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Abstract. In this paper, the solution of a semi-infinite plane with one circular hole is presented. This
solution is induced by repeatedly superposing the solution of an infinite plane with one circular hole and that
of a semi-infinite plane without holes to cancel out the stresses arising on both boundaries. This procedure is
carried out until the stresses arising on both boundaries converge. This method does not require complicated
calculation procedures as does the method using stress functions defined in a bipolar coordinate system. Some

numerical results are shown by graphical representations.
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1. Introduction

The problem of a semi-infinite plane with one circular hole is very important for the strength of
materials or driving tunnels. Solutions for this have been induced using stress functions on a bipolar
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coordinate system Jeffery (1920), Mindlin (1939), Verruijt (1997b) or using the Finite Element Method.

However, analyses which use stress functions on a bipolar coordinate system have the following
drawbacks: First, the procedure for obtaining solutions to isotropic problems is inevitably complicated.
Second, for orthotropic problems, there is no mapping function which simultaneously maps the two
boundaries into concentric circles. In addition, these studies treat only the case that is under axial
symmetry load on a circular hole. Analyses which use the FEM have the following drawbacks: First,
the calculations consume a huge amount of computer memory resources. Second, the accuracy of th
solution depends on the method by which the problem is meshed.

On the other hand, solutions have been induced for doubly connected elastic problems by
superposing the two kinds of elastic solution for simply connected problems until stresses on both
boundaries converge to the boundary conditions Howland (1930), Tamate (1957b) (1959), Hetenyi
(1960), Tsutsumiet al. (1997a), (2000). This procedure allows us to obtain the final solution for doubly
connected elastic problems.

In this paper, this method is called the Constraint-Release Technique, and has been used to verify th
solution to the problem of an semi-infinite plane with one circular hole under arbitrary load on a
circular hole.

2. Fundamental equations
Consider a two-dimensional semi-infinite plane with one circular hole, as presented in Fig. 1. The

stress components,, o, and 1, and displacement componentg and u, are represented by the
following equations:
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Fig. 1 Semi-infinite plane with one circular hole
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wherez=x+1y, i is the imaginary unit$(z) and (A2 are the stress functions introduced by Kolosov and
Muskhelishvili; Re andIm denote the real part and the imaginary part of the complex functions, and
v andG represent the Poisson ratio anéahmodulus, respectively.

The formulae which map stress and displacement components intinearvcoordinatesé( n) are
given by

Gg+ 0,7 = oyt Gy 0O
_ ’i0 .0 (4)

0,—0;+2iT;, = € (0y— 0y +2iTy) [
Ug—iu, = €°(u,—iuy) (5)

3. Formulation of the problem

The purpose of this paper is to obtain the solution for a problem in which an arbitrary load is applied
to the only circular hole of a semi-infinite plane. We obtain the solution for this problem by the
following procedure. First, the tangential stress and shear stressg,o, on the circular hole are
expanded in finite Fourier expansions,

M
0% o—iT¢n0 = Coo+ HZ (Co,mCOSMA + do, msSiNMA) (6)
=1

The stress functions for an infinite plane with one circular hole, as shown in Fig. 2, are given by

9.0(2) = Mo log(z=h)+ 5 Ag m(z~ h™
(7)
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Fig. 2 Infinite plane with one circular hole
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The complex coefficient¥y, No, Ko, Ag.m Bo.m are obtained as in the following form:

1-v .
M, = ?(Co,l""do, 1)
3—-v,. .=
No = T(Co, 1—1do 1)
Ko = Co,08°
m+1 :
AO,—m - _am C0,m+1+2|do,m+1 m>1 (8)
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The tangential stregx’, and the shear stres§,, on the virtual straight boundary £ 0) are represented
using the stress functions:

Oko = 2Re ¢ (D] -RE D" 4 (2) + W0 (2)] E]]
Tayo = 1M[29% 4 (2) + ¥ 0 (2)] O

The terms in the above equations are expanded as in the following equatlonst/\(hdfr@n, Ho, ns
Ho,n» Hons Ho ns Jo, ny JO n,» Jon Jon, are complex coefficients which are determinedvigy Ny, Ko, Ao.m,
and By,

(9)
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K in Eqg. (10) andM in Eqg. (7) do not have to be same because the terms in Eg. (10) are obtained

by Fourier integral. Thereforeg, , am{l, are represented as:
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Then, in order to cancel out the stresses represented in Eg. (9), the negative values of these stress
are loaded on the semi-infinite plane. The stress functions for a semi-infinite plane are represented as

o1 (2) = al(o)l _[:e_Zt al(t)_al(z())+ibl(t)dt E]]
5 (13)
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In the above equation$,; and Py; are the resultant forces in thedirection andy-direction,
respectively. Furthermorey(t) andb,(t) are expanded as the following series:

K ~
a(t) = 5 a, 7™, by(2)= bk t (15)
1 kZ]_ 1,k 1 z

By using the above equations and the Laplace transformation, Egs. (13) may be represented as follows:

