1998)
proposed a unitary formulation valid for the non-linear analysis of continuous girders prestress
cables with generic paths, accounting for different construction sequences. 

Despite the fact that many researchers have studied these structures and that some have po
the importance of taking into account the deformability of the shear connection, no paper avail
the literature investigates the shear connection behaviour in externally prestressed composite bea

In the neighbourhood of the cable anchorage, the connectors are subjected to shear forc
inducing a beam-slab interface slip which can be more important than that induced by dead and
loads. As a consequence, the shear connectors may be involved in the collapse mechanism of t
and, because of their limited ductility, this may lead to a significant reduction of the load carrying
capacity. This aspect may be of particular importance when prestressing is applied to existing 
because the shear connection is generally formed to be of inadequet strength. The concept of
partial composite action, well understood for non-prestressed beams, is still an open quest
prestressed composite beams. Thus, the design procedures, suggested for routine analysis by 
codes such as ENV 1994-2 (1997), are effective only for non-prestressed beams but they ca
used in the case of prestressed beams without validation. 

The aim of this paper is to overcome the limitations of previous formulations by modelling 
connection deformability (both in the linear and non-linear range) in prestressed beams in o
study the collapse modalities related to the failure of the shear connectors. The analytical formul
derived by assuming the vertical displacement of the composite cross section and the longitudina
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displacements of the steel beam and of the concrete slab, as unknowns. The equilibrium condition is
enforced by the application of the virtual work principle considering generic non-linear constitutive
relationships for the reinforced concrete slab, the steel beam, the cables and the shear connecto
model makes it possible to account for different construction sequences by defining suitable residu
strains for the concrete slab and the shear connection. This last aspect is of a certain importan
knowing the real strains of the components with limited ductility is fundamental to define the failure
mechanisms of the composite beam, especially when prestressing is used to strengthen sting
structures. The problem is numerically solved by the Ritz method by approximating the unk
functions with suitable shape functions fulfilling the kinematical boundary conditions.

In order to show the capability of the model, some applications to simply supported beam
different shear connector strength levels are reported. The results show the influence of th
connection on the load carrying capacity of the girders by focusing attention on its limited duclity.

2. Mathematical formulation

2.1. Kinematical description

The prismatic composite beam of Fig. 1, consists of a steel beam shear-connected to a concrete upp
slab. In its undeformed state, the beam has a rectilinear axis, which is assumed to be parallel Z
axis of the orthonormal reference frame {0; X, Y, Z}. The co-ordinate plane YZ is a symmetry plane of
the problem. The location of a generic point S of the beam is given by

(1)

where i, j, k are the unit vectors of the reference axes (see Fig. 1a);  are the closures 
domains in plane XY, representing the cross-sections of the concrete slab and of the steel eam,
respectively.

Two prestressing cables are disposed symmetrically with respect to the YZ plane. Given the problem
symmetry, the cables can be replaced by a single equivalent cable having the cross section ar
two and lying in the plane of symmetry. The cable path is defined by D+1 saddle points (including the
end anchorages), and it can thus be defined by the piecewise linear function

(2)

S x, y, y( )=xi+yj+zk x, y( ) Ac As∪{ }∈∀   and  z 0, L[ ]∈

Ac, As

H z( )=Sd 1– +
z zd 1––
zd zd 1––
-------------------- Sd Sd 1––( ) z zd 1– , zd( );∈ d=1, …, D

Fig. 1 Geometry of the beam: (a) prismatic composite beam; (b) cross-section
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where Sd=yd j+zdk is the position vector of the dth saddle. From relation (2) it follows that the tota
length of the cable path is

(3)

Obviously, if the beam is prestressed by more than two cables, additional expressions simila
and (3) should be included.

