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Abstract. This paper proposes a model for analysing the non-linear behaviour of steel concrete composite
beams prestressed by external slipping cables, taking into account the deformability of the interface shear
connection. By assuming a suitable admissible displacement field for the composite beam, the balance
condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the
unknown displacement functions as series of shape functions according to the Ritz method. The model is
applied to real cases by showing the consequences of different connection levels between the concrete slab
and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be
the cause of premature failure of the composite girder.

Key words: external prestressing; composite beams; flexible shear connection; shear connection duc-
tility; non-linear analysis; steel-concrete composite bridges.

1. Introduction

The use of external prestressing cables in steel-concrete composite structures is of great interest in tf
rehabilitation of existing under-strength bridges in that it is extremely effective, easy to implement and
relatively inexpensive (Dunkeat al. 1986, Dunkeeet al. 1990). Furthermore, such a technique finds
significant application in the construction of new bridges with continuous girders where prestressing is
advantageously adopted both to control cracking over the interior supports, and to achieve high global
carrying capacity by limiting the steel beam dimensions (Troitsky 1990).

In the simplest case, prestressing is performed by means of a number of rectilinear cables running
above the bottom flange at the sagging regions and under the top flange at the hogging regions. Thi:
makes it possible to induce constant bending moments opposing those produced by the external load:
More effective prestressing of the whole girder can be attained by shaping the cable path so as to induc
variable bending moments by placing deviators (saddle points) along the beam ekl (1995). In
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this last case, in order to avoid prestressing losses during cable tensioning, the friction between cable
and deviators is minimised by suitable devices.

The analysis of such structures raises some difficulty with the coupling that arises between the local
cable strain and the structure global deformation. The usual sectional analysis cannot be used tc
determine the cable elornga that must thus be calculated considering thergeftion of the entire
structure. As a consequence, local formulations are not effective and global formulations are more
natural for the problem in question.

In the last forty years, the work of many researchers has been dedicated to developing analytica
models in order to describe the behaviour of girders prestressed by external cables. The early theoretic:
models reported in literature date back to the 60s and deal with simply supported beams prestressed k
rectilinear cableqSzilard 1959, Hoadley 1963, Reagan and Krahl 1967). Troigsksl. (1989)
extended the analysis to continuous beams, under the assumptioeaofeliastic behaviour of the
materials, by considering the cable traction and the redundant reactions of the external restraints a
unknowns according to the deformability method. Agaiith neference to simply supported beams
prestressed by rectilinear cables, an experimental and theoretical study on the non-linear behaviour o
composite beams subjected both to fpasi and negative bending moments was presented by
Saadatmanestt al. (1989a-c). In these works, the differences obtained between the experimental and
the theoretical results were attributed to the flexibility of the shear connection. Virlogeux (1990)
continued the analysis of simply supported beams, prestressed by cables with a generic path, b
proposing a non-linear compatibility condition between the cable and the girder. Later, Tong and
Saadatmanesh (1992) employed the same formulation to analyse the linear behaviour of continuou:
composite beams. Ayyubt al. (1992a, b) also contributed to understanding the behaviour of the
hogging regions of prestressed continuous composite beams. Once again, they observed that th
analytical results were in good agreement with the experimental results only in the linear range; in the
non-linear range the proposed analytical model, based on the i#f sbnnection assuyotion,
underestimates the real deformability of the structure. Mecently, DallAsta and Dezi (1998)
proposed a unitary formulation valid for the non-linear analysis of continuous girders prestressed by
cables with generic paths, accounting for different construction sequences.

Despite the fact that many researchers have studied these structures and that some have pointed ¢
the importance of taking into account the deformability of the shear connection, no paper available in
the literature invstigates the sar connection behaviour in externally prestressed composite beams.

