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Abstract. An energy method of analysis is presented which can be used to study the inelastic lateral-
distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The
numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very
rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of
continuously restrained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and
are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the
effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of
distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional
buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and
incorporates both the so-called ‘polynomial’ and ‘simplified” models of residual stresses. The method is
validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to
illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the
provisions of the Australian AS4100 steel standard are unconservative.

Key words: beams; continuous restraint; elastic restraint; energy method; inelastic buckling; residual
stresses; yielding.

1. Introduction

The concept of lateral-distortional buckling in I-section beams is well-known (Bradford 1992).
Almost all studies have been restricted to elastic buckling, where the lateral-torsional and lateral-
distortional buckling loads of practical I-beams are almost identical if the beam is simply supported
without restraint along its length. This is not the case for beams with incomplete end restraint (Bradford
and Trahair 1981, 1983, Bradford 1990), or for beams with continuous elastic restraint of the tension
flange (Bradford 1988a). The latter case of beam restraint is often met in practice, such as in a half-
through girder bridge, with a standing-seam sheeting system, and in a composite bridge girder near an
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internal support or in a composite beam-to-column connection in a building. This paper aims to extend
the energy-based method of elastic distortional buckling of continuously restrained I-beams into the
inelastic domain, and includes residual stresses in addition to the standard elastic-plastic-strain
hardening idealisation of the stress-strain law for mild steel.

Research into the inelastic lateral-torsional buckling of unrestrained I-section members subjected to
uniform bending has been reasonably plentiful. Ketter er al. (1955) developed a simplified residual
stress model, and applied it to members subjected to unequal end moments with axial thrust. Galambos
(1963) also considered this problem, which was refined in the accurate modelling developed by Trahair
and Kitipornchai (1972) and Kitipornchai and Trahair (1975), and in the finite element study of
Nethercot (1974). Some other studies of inelastic lateral-torsional buckling are reviewed in Trahair
(1993). The inclastic lateral-distortional buckling of beams under uniform bending was investigated by
Bradford (1988b), but the cross-section considered was assumed to be fabricated from very slender
plates, and consequently residual stresses germane to fabrication by welding were assumed.

This paper considers the inelastic lateral-distortional buckling of hot-rolled I-section beams subjected to
uniform bending, but which may also be restrained elastically by a continuous restraint against lateral
deflection, in-plane rotation and twist rotation at the level of the tension flange. Trahair and Kitipornchai
(1972) showed that the inelastic buckling study of beams with undeformable cross-sections may be
undertaken by assuming that the cross-section is monosymmetric, owing to the combination of yielding and
residual stresses under monotonically increasing end moments, and used the elastic modulus £ in the elastic
region and the strain hardening modulus £, in the yielded regions. In addition, since the bending moment
and residual stresses do not vary along the member, the monosymmetric idealisation is also prismatic. This
paper, however, differs from Kitipornchai and Trahair’s work in that the cross-section may distort, requiring
four degrees of freedom instead of two to model the buckling mode at each section along the beam. The
flexible web is analysed using an inelastic plate buckling model, while the effects of continuous elastic
restraints, which do not appear to have been treated hitherto in the literature, are included.

2. Theory
2.1. General

The energy method used by Bradford (1988a) for elastic distortional buckling forms the basis of the
analysis herein. The member is assumed to be a doubly-symmetric hot-rolled I-section beam, simply
supported at the ends and acted upon by equal and opposite end moments that bend the member into
single curvature. While this formulation restricts the loading to comprise of uniform stress
longitudinally and the end conditions to be those of simple supports, it is intended to shed light using an
efficient algorithm on the cross-section geometric and elastic restraint stiffness parameters that affect
the buckling strength. The residual stresses induced during the cooling of a hot rolled member are
usually described by the polynomial model (Fig. 1a) or by the simplified model (Fig. 1b), descriptions
of which are given elsewhere (Lee and Bradford 2002). During buckling, the stocky flanges are
assumed to remain rigid, and their buckling is therefore treated as that of rigid bars. On the other hand,
the web is assumed to buckle as a cubic curve, for which plate theory is invoked. The beam of length L
is shown in Fig. 2a, with the moments in Fig. 2b. An arbitrary reference axis is positioned along the
beam at the web mid-height. The concept of the arbitrary reference axis was explained by Bradford and
Cuk (1988), where the derivations in their finite element buckling model of elastic monosymmetric
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Fig. 3 Stress-strain relationship for mild steel

tapered beam-columns were simplified greatly as the terms relating to lack of coincidence of the shear
centre and centroid do not appear with this model. As noted earlier, the cross-section becomes
monosymmetric once yielding commences due to the presence of residual stresses.