The generic deformed configuration of the beam is characterised by the slab-beam interface 
to the flexibility of the shear connectors. This implies that the longitudinal displacement field sho
discontinuity at the interface layer, while the vertical displacements are assumed to be continuo
other words, the connectors prevent separation between beam and slab). According to Newmaet al.
(1951), the preservation of plane cross section for the steel beam and the concrete slab is co
separately. Therefore, denoting the derivatives with respect to the variable z by primes, the final
position s and the displacement u of a point in concrete and steel are expressed respectively by

(4)

(5)

where v is the scalar component of displacement in Y direction of both the concrete slab and th
steel beam (Fig. 2); wc, ws are the scalar components of displacement in Z direction of the concrete
slab and the steel beam, respectively (Fig. 2), and yc, ys are co-ordinates of the centroids of th
concrete slab and the steel beam, respectively (Fig. 1b). Subsequently, by denoting by h the distance
between the centroids of the steel beam and the concrete slab (Fig. 1b), the following expres
the slab-beam interface slip can be obtained:

(6)

From Eqs. (4) and (5), the following non-vanishing strain components can be computed:

 (7)

Λ=  
d 1=

D

∑ Sd Sd 1–– =  
d 1=

D

∑ zd zd 1––( )2 yd yd 1––( )2+

s x, y, z( )=S+u x, y, z( )= xi yj zk+ +[ ]+ v z( ) j wc z( ) y yc–( )v′ z( )–[ ]k+{ }

x, y( ) Ac∈∀ , z 0, L[ ]∈

s x, y, z( )=S+u x, y, z( )= xi yj zk+ +[ ]+ v z( ) j ws z( ) y ys–( )v′ z( )–[ ]k+{ }

x, y( ) As∈∀ , z 0, L[ ]∈

Γ z( )=ws z( )−wc z( )+v′ z( )h

εc x, y, z( )=wc′ y yc–( )– v″ x, y( ) Ac∈∀ ,    z 0, L[ ]∈

Fig. 2 Displacements: (a) composite section; (b) cable path
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With reference to the cable, since the saddle points are fixed to the steel beam, the geometr
cable path can be obtained by combining Eqs. (4) and (5) with Eq. (2) so that

(9)

Since the displacements u are small, as per the linear formulation of the problem, the final lengt
the cable can be expressed as

(10)

Under the assumption of no-friction between cable and saddle points and by assuming a ne
weight for the cable, the strain of the cable εca can now be obtained by the ratio between the glo
stretching of the cable and its initial length (Dall’Asta and Dezi 1998)

(11)

where ady and adz are the components of the unit vectors ad defining the direction of the d-th section
of the cable path in the undeformed configuration.

2.2. Constitutive relationships

It is assumed that the behaviour of the materials composing the beam is described by gene
linear single-valued stress strain laws. In particular, Gc, Gs and Gca will denote the functions furnishing
the stresses in the upper slab, in the lower beam and in the cable, respectively, as functions of th
measured by starting from the natural state of the material (i.e., where no stress is present). 
problem in question, a state of the structure in which all the components are in their natural sta
not exist and it is necessary to express the constitutive relationships in the form:

� � (12)

where εc, εs and εca are the strains in the actual state and ε0c, ε0s and ε0ca are the strains in the
reference state. By choosing the reference configuration such that the steel beam is in the
state, ε0s appearing in the second of Eqs. (12) vanishes. Notice that ε0ca is necessary to impose the
cable pretension while the introduction of a generic residual strain field for the concrete slab p
analysing the different construction sequences as will be shown in the sequel. No rest
assumption is made on the distribution of different materials in the cross section, an
dependence on x and y simply means that different points can be defined in different materials. 
makes it possible to consider the presence of reinforcing rebars or internal prestressing cable
slab under the assumption of full bond simply by defining different stress-strain laws fo
reinforcing steel and for the concrete. 