In the neighbourhood of the cable anchorage, the connectors are subjected to shear force peak
inducing a beam-slab interface slip which can be more important than that induced by dead and service
loads. As a consequence, the shear connectors may be involved in the collapse mechanism of the bea
and, because of their limited duityi, this may lead to a significant reduction of the lazdlrying
capacity. This aspect may be of particular importance when prestressing is applied to existing bridges
because the shear connection is generally formed to be of inadequet strength. The concept of full an
partial composite action, well understood for non-prestressed beams, is still an open question for
prestressed composite beams. Thus, the design procedures, suggested for routine analysis by technic
codes such as ENV 1994-2 (1997), are effective only for non-prestressed beams but they cannot b
used in the case of prestressed beams without validation.

The aim of this paper is to overcome the limitations of previous formulations by modelling shear
connection deformability (both in the linear and non-linear range) in prestressed beams in order to
study the collapse modalities related to the failure of the shear connectors. The analytical formulation is
derived by assuming the vertical displacement of the ceitgpaross section and the longitudinal
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displacements of the steel beam and of the concrete slab, as unknowns. The equilibritiom ¢é®nd
enforced by the application of the virtual work principle considering generic non-lineaitutorest
relationships for the reinfoed concrete slab, the steel beam, the cables and the shear connectors. The
model makes it possible to account for different constmsequences by defining suitable residual
strains for the concrete slab and the shear connection. This last aspect is of a certain importance sinc
knowing the real strains of the components with limited ductility isdomehtal to define the failure
mechanisms of the composite beam, especially when prestressing is used to strengtingn exi
structures. The problem is numerically solved by the Ritz method by approximating the unknown
functions with suitable shape functions fulfilling the kinematical boundary conditions.

In order to show the capability of the model, some applications to simply supported beams with
different shear connector strength levels are reported. The results show the influence of the shea
connection on the load carrying capacity of the girders by focusing attention on its limitdityducti

2. Mathematical formulation
2.1. Kinematical description

The prismatic composite beam of Fig. 1, dstssof a steeldéam shear-connected to a concrete upper
slab. In its undeformed state, the beam has a rectilinear axis, which is assumed to be paraliel to the
axis of the orthonormal reference frame XQ,Y, Z}. The co-ordinate plan¥Zis a symmetry plane of
the problem. The location of a generic pdbf the beam is given by

S(x, y, y)=xi+yj+zk 0O(x,y) O{Ac. O As} andzO[O,L] 1)

wherei, j, k are the unit vectors of the reference axes (see FigALlaps are the closures of the
domains in planexXy, representing the cross-sections of the concrete slab and of theesteel b
respectively.

Two prestressing cables are disposed symmetrically with respect¥@ pgiene. Given the problem
symmetry, the cables can be replaced by a single equivalent cable having the cross section area of tt
two and lying in the plane of symmetry. The cable path is defindaiiysaddle points (including the
end anchorages), and it can thus be defined by the piecewise linear function

H(2)=Sq_ 1+ 2‘11(sd—sd_1) 20(%.1,20); d=1,...D @

(b) 0,
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Fig. 1 Geometry of the beam: (a) prismatic composite beam; (b) cross-section
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where Sy=yyj+z4k is the position vector of théth saddle. From relation (2) it follows that the total
length of the cable path is

A=Y [Ss=Sacil= Y J(za—20-1)* + (Ya—Ya_1)° 3)
d=1 d=1

Obviously, if the beam is prestressed by more than two cables, additional expressions similar to (2)
and (3) should be included.