2.2. Moment-curvature relationship

Under the action of a curvature p applied to the cross-section, the applied strain &, at any point in the
cross-section can be found from

&(x,y) = (v+y)p+E(x.y) (M

where y is the coordinate of the neutral axis relative to the web mid-height and &, is the residual
strain. Fig. 3 shows the elastic-plastic-strain hardening constitutive model for the mild steel. The
stress O in the cross-section can be obtained from the applied strain in the following mathematical
representation of Fig. 3.

&

o(x,y) = J'E,dea+E£r Q)

In Eq. (2), E, is the appropriate tangent modulus (£, 0, or £,) shown in Fig. 3.

The position of the neutral axis ¥ is dependent on the particular applied curvature p and must be
determined iteratively. At a given value of y, the corresponding axial force in the section N can be
determined from

N= ‘A['G(x,y)dA 3)

in which A is the area of the cross-section, and equilibrium at the cross-section dictates that N must
vanish. Hence the axial force is calculated as y is increased in steps until it changes sign. Once
bracketed, the method of False Position is used to converge on the value of y for which N = 0.



Inelastic lateral-distortional buckling of continuously restrained rolled I-beams 301

Finally, at the given curvature p for which ¥ is uniquely defined by equilibrium, the corresponding
moment in the section M, is simply given by

M, = {0 (x,y)ydA 4)

The dependence of £,(x, ¥) in Eq. (2) and M, in Eq. (4) on the applied curvature p are used subsequently
in the buckling analysis.

2.3. Buckling deformations
When the cross-section buckles out-of-plane as shown in Fig. 4, the top and bottom flanges displace

laterally u and up and twist @r and ¢. All of these deformations are assumed to follow the longitudinal
sinusoidal eigenmode associated with lateral-torsional buckling, that is
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where »n is the number of harmonics into which the beam buckles and {g} =¢; (i=1,..,4) are the
maximum amplitudes of the buckling displacements. The web is further assumed to distort during
buckling as a cubic curve, so that

u,=h0,n,n", N4 a}sin% (6)

where {a} is a vector of four polynomial coefficients. This vector can be determined by imposing the
following geometric compatibility conditions at the top and bottom flange-web junctions at z = L/2n:
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Fig. 4 Buckling deformations in the plane of the cross-section
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ur=(u)p=1n up=(W)p=sip @r=—(ty ) =10 G= () p=—1r2 (7

where commas denote partial differentiation, so that after some algebraic manipulation,

12h 172k 1/8 —1/8 SM'/-D

0
3/2h =3/2h /4 174|040

{a} = 0 0 ®
0 0 —1/2 122|¢0
2/h Uh -l -1 E%E

2.4. Strain energy stored during buckling

During bifurcative buckling, strain energy U is stored in the beam. This strain energy is the sum of
that stored in the flanges (U)), the web (U,,) and in the elastic restraints (U,). The incorporation of
inelasticity in this study is reliant on the infinitesimal nature of the buckling deformations, so that when
incorporated in a rational model of plasticity, unloading from the yield surface is assumed to be
precluded. Because of this, the inelastic model may be thought of as a quasi-elastic model, with
appropriate rigidities independent of the buckling deformations.

Using this assumption, which has been used successfully for bifurcative buckling elsewhere (Dawe
and Kulak 1984, Bradford 1986), the flanges are considered to be ‘rigid beams’ whose behaviour in the
inelastic range is governed by tangent modulus theory, while the web is considered to be a plate
element whose inelastic buckling behaviour is described by a constitutive matrix appropriate for the
flow theory of elasticity. The strain energies stored in the flanges and in the web are then

L
Ufz %g{ uT,zz! uB,::l (pf,:(pB,:} T[Df]{ uT,z:’ uB,::’ ¢T,:(p8,:} dZ (9)