The shear connection is assumed to be a continuous elastic device having only shear deformability
and the following constitutive law is considered between the longitudinal shear force per unit leq

εs x, y, z( )=ws′ y ys–( )– v″ x, y( ) As∈∀ ,    z 0, L[ ]∈

h z( )=sd 1– +
z zd 1––
zd zd 1––
-------------------- sd sd 1––( ) z zd 1– , zd( );∈ d=1, …, D

λ=Λ+  
d 1=

D

∑ Pd Pd 1––
Pd Pd 1––
-------------------------- ud ud 1––( )=Λ+  

d 1=

D

∑ ad ud ud 1––( )⋅⋅

εca=
λ Λ–

Λ
-------------=

1
Λ
----  

d 1=

D

∑ { ady
vd vd 1––( ) +adz

wsd
wsd 1–

–( )− yd ys–( )vd′+ yd 1– ys–( )vd 1– ′[ ]}

σc=Gc x, y; εc−ε0c( ) σs=Gs x, y; εs−ε0s( ) σca=Gca εca−ε0ca( )
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where Γ0 is the beam-slab residual slip. 

2.3. Equilibrium condition

By assuming that the beam is subjected to vertical forces p(z), the equilibrium conditions can be
written in the variational form equalising the virtual work of internal stresses to that of external f
for each variation (δv, δwc, δws) of the admissible displacements. With expressions (4) and (5) for
displacements, (6) for the interface slip and (7), (8) and (11) for the strains, the application of 
work principle (VWP) gives

(14)

The first and second integrals group the contributions to the internal work due to axial and fl
deformations in the slab and beam, respectively. In particular 

(15a)

(15b)

(15c)

(15d)

are the generalised stress resultants for concrete slab and steel beam. The third integral is the
contribution of the shear connection where 

(16)

Finally, the term outside the integral is related to the prestressing cable. In fact, since this c
with negligible friction on the deviators, the stresses are constant along the cable and the r
integral reduces to the product between the cable length, the virtual cable strainδεca, expressed
according to (11), and the constant resultant traction

  

(17)

The variational equilibrium condition (14) provided by the VWP is the most natural for the pro
formulation. Firstly it is no more complicated than that of non-prestressed beams in which the
outside the integrals, related to the external prestressing cable, does not appear. Secondly, when more
cables are present, the formulation can be promptly extended by considering as many terms

q=Gconn Γ Γ0–( )

 
0

L∫ Ncδwc′ Mcδv″–( )dz+  
0

L∫ Nsδws′ Msδv″–( )dz+  
0

L∫ qδΓdz+Λτcaδεca=  
0

L∫ pδvdz

δv, δwc, δws∀

Nc=  
Ac

∫ Gc x, y   ; wc′−v″ y yc–( )−ε0c[ ]dAc

Mc=  Ac
∫ Gc x, y  ;  wc′−v″ y yc–( )−ε0c[ ] y yc–( )dAc

Ns=  As
∫ Gs x, y   ; ws′−v″ y ys–( )−ε0s[ ]dAs

Ms=  As
∫ Gs x, y   ; ws′−v″ y ys–( )−ε0s[ ] y ys–( )dAs

q=Gconn ws wc– v′h Γ0–+( )

τca=−AcaGcaε0ca+AcaGca
 

d 1=

D

∑ { ady
vd vd 1––( )

+adz
wsd

wsd 1–
–( )− yd ys–( )vd′+ yd 1– ys–( )vd 1– ′[ ]}
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number of cables. Furthermore, as demonstrated in the sequel, the splitting of the virtual wo
different contributions, each related to a different component of the structure (steel beam, concre
shear connection, prestressing cables), is particularly convenient for analysing the various cons
sequences. Vice versa, local formulation does not lead to simply differential equations as in the case o
non prestressed beams since the cable traction (17) is a functional of the beam displac
Furthermore, in the case in question, where the cable follows a path defined by saddles, th
equations must be completed by a number of continuity conditions for the cross sections at
locations.