The generic deformed configuration of the beam is characterised by the slab-beam interface slip due
to the flexibility of the skar connectors. This implies that the longitudinal displacement field shows a
discontinuity at the imtrface layer, while the vertical displacements are assumed to be continuous (in
other words, the connectors prevent separation between beam and slab). According to Méaimark
(1951), the preservation of plane cross section for the steel beam and the concrete slab is considere
separately. Therefore, ddaimg the derivatives with respect to the variabléy primes the final
positions and the displacementof a point in coorete and steel are expressed respectively by

S(x, Y, 2)=S*u(X, y, 2)=[xi +yj + Zk]+{ v(2)] + [W(2) - (Y - Y)V' (2)]K}

d(x,y) OA, zO[0, L] (4)
s(X, Y, 2)=S+u(x, y, 2)=[xi +yj + ZK] +H{ V(2)] + [ws(2) — (Y - ¥s)V'(2)] Kk}
O(x,y) OAs, O[O0, L] (5)

wherev is the scalar component of displacementyimlirection of both the concrete slab and the
steel beam (Fig. 2., wsare the scalar components of displacemer# direction of the concrete

slab and the steel beam, respectively (Fig. 2), wngs are co-ordinates of the centroids of the
concrete slab and the steel beam, respectively (Fig. 1b). Sub8gge denoting byh the distance
between the centroids of the steel beam and the concrete slab (Fig. 1b), the following expression o
the slab-beam interfacéipscan be obtained:

M(2)=wy(2) ~wc(2)+V'(2)h (6)
From Egs. (4) and (5), the following non-vanishing strain components can be computed:
g%, Y, 2)=W'~(y—yo)v"  O(x,y) DA, zO[0,L] (7)
Ye "Z
5 w k
Vs ;
vj Z Undeformed path
| wik B /Deformed path
T g 1
S, \

i w
\Q\ v Saddle
L~

(a) (b)
Fig. 2 Displacements: (a) composite section; (b) cable path
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&(X, ¥, 2)=W5' ~(y —yo)v"  O(x,y) OAs, zO[0, L] (8
With reference to the cable, since the saddle points are fixed to the steel beam, the geometry of th
cable path can be obtained by combining Egs. (4) and (5) with Eqg. (2) so that
Z— %,
Zy—2Z4_1
Since the displacementsare small, as per the linear formulation of the problem, the final length of
the cable can be expressed as

h(z)=sq_1+ (S4—S¢-1)  zU(Z-1, %) d=1,..,D (9)

D D
_ Pg=Pa s _
A S pepe ) e Us =A% 3 2y U= ta-y) (10)

d=1

Under the assumption of no-friction between cable and saddle points and by assuming a negligible
weight for the cable, the strain of the caklgcan now be obtained by the ratio between the global
stretching of the cable and its initial length (Dall’Asta and Dezi 1998)

D

{aq (Va—Va_1) +ag [(Ws, = Ws, )=(Ya—Ys)Va'+(Ya-1—-Y¥s)Va-1'1}  (11)
d=1

A=A

gca_ -

A\

>l

whereay, andag, are the components of the unit vectayslefining the direction of thd-th section
of the cable path in the undeformed configuration.

2.2. Constitutive relationships

It is assumed that the behaviour of the materials composing the beam is described by generic non
linear single-valued stress strain laws. In partic@@arGs andG., will denote the functions furnishing
the stresses in the upper slab, in the lower beam and in the cable, respectively, as functions of the strair
measured by starting from the natural state of the material (i.e., where no stress is present). For th
problem in question, a state of the structure in which all the components are in their natural state doe:
not exist and it is necessary to express the constitutive relationships in the form:

Gchc(X! \ 80_800) ; Gsst(X! \ gS_EOS) ; GcazGca(gca_EOCa) (12)

where g, & and &, are the strains in the actual state a&gg & and g, are the strains in the
reference state. By choosing the reference configuration such that the steel beam is in the naturs
state, &s appearing in the second of Egs. (12) vanishes. Noticegghas necessary to impose the
cable pretension while the introduction of a generic residual strain field for the concrete slab permits
analysing the different construction sequences as will be shown in the sequel. No restrictive
assumption is made on the distribution of different materials in the cross section, and the
dependence or andy simply means that different points can be defined in different materials. This
makes it possible to consider the presence of reinforcing rebars or internal prestressing cables in th
slab under the assumption of full bond simply by defining different stress-strain laws for the
reinforcing steel and for the concrete.