]L
Uw = 5‘!{ Uy, yyr Uy, 220 _2uw,y:} T[Dw] { Uy, yys Uy, 220 _2uw,yz} dde (1 0)

where the property matrices for the flanges and web respectively are

| D] =[(ET), (Elp), (GJ}),(GJp), | an
w, wy, 0

[Dy]=|w, w; 0 (12)
0 0 w,

In Eqg. (11), the tangent modulus theory model Trahair and Kitipornchai (1972) has been used to
determine the minor axis flexural rigidities (£7),. This was achieved by transforming the thickness of
the flanges according to a modular ratio of unity when &, <¢,, and to £,/ E (= 1/h) when &, = &,. This
approach is based on the well-known dislocation theory of yielding. The torsional rigidities (G.J), were
calculated in the same fashion as that described in the bimetallic representation of Booker and
Kitipornchai (1971). While the formulation of the polynomial residual stress distribution stated by
Bradford and Trahair (1985) satisfies the static and torsional equilibrium conditions.
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[0, dd = [(x*+y")dA=0 (13)
4 4

accepted models of simplified residual stress distributions do not. Because of this, it is necessary to
alter the tangent torsional rigidity in Eq. (11) to

(G) =[x +y')dd

in order to eliminate the unequilibrating axial torque induced by the residual stresses, which is related to
the Wagner effect (Trahair 1993).

In the web property matrix in Eq. (12), the entries w; were determined from the usual isotropic elastic
theory of Timoshenko and Woinowsky-Krieger (1959) at positions y in the cross-section where g, <&,
For those positions y where g, > g, the model of Haaijer (1957) which was adopted and verified
experimentally by Dawe and Kulak (1984) and Bradford (1986) was used. In this representation,

___Ed, ooy By @-DESE Gy 14
YT =)] 2T T 2 1=(vv)] BEFE 4T 12
where
[(2v—1)E, +E]
(V1V2):—l (15)

EQGE,+E)

and Vv is the elastic Poisson’s ratio (taken as 0.3 herein).

The continuous elastic restraints that may inhibit lateral deformation, lateral rotation and twist
rotation at the top and bottom flanges are the same as those described by Bradford (1988a). These
restraints are depicted in Fig. 5. If the vectors {r} and {&} represent the conjugate (infinitesimal)
restraining actions and deformations respectively, then.

U,= éf{ A '{e}d: =%{{ &} Tk1{ &} dz (16)

where [k,] is the elastic continuous restraint stiffness matrix.
The generalised strain terms in Egs. (9), (10) and (16) may be obtained by appropriate differentiation
of Egs. (5) and (6). When this differentiation is performed, the strain energies may be written as

1 1 1
U=5{a} IK{q}. U,=5{a} (K]}, U=5{q} [K}g} (17)
and the total strain energy stored during buckling as

U=31a}[Kl{q) (%)

where [K,] is the (constant) elastic restraint stiffness matrix, and [K/] and [K,] are the flange and
web stiffness matrices respectively, whose entries depend on the level of applied loading.
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2.5. Work done during buckling

The loss of potential during buckling caused by the applied moment AM is the sum of the
contributions for the flanges and web. Thus,

V=V+V, (19)

where

L
V= L [Aofud i 447G 4 N, 0)
4,0

L
_1 2
V=3 J’/\Uguwlz d=dA, 1)
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in which
AMy

Ao= I_ (22)

X

and 4, and 4, are the flange and web areas respectively. The derivatives in Eqgs. (20) and (21) may
be obtained from Eqs. (5) and (6), so that the former equations may be written as

V=ay IS)a) V=) 1S.Ha) 23)

and the total work done during buckling as

V=gt 5Ha) 24)

where [S/] and [S,] are the flange and web stability matrices respectively, and whose entries depend
on the level of applied loading.

2.6. Bifurcation of equilibrium

The total change in potential /7 can be written as

M= U-r=3{g} 1N g} (5)

where the 4x4 matrix [4] = [K] - [S] depends on the level of loading A. Since [4] has been derived
in terms of the deformations of the secondary equilibrium path {q} that are departures from the
(trivial) primary equilibrium path at the point of bifurcation, this point may be located by invoking
the equilibrium condition in variational form that

o ={3q} T41{q} =0 (26)

for any arbitrary perturbation {0¢}. Hence from Eq. (26), the 4™ order eigenproblem

[41{4} = {0} 27

can be established.