2.4. Construction sequences 

Under service load, the stress state of composite structures is strongly influenced by the cons
sequence. This aspect is fundamental for calibrating the external prestressing level to stre
existing decks in order to evaluate the effectiveness of the operation. As already stated, the p
model makes it easy to analyse the main construction techniques of practical interest by s
defining the residual strains ε0c, and Γ0 which appear in the constitutive relationships. Under the
assumption of preservation of the plane cross section for concrete slab and steel beam con
separately, the residual strains are evaluated by 

(18)

where w0c, w0s and v0 are the solutions of preventive structural analyses. The modalities
performing the preventive structural analyses, for the main construction techniques, will be
described.

2.4.1. Propped beam
This technique is used only for short span decks given the high cost of the temporary supports

longer construction times. It permits full exploitation of beam-slab composite action since the self-we
sustained by the composite beam as a whole. While pouring the concrete slab, the steel beam is spported
by a number of intermediate temporary supports. At this stage, both the steel beam and the concrete slab ar
in their natural state so that ε0c is zero and no preventive analysis is required. After removing 
intermediate bearings, the cable is pretensioned by assigning a suitable non zero value to ε0ca.

2.4.2. Unpropped beam
In order to cut down deck construction times and when the use of provisional piers i

economically convenient, the slab is poured on the unpropped steel beams which sustain the w
the whole deck. In this case, the residual stresses must be evaluated by preventive ana
eliminating the terms related to the concrete slab and to the prestressing cable in equation (
solution is of the following kind:

(19)

In the following analysis steps, the entire expression of (14) must be considered and the pre
of the external cables may be controlled as usual by assigning a non zero value to ε0ca.

2.4.3. Beams with prestressed cast in situ slabs
In some cases post tensioned cables are placed in the interior of the concrete slab in the sect

ε0c=w0c′−v0″ y yc–( ) Γ0=w0s w0c– v0′+ h

v0 z( ) 0≠ w0s z( )=0 w0c z( )=v0′ z( )h
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the inner supports of continuous beams in order to control the concrete cracking. This techn
generally not combined with the external prestressing, this case may be of interest howeve
existing bridges with prestressed slabs require rehabilitation. 

The concrete slab is prestressed when it is shear-connected to the steel beam and the analys
be performed according to the following steps:

− evaluation of the residual strains according to the technique of slab pouring (see the pr
sections regarding propped or unpropped beams);

− tensioning of the internal cables by suitably imposing additional  in Eq. (12a) an
considering Eq. (14) without the external cable term;

− tensioning of the external cables by assigning a suitable value to ε0ca and by considering the entire
expression (14).

2.4.4. Beams with prestressed precast concrete slabs
Sometimes the slab is constructed by using precast segments that are placed over the unprop

beams. Initially, the shear connection is rendered ineffective by means of suitable devices which allo
beam-slab slip. Thus, cables are placed at the interior of the concrete slab and tensioned in 
make the segmental slab monolithic. Finally the slab is connected to the steel beam by sealing t
connectors. In this case, the analysis must be performed according to the following steps:

− evaluation of the residual strains as in the case of unpropped beams by eliminating the
related to the concrete slab and the external cables in (14); the following solution is thus ob

(20)

− evaluation of the residual strains by eliminating the terms related to the shear connection
concrete slab and by imposing the strain  to the internal cables; the new solution is

(21)

− tensioning of the external cables by assigning a suitable value to ε0ca and by considering the entire
expression (14) in which the residual strains are given by the superposition of (20) and (2

2.5. Numerical solution

A numerical solution of the problem can be undertaken by the Ritz method after approximati
unknown displacement functions in the form 

(22a, b, c)

In other words, the unknown displacement functions are expressed as linear combinations of
shape functions, ϕc, ϕs, ψ, and the unknown coefficients, wc, ws, v. By substituting Eqs. (22) into
Eqs. (6), (7), (8) and (11), the following expressions are obtained for the interface slip and f
strain components of the concrete slab, the steel beam and the cable, respectively:

(23)

(24)

(25)