The shear connection is assumed to be &reayus elastic device having onlyesit deformability
and the following constitutive law is considered between the longitudinal shear force per unitjlength
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and the interface slip
quconn(/__ /_0) (13)

where T is the beam-slab residual slip.
2.3. Equilibrium condition

By assuming that the beam is subjected to vertical fgp@sthe equilibrium conditions can be
written in the variational form equalising the virtual work of internal stresses to that of external forces
for each variationdv, dw., dwg) of the admissible displacements. With expressions (4) and (5) for the
displacements, (6) for the interface slip and (7), (8) and (11) for the strains, the application of virtual
work principle (VWP) gives

[y (Ncdw' —Mcdv")dz+ [, (NsOws' —MBv")dz+ [, qdl dz+ATeade..= [, povdz
adv, dw,, dw, (14)

The first and second integrals group the contributions to the internal work due to axial and flexural
deformations in the slab and beam, respectively. In particular

Ne=[y GelX, y; We'=V"(y = Ye) ~&oc] dAc (15a)
Mc=[ GelX,y; We'=v" (Y = Ye) =€ocl (Y = Vo) dAc (15b)
Ns=[s GslX, y; Ws'=V"(y = ¥s)~&os] dAs (15c¢)
M=[n GslX, y; We'=V"(y = Ys) ~€0s] (Y = ¥s) A As (15d)

are the generalised stress resultants forcred@ slab and steel beam. The thintegral is the
contribution of the shear connection where

quconn(Ws_ We + v'h— /_0) (16)

Finally, the term outside the integral is related to the prestressing cable. In fact, since this can slip
with negligible friction on the deviators, the stresses are constant along the cable and the relevan
integral reduces to the product between the cable length, the virtual cable &traiexpressed
according to (11), and the constant resultant traction

D
Tcaz_AcaGca‘gOca"'AcaGca z { ady(vd - Vd—l)
d=1

+ag [(Ws, —=Ws,_)=(Ya—Ys)Va' *+(Ya-1—Ys)Va-1']} (17)

Sa-1
The variational equilibrium condition (14) provided by the VWP is the most natural for the problem
formulation. Firstly it is no more complicated than that of non-prestressed beams in which the term

outside the integrals, related to the external prestressing cable, does notSgymeatly, when more
cables are present, the formulation can be promptly extended by considering as many terms as th
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number of cables. Furthermore, as demonstrated in the sequel, the splitting of the virtual work into
different contributions, each related to a different component of the structure (steel beam, concrete slab
shear connection, prestressing cables), is particularly convenient for analysing the various constructior
sequences. Vice versa, local formulation does not lead to simply diffé¢requations as in the case of

non prestressed beams since the cable traction (17) is a functional of the beam displacements
Furthermore, in the case in question, where the cable follows a path defined by saddles, the loca
equations must be completed by a number of continuity conditions for the cross sections at saddle
locations.

2.4. Construction sequences

Under service load, the stress state of composite structures is strongly influenced by the constructior
sequence. This aspect is fundamental for calibrating the external prestressing level to strengther
existing decks in order to evaluate the effectiveness of the operation. As already stated, the propose
model makes it easy to analyse the main construction techniques of practical interest by suitably
defining the residual straing., and/l,which appear in the caiitutive relationships. Under the
assumption of preservation of the plane cross section for concrete slab and steel beam considere
separately, the residual strains are evaluated by

E0c=Woe' Vo' (Y=Ye)  [o=Wos—Woe+ Vo'h (18)

where wy,, Wos and vy are the solutions of preventive structural analyses. The modalities for
performing the preventive structural analyses, for the main construction technigillefe w
described.