In the solution of Eq. (27), the method used by Smith ef a/. (2000) has been modified for the problem
at hand. This involves the specification of a reference moment level M, and the application of a
monotonic load factor A to M. For a particular moment AM, the corresponding curvature is invoked
from the predetermined moment-curvature response, and the matrix [4] can be assembled. This matrix
is then reduced simply to upper triangular form by Gaussian elimination without row interchanges, and
the determinant is calculated by multiplying the four diagonals of the reduced matrix. The number of
eigenvalues less than the trial loading level specified by A is given by the number of negative diagonal
elements in the reduced matrix, and the load level for which this number is unity is sought. Once the
monotonic increment on A brackets the lowest eigenvalue, the method of bisections is used to converge
on the critical value of the load factor to a predetermined tolerance. At this value of A, the
corresponding eigenvector {¢} in Eq. (27) can be determined.
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3. Accuracy of solution

Since inelastic lateral-torsional buckling results for hot-rolled I-section beams are fairly well
established and accepted, in deference to lateral-distortional buckling, the results with cross-sectional
distortion suppressed have been compared with the lateral-torsional buckling predictions reported by
Trahair and Kitipornchai (1972). The beam considered in this study was the widely-used 8WF31,
whose geometric and material properties are given in Fig. 6. The residual stresses used in the study
herein were the polynomial pattern recommended by Lee ef al. (1967) and the simplified pattern
specified by Trahair and Kitipornchai (1972). So that the lateral-distortional buckling model developed
herein can be compared with the lateral-distortional buckling results reported in the literature, the effect
of web plate flexure during buckling must be eliminated. This may be achieved by identifying the term

L w2 5
EI leuwwdydz
0 -h2
1.2
W \ Elastic buckling

This study with simplified residual
stresses

0.8 - Traharr and Kitipornchai (1972)
with simplified residual stresses

<
= 06 B
>
This study & Trahair and Kitipornchai (1972) with
polynomial residual stresses
0.4
oy = 36 ksi (248.04MPa) B = 8 inches (203.2mm)
E = 30e3 ksi (206.7e¢3 MPa) T = 0.433 inches (1 1mm)
h'=33 h=7.567 inches (192.2mm)
0.2 s=11 t,= 0.288 inches (7.3mm)
v =03
0 T
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Fig. 6 Inelastic lateral-torsional buckling of unrestrained beam in uniform bending
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in Eq. (10), and scaling it by a large number (10® was used here).

Fig. 6 shows the comparison between the model reported herein and the results of Trahair and
Kitipornchai (1972). It can be seen that the results are almost in complete agreement for the polynomial
residual stress pattern, but that there is a small discrepancy between the two methods for the simplified
residual stress pattern. This discrepancy appears to be a result of the inability of Trahair and
Kitipornchai’s model to enforce complete torsional equilibrium, as is indicated by their solution lying
slightly above the theoretical elastic solution as the elastic range of response is entered. As would be
expected, the influence of the model of residual stress does not affect the value of the beam slenderness
L/r, at which strain-hardening buckling takes place, and the results of both investigations are in
agreement when the buckling moment equals the plastic moment of resistance.

4. Inelastic buckling of an unrestrained beam

A number of studies reported in the literature have indicated that the inelastic lateral-torsional buckling
moment for an unrestrained I-beam has a profound dependence on the model of the residual stresses. This
influence of the residual stresses results from their dependence on the geometric proportions of the beam
cross-section, and the simplified model was used in the current method to study the inelastic lateral-
distortional buckling of four different cross-section types: 610UB113 and 360UB50.7 universal beam
sections manufactured in Australia, and an 8WEF31 and Australian 310UC118 universal column sections.
The material properties used were: £ = 200 GPa, g, = 250 MPa, v= 0.3, £,/¢, = 10 and h '=33.

The results of the inelastic buckling study are shown in Fig. 7, where they are compared with the
corresponding results reported by Bradford and Trahair (1985) who analysed the same four cross-
sections. The inelastic buckling moment has been normalised with respect to the full plastic moment
M, and the beam slenderness represented as /M /M, where M, is the elastic lateral buckling moment. The
disparity between the results produced by the method of this paper and that of Bradford and Trahair
arises primarily because the former study uses the simplified model of residual stresses, while the latter
study uses a polynomial pattern.