ε0c

v0
1( ) z( ) 0≠ w0s

1( ) z( )=0 w0c
1( ) z( )=v0′ z( )h

ε0c

v0
2( ) z( )=0 w0s

2( ) z( )=0 w0c
2( ) z( ) 0≠

wc z( )=wc ϕc⋅ z( ) ws z( )=ws ϕs⋅ z( ) ws z( )=v ψ⋅ z( )

Γ=ws ϕs⋅ wc ϕc⋅– +h v ψ′⋅

εc=wc ϕc′⋅ − y yc–( )v ψ″⋅

εs=ws ϕs′⋅ − y ys–( )v ψ″⋅
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By expressing the displacement and strain variations according to Eqs. (22-26), the equil
condition (14) provides (I+J+K) non-linear algebraic equations having the form

(27)

(28)

(29)

The equations obtained constitute a coupled system of non-linear equations of the kind

(30)

in which x[wc1, …, wcI, ws1, …, wsJ, v1, …, vK] is the vector of the unknown coefficients defined 
(22); a is a non-linear operator involving the integrals of the stresses in the composite beam 
the shear connection. The terms with summation account for the prestressing cable. Finally, b is the
vector which groups the terms obtained by the integration of the forces applied to the beam.

The non-linear system obtained can be numerically solved by an iterative procedure. The ch
the iterative method depends strongly on the form of the non-linear operator a that is related mainly to
the material constitutive laws adopted in the analysis. In the applications reported in this pap
Newton-Raphson method, based on the recursive formula

(31)

is adopted. This method allows quick convergence. Also it is particularly simple to apply sinc
adopting the usual constitutive laws, the gradient of the function a can be expressed in analytica
form (see Appendix). The ultimate load can be obtained by using the incremental meth
controlling the load level with an auto-stepping procedure.

3. Applications

The influence of the deformation of the shear connection on the failure modes of a simply sup

εca=
1
Λ
----  

d 1=

D

∑ { ady
ψd ψd 1––( )+adz

− yd ys–( )ψd′+ yd 1– ys–( )ψd 1– ′( )[ ] v⋅

+adz
ϕsd

ϕsd 1––( ) ws}⋅

 
0

L∫  Ac
∫ Gc x, y; εc ε0c–( )dAcϕci′ Gconn– Γ Γ0–( )ϕci[ ]dz=0 i=1, …, I

 
0

L∫  As
∫ Gs x, y; εs ε0s–( )dAsϕsi′+Gconn Γ Γ0–( )ϕsi[ ]dz

+AcaGca εca ε0ca–( )  
d 1=

D

∑ adz ϕsdi
ϕsd 1i––( )=0 i=1, … , J

−  
0

L∫  
Ac

∫ Gc x, y; εc ε0c–( ) y yc–( )dAc+  
As

∫ Gs x, y; εs ε0s–( ) y ys–( )dAs( )ψ i″dz

+AcaGca εca ε0ca–( )  
d 1=

D

∑ ady ψdi
ψd 1i––( )+adz[− yd ys–( )ψdi

′

+ yd 1– ys–( )ψd 1i– ′]}+  
0

L∫ [hGconn Γ Γ0–( )ψ i ′]dz=  
0

L∫ pψ idz i=1, …, K

a x( )=b

x k 1+( )=x k( )+ ∇a x k( )( )( )
1–

b a x k( )( )–( )
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beam is studied. For the sake of simplicity, a prismatic beam is used (Fig. 3b). The prestressing
having a total area of 5000 mm2 and an initial tension of 5000 kN, are anchored at the end cr
sections at the level of the centroid of the composite beam and their path is defined by the two
points shown in Fig. 3a. The prestressing force applied is the maximum value that can be applie
beam without causing cracking of the slab. 