2.4.1. Propped beam

This technique is used only for short span decks given the high cost of the temporary supports and th
longer construction times. It permits full exploitation of beam-slab composite action since the self-weight is
sustained by the composite beam as a whole. While pouring the concrete slab, the steel ppartes su
by a number of intermediate temporarpgports. At this stage, both the steehin and the concrete slab are
in their natural state so thag. is zero and no preventive analysis is required. After removing the
intermediate bearings, the cable is pretensioned by assigning a swiabéro value tce...

2.4.2. Unpropped beam

In order to cut down deck construction times and when the use of provisional piers is not
economically convenient, the slab is poured on the unpropped steel beams which sustain the weight o
the whole deck. In this case, the residual stresses must be evaluated by preventive analysis b
eliminating the terms related to the concrete slab and to the prestressing cable in equation (14); the
solution is of the following kind:

Vo(2) 20 Wes(2)=0  wo(2)=Vy'(2)h (19)
In the following analysis steps, the entire expression of (14) must be considered and the pretensior
of the external cables may be controlled as usual by assigning a non zero \glye to

2.4.3. Beams with prestressed cast in situ slabs
In some cases post tensioned cables are placed in the interior of the concrete slab in the sections ov
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the inner supports of continuous beams in order to control the concrete cracking. This technique is
generally not combined with the external prestressing, this case may be of interest however when
existing bridges with prestressed slabs require rehabilitation.
The concrete slab is prestressed when it is shear-connected to the steel beam and the analysis shot
be performed according to the following steps:
— evaluation of the residual strains according to the technique of slab pouring (see the previous
sections regarding propped or unpropped beams);
- tensioning of the internal cables by suitably imposing additicial in Eq. (12a) and by
considering Eq. (14) without the external cable term;
— tensioning of the external cables by assigning a suitable valyg #md by considering the entire
expression (14).

2.4.4. Beams with prestressed precast concrete slabs

Sometimes the slab is constructed by using precast segments that are placed over the unpropped st
beams. litially, the shear connection is rendered feefive by means of suitable devices which allow
beam-slab slip. Thus, cables are placed at the interior of the concrete slab and tensioned in order t
make the segmental slab monolithic. Finally the slab is connected to the steel beam by sealing the she:
connectors. In this case, the analysis must be performed according to the following steps:

— evaluation of the residual strains as in the case of unpropped beams by eliminating the terms

related to the concrete slab and the external cables in (14); the following solution is thus obtained

Vo'(2) 20 we(2)=0  Wyl(2)=Vo'(2)h (20)
— evaluation of the residual strains by eliminating the terms related to the shear connection to the
concrete slab and by imposing the stragn to the internal cables; the n#ansi
v (=0 W (2)=0 w(2)#0 (21)
— tensioning of the external cables by assigning a suitable valyg #md by considering the entire
expression (14) in which the residual strains are given by the superposition of (20) and (21).

2.5. Numerical solution

A numerical solution of the problem can be undertaken by the Ritz method after approximating the
unknown displacement functions in the form

We(2)=We B(2)  We(2)=ws [Ps(2)  ws(2)=v [1(2) (22a, b, c)

In other words, the unknown displacement functions are expressed as linear combinations of known
shape functionsg¢., ¢s, ¢ and the unknown coefficientsy, ws, V. By substituting Egs. (22) into

Egs. (6), (7), (8) and (11), the following expressions are obtained for the interface slip and for the
strain components of the concrete slab, the steel beam and the cable, respectively:

/_=Ws ms — W, E¢C+h \ Eull (23)
=W mc’ _(y - yc)V Ekp" (24)
£=Ws [s'—(y — ys)v " (25)
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D
feiy 3 {8 (Yo 1)+ (~(Va— Yo U+ (o1~ Yo) Ye_y)] TV
d=1

+adz( ¢sd - ¢sd - 1) EWS} (26)

By expressing the displacement and strain variations according to Egs. (22-26), the equilibrium
condition (14) providesltJ+K) non-linear algebraic egtians having the form