For design, it is necessary that the scatter of results be accounted for, at least in a conservative
fashion. The predictions of the beam strength curve of the Australian AS4100 steel structures standard
(SA, 1998) based on the limit state of lateral buckling are also shown in Fig. 7, and this beam curve
incorporates the effects of geometric imperfections that are not included in either the Bradford and
Trahair (1985) model, or the method developed herein. Generally, the AS4100 curve is quite
conservative, except for stocky beams. This unconservatism has also been noted elsewhere (Trahair
1993, Trahair and Bradford 1998), but it should be noted that neither method includes the benign effect
of major axis bending curvature (Trahair 1993).

5. Inelastic distortional buckling of an elastically restrained beam
5.1. General
The effect of continuous elastic restraints on the inelastic buckling of I-section beams has been

investigated. In this study, the cross-sections considered in the previous section with the simplified model of
residual stresses were adopted, with the beam subjected to continuous translational, minor axis rotational and
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Fig. 7 Inelastic lateral-torsional buckling results

twist rotational (torsional) restraints applied at the tension flange level. The stiffness of the translational
restraint per unit length is &, the minor axis restraint stiffness per unit length is &,,, and the torsional restraint is
k., and these have been expressed in the non-dimensional form (Trahair 1979, Bradford 1988a).

_ k,Lza g o kL’
N, © N7 Gs

Y

a, (28)

where N, is the Euler load, and G.J is the elastic Saint Venant torsional rigidity.

The lateral-torsional buckling moments have also been calculated in this study in order to compare
them with those of the lateral-distortional buckling analysis by modifying the rigidity of the web in the
same fashion as described earlier. In the graphs generated in the investigation, the dimensionless
buckling moment M/M, has been plotted as a function of the dimensionless beam length L/A, where M,
is the first-yield moment of the cross-section in the absence of residual stresses.

5.2. Minor axis rotational restraint

In this study, 360UB50.7 and 310UC118 cross-sections were considered, and the continuous minor
axis rotational restraint of dimensionless stiffness @, was applied at the tension flange level. The results
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Fig. 8 Inelastic buckling of beam with minor axis rotational restraint

are shown in Fig. 8, where it can be seen that increases in the stiffness of the elastic restraint increase
the buckling moment for longer beam lengths, but the effect being only minor with decreased beam
lengths for which buckling is accompanied by significant yielding. The inelastic lateral-distortional and
inelastic lateral-torsional buckling moments virtually coincide, indicating that the buckling is not
accompanied by distortion of the cross-section.

5.3. Translational restraint

A similar investigation has been carried out on 360UB50.7 and 310UC118 cross-sections with
continuous translational restraint of non-dimensionalised stiffness a,. It was found that the results are
identical to those presented in Fig. 8, but with %, replaced with k,.L*/ HZM,. This result was proven for
elastic lateral-torsional buckling by Trahair (1979), and shown to be true for elastic lateral-distortional
buckling by Bradford (1988a). Fig. 9 shows additional results for 610UB113 and 8WF31 cross-sections,
and for which a similar conclusion can be made regarding the duality of the continuous minor axis and
translational buckling restraints.

5.4. Torsional restraint

It was shown by Bradford (1988a) that cross-sectional distortion has a profound effect on the elastic
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Fig. 9 Inelastic buckling of beam with translational restraint

distortional buckling load of a beam with complete continuous and elastic torsional restraint against
buckling applied at the level of the tension flange. It was shown further that while the assumptions of
Vlasov theory upon which the predictions of Trahair (1979) were based predict an infinite buckling
moment as @, increases towards infinity, the relaxing of the assumption of cross-sectional rigidity leads
to finite elastic buckling moments. The extension of this conclusion into inelastic buckling, in which
the full plastic moment with strain hardening neglected was argued to be an upper bound on the beam
strength (Bradford 2000), has been considered in more detail here with a 610UB113 cross-section and
the well-researched 8WF31 cross-section.