With regard to the shear connection device, a uniform distribution of stud connectors with ult
strength per unit length  is adopted along the whole length of the beam, excepting that at 
regions where, according to ENV 1994-2 (1997), a stronger connection system with ultimate st

 is provided on a segment having a length of 1.0 m. For the case under conside
vd,max=3000 kN/m.

qu=qu

qu=qu+vd,max

Fig. 3 Data of applications: (a) static scheme; (b) cross section details; (c) non-linear constitutive relat
of the materials; (d) non-linear constitutive relationship of the shear connection 
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The non-linear constitutive laws adopted for steel and concrete are shown in Fig. 3c, while the
Ollgaard constitutive law (Ollgaard et al. 1971, Johnson and Molenstra 1991) is considered for 
shear connectors (Fig. 3d). Tschebichef’s polynomial sequences are adopted as shape function
displacements.

The first diagrams of Fig. 4 show the differences between the results obtained with the 
presented by considering a connection with the reference ultimate strength =500 kN/m and thos
given by an elastic analysis in which the shear-connection stiffness per unit length (ρ40) is fixed as equal
to the secant stiffness at 40% of the ultimate strength qu. The figure shows the longitudinal shear forc
at the interface connection for two different external load levels: in Fig. 4a only the self-weight 
composite beam is considered while the results in Fig. 4b are obtained by considering an exter

qu

Fig. 4 Longitudinal force on the shear connection with linear and non-linear behaviour of the connecto
beam subjected to prestress and self-weight; (b) beam subjected to prestress, self-weight and servic

Fig. 5 Development of the longitudinal force on the shear connectors: (a) beam with weak connecti
beam with strong connection
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versus
simulating the service condition (8 kN/m). Since the problem is symmetric, the diagrams refer o
half the length of the beam. As it is well known, the shear connection is subjected to peak force
the regions of the prestressing cable anchorage (Dezi et al. 1995): the prestressing force applied entire
to the steel beam is partially transmitted to the concrete slab by the shear connectors. Such pea
linear case, have an exponential shape and reach very high values, as compared to those obtain
non-linear case. This means that in the case of prestressed beams the assumption of linear beh
the shear connection is not very realistic. 

Fig. 5 shows a comparison between the results obtained by considering the beam with =50
and a second beam having double the ultimate strength. The shear connection is assume
perfectly ductile. As is evident, the behaviour of the two beams is very different: in the case 
weaker connection, the shear connection becomes fully plastic at the ultimate load level while
case of the stronger connection the ultimate capacity of the shear connection is reached only

qu

Fig. 6 External ultimate load versus shear connection strength

Fig. 7. Comparison of behaviour of beams with different strength of shear connections: (a) load 
deflection at midspan; (b) cable tension versus external load



Failure mechanisms of externally prestressed composite beams with partial shear connection327

trength

nection
n (full
and, for
ut the

es
er mild
 reaches

on and
s are at
it state
xternal
e beam
le points,
m. The

duces a
 cases
 sudden
portant

ction in

ternal
portion of the beam. 
Under the assumption of perfectly ductile connection, the influence of the shear connection s
 on the load capacity of the beam is shown in Fig. 6. It is evident that the ultimate load pu grows

almost linearly until  is about equal to 750 kN/m. Once this value is reached the ultimate load for the
beam remains constant. In other words for values of  higher than 750 kN/m, the shear con
permits the development of the fully plastic bending moment at the midspan cross sectio
composite action) so that the maximum load capacity of the beam is reached. On the other h
lower values of the shear connection strength failure occurs under sensibly lower loads witho
formation of a classic plastic hinge at midspan (partial composite action).