[o o, Gel%, ¥i &= E0e)dAPe’ ~ Geon(T — )il dz=0  i=1, ..., (27)

Jo L. Gs(X, ¥i &= £05) AP +Geon M = o) dsild2

+AcaGca(€ca_ EOCa) z adz( ¢sq - ¢sd—1i)=0 i=1, RN J (28)
d=1
_Jt (_l’/_\c Gc(xa Y, &~ EOC)(y_ yc)d'A‘c"'_l’/_\S GS(X’ Y &— EOS)(y_ ys)dAs) Ll/i"dZ
D
+AcaGeal€ca— €oca) z ady( L:Udi - wd—li)+adz[_(yd -Ys) L:Udi’
d=1

(Va1 =YWy T+ [ [NGoond M= M) @'1dz= [, pyrdz  i=1,..., K (29)
The equations obtained constitute a coupled system of non-linear equations of the kind
a(x)=b (30)

in which X[Weq, ..., Wej, Weg, ..., Ws3 V1, ..., V] IS the vector of the unknown coefficients defined in
(22); a is a non-linear operator involving the integrals of the stresses in the composite beam and in
the shear connection. The terms with summation account for the prestressing cable bRmaétg,
vector which groups the terms obtained by the integration of the forces applied &athe b

The non-linear system obtained can be numerically solved by an iterative procedure. The choice of
the iterative method depends strongly on the form of the non-linear opeethtiris related mainly to
the material constitutive laws adopted in the analysis. In the applications reported in this paper the
Newton-Raphson method, based on the recursive formula

X(k+1)=X(k)+(|:]a(x(k)))—1(b_ a( x(k))) (31)

is adopted. This method allows quick convergence. Also it is particularly simple to apply since, by
adopting the usual constitutive laws, the gradient of the funetican be expressed in analytical
form (see Appendix). The ultimate load can be obtained by using the incremental method by
controlling the load level with an auto-stepping procedure.

3. Applications

The influence of the deformation of the shear connection on the failure modes of a simply supported
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Fig. 3 Data of applications: (a) static scheme; (b) cross section details; (c) non-linear constitutive relationship

(d)

of the materials; (d) non-linear constitutive relationship of the shear connection

beam is studied. For the sake of simplicity, a prismatic beam is used (Fig. 3b). The prestressing cables
having a total area of 5000 rrand an initial tension of 5000 kN, are anchored at the end cross-

sections at the level of the centroid of the composite beam and their path is defined by the two saddle
points shown in Fig. 3a. The prestressing force applied is the maximum value that can be applied to the

beam without causing cracking of the slab.

With regard to the shear connection device, a uniform distribution of stud connectors with ultimate

is adopted along the whole length of the beam, excepting that at the end
regions where, according to ENV 1994-2 (1997), a stronger connection system with ultimate strength
0u=0u*Vamax IS provided on a segment having a length of 1.0 m. For the case under consideration

strength per unit lengtq,=q,

Vama=3000 kN/m.
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Fig. 4 Longitudinal force on the shear connection with linear and non-linear behaviour of the connectors: (a)
beam subjected to prestress and self-weight; (b) beam subjected to prestress, self-weight and service loads

The non-linear constitutive laws adopted for steel and concrete are shown in Fig. 3c, while the classic
Ollgaard constitutive law (Ollgaaret al. 1971, Johnson and Molenstra 1991) is considered for the
shear connectors (Fig. 3d). Tschebichef's polynomial sequences are adopted as shape functions for tt
displacements.