The buckling results are shown in Fig. 10. At low values of a. (=1), the beam with a 610UB113
cross-section was found to buckle into one harmonic (r»=1) irrespective of length. However, in the
range 10 < a. <100 the lowest value of the buckling moment did not correspond to the fundamental
mode, and the number of harmonics required to produce the lowest inelastic buckling moment was
dependent on the beam length. For instance, with a.=10 the beam was found to buckle in the
fundamental mode (z = 1) for L/h > 14.5 approximately, but with » = 2 for dimensionless lengths less
than this value. This limiting value is shown in Fig. 10. Further, with a, = 50 the beams buckle with two
harmonics (n=2) for L/h>40 approximately, with three harmonics (n=3) for 30<L/h <40
approximately, with four harmonics (r = 4) for 17 < L/h < 40 approximately, and with five harmonics (»
=5) for 10 < L/h < 17 approximately. For values of the dimensionless lengths less than 10, the number
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Fig. 10 Inelastic buckling of deep 610UB113 with torsional restraint

of harmonics needed to achieve the lowest buckling load was found to decrease, but in this length range
the buckling mode is inelastic local, and cannot be predicted accurately by the distortional buckling
method of this paper. Similar trends for the 610UB113 cross-section were found for a. = 100 and 1000.

Corresponding buckling curves have been obtained for the stockier wide-flange 8WFE31 profile, and
these are given in Fig. 11. Unlike the narrower 610UB profile, the wide flange profile was found to
buckle with four harmonics (n» = 4) for L/h > 30 approximately, but progressively decreasing to two
harmonics (n = 2) as L/h decreases to about 10 which is a suitable cutoff for the occurrence of local
buckling. The observation of the sometimes-high number of harmonics in the eigenmode that
corresponds to the lowest eigenvalue is important in the modelling of the problem with line-type finite
elements. For example, in the study reported by Bradford (2000), eight equal-length elements were
used, but reducing this number of elements (which use cubic interpolation polynomials) may cause
inaccuracies in the solution if the number of harmonics is large.

Figs. 10 and 11 also show the results obtained for inelastic lateral-torsional buckling. It can be seen
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Fig. 11 Inelastic buckling of wide 8WF31 with torsional restraint

that as a. is increased the lateral-torsional and lateral-distortional results become increasingly disparate,
with the former being unconservative. This trend occurs even for shorter beam-lengths for which
buckling occurs with highly inelastic cross-sections, and the lateral-torsional buckling results occur in
the strain hardening range of material behaviour.

6. Conclusions

This paper has considered the inelastic lateral-distortional buckling of an I-section beam under
uniform bending with and without continuous elastic restraints that inhibit the buckling. The method
uses a quite simple harmonic representation of the eigenmode, and incorporates both the so-called
simplified and polynomial patterns of residual stresses, so as to shed light on some of the important
parameters that affect the buckling strength. By a simple modification of the buckling model, the results
have been validated against results reported for inelastic lateral-torsional buckling that does not involve
distortion of the cross-section during buckling.

For unrestrained beams with hot-rolled cross-sections (to which the study has been restricted), the
buckling mode is sensibly lateral-torsional and the effects of cross-sectional distortion can be ignored.
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Because of this, codified design rules for inelastic lateral-torsional buckling may be used. For beams
with translational and minor axis rotational restraint, but for which the beam is free to twist during
buckling, the inelastic buckling load is again very similar to that for lateral-torsional buckling.
However, when restraint against twist rotation is applied to the cross-section along the beam length, the
member is not free to twist during buckling and cross-sectional distortion must necessarily accompany
the buckling deformation. This effect is difficult to quantify, and depends on such factors as the
topology of the cross-sectional profile, the level of residual stress, the beam length and the stiffness of
the torsional restraint. While the buckling strength increases with increasing stiffness of the torsional
restraint when based on either a lateral-torsional or lateral-distortional modelling, the use of the latter
more rational analysis leads to lower strengths than those obtained using a lateral-torsional
representation. Since the fully plastic moment can only be used as an upper bound, which is not
necessarily close to the predicted strength with continuous torsional restraint, care should be exercised
in the use of codified design rules to model this quite common situation of beam restraint.

The many buckling half-wavelengths into which a beam may buckle has been demonstrated in the
paper. This has ramifications on the use of line type finite elements for an “overall” buckling mode,
since the lengthwise interpolation polynomials used in these would be at odds with predicting
accurately a buckling mode that is accompanied by a large number of half wavelengths, unless a
sufficiently large number of elements was chosen. The possibility of the buckling mode containing
many half-wavelengths is not known initially, and the results in this paper provide greater clarity in the
guidance on certain geometries where the use of line-type elements may lead to aberrations in the
accuracy of the solution.
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