S

24

Fig. 3 Semi-infinite plane without holes
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On using these stress functions, the tangential swgssand the shear stress, ,, arising on the

virtual circular hole boundary in the semi-infinite plane without holes are represented as:
M -
Og1—iTgp1 = Cpot z (C1 mcosSMB + d1, mSINMBO) a7
m=1

For cancelling out these stresses, the negative values of the stresses represented in Eq. (17) are ag
loaded on the boundary of the circular hole of the infinite. By repeating this procedure, the stress
functions for the semi-infinite plane with one circular hole are obtained using the following equations:

¢(2) = ZO¢C, n(2) + Z bo.n(2), W(2)= wac‘ n(2) + Z Wp,n(2) (18)

where 0
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In Eq. (19), log¢—h) and logz are many-valued. However, the first differential and second
differential of ¢.(2) and ¢, (2), and the second differential of second differentialygf(z) and
WYor(2), are used to obtain the stresses as shown in Eq. (1), so that the terms involzirdp)lay(

log z are reduced to be single valued.

4. Results and discussion

To investigate the convergence of the stresses arising on the circular hole, Fig. 5 shows the stresse
arising on the boundary of the hole under uniform normal stress on the hole boundary as shown in Fig.
4. In this graph, the transverse axis shows the angle from the bottom of the circular hole, and the
ordinate axis shows normal stresisiag on the hole. The graph shows the results when the ratio of the
distance between the straight boundary and the center of thé,holéhe radius of the circular hale
is 1.5 and 5.0, and the number of calculation repetifibtimat is shown in Egs. (18) is 3, 6 and 9 when
h/a=1.5, and 1, 2 and 3 whdria=5.0. In general, the stress on the hole boundary decreases as the
number of calculation repetitions increases. Convergence of the stress arising on the boundary come
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Fig. 4 Uniform normal stress on the hole
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Fig. 5 Error on the hole boundary

more rapidly as the ratlwaincreases. When the hole is deep (h& = 5.0), the error on the boundary

is about 3.5% foN = 1 andN = 3 is enough to calculate the stresses. On the other hand, when the hole
is shallow (i.e h/a=2.0), the convergence is in comparison with the case when the hole is deep.
Nevertheless, 6 repetitions of the calculation are enough to retrieve the stressbsawlb. Fig. 6
shows the stresses arising on the straight boundary Mkeh In this graph, the transverse axis shows
the ratio of the distance from the point above the center of theytioléhe radius of hole, and the
ordinate axis shows the ratio of the normal stogssising on the straight boundary to the magnitude of
uniform normal stresp acting on the hole boundary. The normal stress remains above the center of
hole, and becomes greatertda increases. However, it appears that this method provides adequate
accuracy whein/a is greater than 1.8 becausg/ p is then less than 5%.

Fig. 7 shows the tangential stress around the circular hisdlaaf.0 and 5.0 when a uniform normal
stressp is loaded on the circular hole as shown in Fig. 4. When the hole is deep, uniform compression
appears around the hole. However, it should be noted that the tangential stress around the hole i
influenced by the straight boundary when the hole is shallowl{ia=, 2.0).

Fig. 9 shows the tangential stress around the circular hbla=at2.0 and 5.0 when symmetric stress
that depends on the polar angle, namelyom: = p cos &, is loaded on the circular hole as shown in
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Fig. 6 Error on the straight boundary
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Fig. 7 Tangential stress around the hole subjected to uniform normal stress

Fig. 8. Tension appears on the top and bottom of the hole, for which the normal stress corresponds t«
tension, and compression appears on the side of hole, for which the normal stress corresponds t
compression. The value of the tension appearing on the top of the hole is the same as that appearing ¢
the bottom of the hole when the hole is deep. However, when the hole is shallow, the tension appearing
on the top of the hole is about 1.5 times greater than that appearing on the bottom of the hole. Also the
compression when the hole is shallow is larger than that when the hole is deep.

Fig. 11 shows the tangential stress around the circular hble=2t0 and 5.0 when asymmetric stress
depending on the polar angle, namelyBpa; = p cos (D +174), is loaded on the circular hole as shown in
Fig. 10. In this case, the normal stress exhibits both compression and tension. Both the tension and th
compression arise on the nearest side to the straight boundary are larger than those arising on the opposite s
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Fig. 8 Symmetric normal stress on the circular hole
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Fig. 9 Tangential stress arising on the hole subjected to symmetric normal stress
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Fig. 10 Asymmetric normal stress on the circular hole
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Fig. 11 Tangential stress arising around the hole subjected to asymmetric normal stress

5. Conclusions

In this paper, solutions are proposed for an isotropic elastic semi-infinite plane with a circular hole
under arbitrary load on the circular hole by superposing the solutions for an isotropic elastic infinite
plane with one circular hole and the solutions for an isotropic elastic semi-infinite plane until the
required boundary conditions are met. Some numerical results are presented and it is shown that th
semi-infinite plane containing a circular hole can be regarded as an infinite plane with a circular hole
when the hole is deep. However, in these results the hole is influenced by a straight boundary when the
hole is shallow.
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