The first diagrams of Fig. 4 show the differences between the results obtained with the model
presented by considering a connection with the referelicgate strengthg, =500 kN/m and those
given by an elastic analysis in which the shear-cadiorestiffness per unit lengtlpfp) is fixed as equal
to the secant stiffness at 40% of the ultimate streqgthhe figure shows the longitudinal shear force
at the interface connection for two different external load levels: in Fig. 4a only the self-weight of the
composite beam is considered while the results in Fig. 4b are obtained by considering an external loac

500 : 500 C
0T/ 0 =
2 J
-500° ©) -300 @
-1000 -10001 ®
— -15007 - 100
E £ 20001
Z -20001 . Z .
I~ 1 - prestress + self weight 25 225007 1 - prestress + self weight
S 25001 2 - p. +s.w. + service loads s 30001 2 - p. +s.w. + service loads
| 3 - ultimate / 3 - ultimate
-3000 -35001
-35007- — -4000T —
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(a) (b)

Fig. 5 Development of the longitudinal force on the

beam with strong connection

shear connectors: (a) beam with weak connection; (b)
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Fig. 6 External ultimate load versus shear connection strength

simulating the service condition (8 kN/m). Since the problem is symmetric, the diagrams refer only to
half the length of the beam. As it is well known, the shear connection is subjected to peak forces neal
the regions of the prestressing cable anchorage @Dakil1995): the prestressing force applied entirely

to the steel beam is partially transmitted to the concrete slab by the shear connectors. Such peaks, in tt
linear case, have an exponential shape and reach very high values, as compared to those obtained in t
non-linear case. This means that in the case of prestressed beams the assumption of linear behaviour
the shear connection is not very realistic.

Fig. 5 shows a comparison between the results obtained by considering the begm with =500 kN/m
and a second beam having double the ultimate strength. The shear connection is assumed to b
perfectly ductile. As is evident, the behaviour of the two beams is very different: in the case of the
weaker connection, the shear connection becomes fully plastic at the ultimate load level while in the
case of the stronger connection the ultimate capacity of the shear connection is reached only over :
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i d 8 c
1.6 71 b, /4
E 12 4 E ‘) -
=] =3 i
P=1 — > 4
= 08 a. .= 250 [kN/m] s a. g,=250 [KN/m]
= b. 7= 500 [kN/m] 53 b. 7,= 500 [KN/m]
04 c. =750 [kN/m] 2 c. 7,=750 [KN/m]
* d. 7;= 1000 [kN/m] N d. 7,= 1000 [KN/m]
0 ‘ ‘ 0 ‘ ; ‘
0 10 20 30 40 0 0.5 1 1.5 2
W(L/2) [mm] /100 [KN/m]
(a) (b)

Fig. 7. Comparison of behaviour of beams with different strength of shear connections: (a) load versus
deflection at midspan; (b) cable tension versus external load
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portion of the beam.
Under the assumption of perfectly ductile connection, the influence of the shear connection strength

g, on the load capacity of the beam is shown in Fig. 6. It is evident that the ultimat®, lgdvs

almost linearly untilg, is about equal to 750 kN/m. Once this valtgaished the ultimate load for the

beam remains constant. In other words for valueg,of higher than 750 kN/m, the shear connection
permits the development of the fully plastic bending moment at the midspan cross section (full
composite action) so that the maximum load capacity of the beam is reached. On the other hand, fol
lower values of the shear connection strength failure occurs under sensibly lower loads without the
formation of a classic plastic hinge at midspan (partial composite action).

This affects the overall behaviour of the beams as shown in Fig. 7a. Aftatisihcommon load-
deflection path, characterised by distonity due to the application of prestressing force, the curves
relative to weaker shear connections branch out from that of the strongest connection and after mild
strain-hardening reach the state of collapse. Conversely, the beam with the strongest connection reache
its ultimate load, due to crushing of concrete, after a gradual reduction in stiffnesg, YWi0 kN/m,
although the full plastic moment capacity is realised at the midspan section, the beam deflection and
failure mechanisms at collapse are different. In the cagg of =750 kN/m, the shear connectors are a
their limit state along the whole beam. Wilh  =1000 kN/m, the shear connectors reach the limit state
in the cable anchorage region only. Fig. 7b shows the variation of the cable force with the external
loads. As for the deflections, this parameter is also representative of the overall behaviour of the bean
since, as already stated, under the assumption of no friction between the cables and the saddle point
the cable tension is constant along its length and depends on the deformation of the whole beam. Th
higher deflections of the composite beam due to the plasticisation of the shear connection produces
large increment of traction on the cable even if it does not reach the yield level in any of the cases
considered. The prestressing force grows gradually showing linear behaviour and undergoes a sudde
increment as the ultimate load is approached. At failure, the increment of the cable tension is important
and, in the cases examined, it was found to reach about 60% of the initial tension.