This affects the overall behaviour of the beams as shown in Fig. 7a. After an initial common load-
deflection path, characterised by discontinuity due to the application of prestressing force, the curv
relative to weaker shear connections branch out from that of the strongest connection and aft
strain-hardening reach the state of collapse. Conversely, the beam with the strongest connection
its ultimate load, due to crushing of concrete, after a gradual reduction in stiffness. With ≥750 kN/m,
although the full plastic moment capacity is realised at the midspan section, the beam deflecti
failure mechanisms at collapse are different. In the case of =750 kN/m, the shear connector
their limit state along the whole beam. With =1000 kN/m, the shear connectors reach the lim
in the cable anchorage region only. Fig. 7b shows the variation of the cable force with the e
loads. As for the deflections, this parameter is also representative of the overall behaviour of th
since, as already stated, under the assumption of no friction between the cables and the sadd
the cable tension is constant along its length and depends on the deformation of the whole bea
higher deflections of the composite beam due to the plasticisation of the shear connection pro
large increment of traction on the cable even if it does not reach the yield level in any of the
considered. The prestressing force grows gradually showing linear behaviour and undergoes a
increment as the ultimate load is approached. At failure, the increment of the cable tension is im
and, in the cases examined, it was found to reach about 60% of the initial tension.

The preceding results were obtained under the assumption of perfectly ductile shear conne

qu

qu

qu

qu

qu

qu

Fig. 8 Influence of shear connection with limited ductility: (a) interface slipping at beam end versus ex
load; (b) external ultimate load versus shear connection strength
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order to permit the complete development of the failure mechanisms which can be used in a
plastic analysis. Push-out tests demonstrate however that welded stud connections may u
maximum slips no higher than 10 mm (Newmark et al. 1951, Ollgaard et al. 1971). From Fig. 8a, in
which the evolution of the interface slipping at the beam ends versus the load level are plotted,
evident that the slippage predicted by the analysis is so high that the results previously shown fo
connectors of lower strength seem almost meaningless. In other words, the ultimate loads pre
shown are not true since they are limited by reaching of the ultimate slip of the shear connection
leads to non-ductile failure of the whole beam. Fig. 8b groups curves showing the importance
shear connection ductility in the development of the failure mechanism. It is evident how, only for the
strongest shear connection, it is possible to obtain the ultimate load level estimated und
assumption of perfectly ductile connection. For the minimum value of the shear connection strength
that ensures the full connection (750 kN/m), the real value of the ultimate load can be dangerousl
overestimated. This problem is of particular importance in the case considered where the applic
concentrated forces due to the prestressing cables induces large interface slips around th
anchorages. In these cases, controlling interface slipping may become crucial in the design
connectors, so that the classic plastic analysis, based on equilibrium conditions only, cannot be a

4. Conclusions

In this paper a model to investigate the non-linear behaviour of externally prestressed steel-c
composite beams, taking into account the deformability of the shear connection, has been prop
is of general validity and can be applied to beams with various static schemes, each cable p
various construction sequences. By means of an incremental analysis, the model makes it pos
follow the stress-strain histories of all the elements of the beam under increasing loads and thus it is
powerful tool to numerically simulate failure modes of structures of this kind. Some application
simply supported beam permitted drawing a number of conclusions.

The evaluation of the shear flow on the beam-slab interface connection should be performe
non-linear analysis since the elastic analysis overestimates the peaks arising around th
anchorages. This is due to the non-linear behaviour of the connectors, particularly important e
low interface slip values, which implies a redistribution of the interface force. 

The cable tension at ultimate load is very different from the initial value depending on the g
ductility of the beam. 

The beam failure modes are strongly influenced by the flexibility of the shear connection. Plastic
failure mechanisms can develop only if the shear connection is very ductile and for usual connectors th
ultimate load can be much lower than that provided by calculations under the assumption of pe
ductile interface connection. This means that the concept of full composite action, as commonly
understood, is not applicable to externally prestressed composite beams because it does not perm
controlling the shear connection slippage responsible for overall beam failure. 
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Appendix I

The expressions of the components of  are reported in the sequel.