The preceding results were obtained under the assumption of perfectly ductile shear connection ir

-300 1.8
a. =250 [kN/m] |
2501 b. =500 [kN/m] {]
c. §—=750 [kN/m] |} 1.6
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200 1 1 | | £
T P Z 14
£ 1501 I ,’ I g
— ! | = /
1001 a' bl C, = 12 a I',=20mm
! I l = a b I[,= 12Zmm
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/] y ! d (Ci d I',=6mm
0 4 J_%/ 08 e e I'y=4mm
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(@ (b)

Fig. 8 Influence of shear connection with limited ductility: (a) interface slipping at beam end versus external
load; (b) external ultimate load versus shear connection strength
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order to permit the complete development of the failure mechanisms which can be used in a classic
plastic analysis. Push-out tests demonstrate however that welded stud connections may underg
maximum slips no higher than 10 mm (Newmatlal 1951, Ollgaareet al 1971). From Fig. 8a, in

which the evolution of the intexte slipping at the beam ends versus the load level are plotted, it is
evident that the slippage predicted by the analysis is so high that the results previously shown for shea
connectors of lower strength seem almost meaningless. In other words, the ultimate loads previously
shown are not true since they are limited by reaching of the ultimate slip of the shear connection which
leads to non-ductile failure of the whole beam. Fig. 8b groups curves showing the importance of the
shear connection ductility in the development of the faineghanism. It is evident how, only for the
strongest shear connection, it is possible to obtain the ultimate load level estimated under the
assumption of perfectly ductile connection. For the minimum value of #er slonnection strength

that ensures the full connection (750 kN/m), the real value ofltineate load can be dangerously
overestimated. This problem is of particular importance in the case considered where the application of
concentrated forces due to the prestressing cables induces large interface slips around the cabil
anchorages. In these cases, controlling interface slipping may become crucial in the design of the
connectors, so that the classic plastic analysis, based on equilibrium conditions only, cannot be applied.

4. Conclusions

In this paper a model to investigate the non-linear behaviour of externally prestressed steel-concrete
composite beams, taking into account the deformability of the shear connection, has been proposed. |
is of general validity and can be applied to beams with various static schemes, each cable path an
various construction sequences. By means of an incremental analysis, the model makes it possible t
follow the stress-strain histories of all the elements of darbunder increasing loads and thus it is a
powerful tool to numerically simulate failure modes of structures of this kind. Some applications to a
simply supported beam permitted drawing a number of conclusions.

The evaluation of the shear flow on the beam-slab interface connection should be performed by a
non-linear analysis since the elastic analysis overestimates the peaks arising around the cabl
anchorages. This is due to the non-linear behaviour of the connectors, particularly important even for
low interfaceslip values, which implies a redistribution of theeifiace force.

The cable tension at ultimate load is very different from the initial value depending on the global
ductility of the beam.

The beam failure modes are strongly influenced by the fligxiof the shear connection. Plastic
failure mechanisms can develop only if the shear cdimmeis very ductile and for usual connectors the
ultimate load can be much lower than that provided by calculations under the assumption of perfectly
ductile interface connection. This means that the conceptllotdmposite action, as commonly
understood, is not applicable to externally prestressed compesitesbbecause it does not permit
controlling the shear connection slippage responsible ferathbeam failure.
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Appendix |

The expressions of the componentd are reported in the sequel.
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