� for i=1, …, I and j=1, …, I

� for i=1, …, I and j=I+1, …, I+J  

� for i=1, …, I and j=I+J+1, …, I+J+K  

∇a

∇a[ ]i j =  
0

L∫ ϕci′ϕcj ′  Ac
∫

dGc x,y;ε( )
dε

--------------------------- 
 

ε=εc-ε0c

dAc +ϕciϕcj

dGconn γ( )
dγ

----------------------- 
 

γ =Γ -Γ0

dz

∇a[ ]i j = ∇a[ ]ji =  
0

L∫ −ϕc iϕsj

dGconn γ( )
dγ

----------------------- 
 

γ =Γ -Γ0

dz
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� for i=I+1, …, I+J  and j=I+1, …, I+J  

� for i=I+1, …, I+J  and j=I+J+1, …, I+J+K  

� for i=I+J+1, …, I+J+K  and j=I+J+1, …, I+J+K  

CC

∇a[ ]i j = ∇a[ ]ji =  
0

L∫ ϕci′ψ j ″  Ac
∫

dGc x,y;ε( )
dε

--------------------------- 
 –

ε=εc-ε0c

y yc–( )dAc −ϕciψ j ′h
dGconn γ( )

dγ
----------------------- 

 
γ=Γ -Γ0

dz

∇a[ ]i j =  
0

L∫ ϕsi′ϕsj′  As
∫

dGs x,y;ε( )
dε

--------------------------- 
 

ε=εs-ε0s

dAs +ϕsiϕsj

dGconn γ( )
dγ

----------------------- 
 

γ=Γ-Γ0

dz

+
Aca

Λ
-------

dGca ε( )
dε

------------------- 
 

ε=εca-ε0ca

 
d 1=

D

∑ adz ϕsdi
ϕsd 1i––( )  

d 1=

D

∑ adz ϕsdj
ϕsd 1j––( )

∇a[ ]i j = ∇a[ ]ji =  
0

L∫ ϕsi′ψ j″  As
∫ −

dGs x,y;ε( )
dε

--------------------------- 
 

ε=εs-ε0s

y ys–( )dAs +ϕsiψ j ′h
dGconn γ( )

dγ
----------------------- 

 
γ=Γ-Γ0

dz

+
Aca

Λ
-------

dGca ε( )
dε

------------------- 
 

ε=εca-ε0ca

 
d 1=

D

∑ adz ϕsdi
ϕsd 1i––( )

 
d 1=

D

∑ ady ψdj
ψd 1j––( )+adz yd ys–( )ψdj′– yd 1– ys–( )ψd 1j– ′+( )

∇a[ ]i j =  
0

L∫ ψ i″ψ j ″  Ac
∫

dGc x,y;ε( )
dε

--------------------------- 
 

ε =εc-ε0c

y yc–( )2dAc+  As
∫

dGs x,y;ε( )
dε

--------------------------- 
 

ε =εs-ε0s

y ys–( )2dAs dz

+  
0

L∫ ψ i ′ψ j ′h
2 dGconn γ( )

dγ
----------------------- 

 
γ =Γ -Γ0

dz+
Aca

Λ
-------

dGca γ( )
dγ

------------------- 
 

ε =εca-ε0ca

 
d 1=

D

∑ ady ψdi
ψd 1i––( )+adz yd ys–( )ψdi′– yd 1– ys–( )ψd 1i– ′+( )

 
d 1=

D

∑ ady ψdj
ψd 1j––( )+adz yd ys–( )ψdj′– yd 1– ys–( )ψd 1j– ′+( )


	Fig. 1 Geometry of the beam: (a) prismatic composite beam; (b) cross-section
	Fig. 2 Displacements: (a) composite section; (b) cable path
	Failure mechanisms of externally prestressed composite beams with partial shear connection
	A. Dall’Asta†
	PROCAM, University of Camerino, Viale della Rimembranza, 63100, Ascoli Piceno, Italy

	L. Dezi‡ and G. Leoni‡†
	Institute of Structural Engineering, University of Ancona, Via Brecce Bianche, 60131, Ancona, Italy
	(Received April 16, 2002, Revised June 3, 2002, Accepted August 16, 2002)
	Fig. 6 External ultimate load versus shear connection strength






