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Abstract.  A higher order analytical solution for static analysis of a truncated conical composite sandwich 
panel subjected to different loading conditions was presented in this paper which was based on a new 
improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores 
subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads 
on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, 
bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The 
governing equations were derived by principle of minimum potential energy. The first order shear 
deformation theory was used for the composite face sheets and for the core while assuming a polynomial 
description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order 
to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of 
boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated 
conical composite sandwich panels were studied. As, there is no research on higher order bending analysis 
of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present 
approach can be linked with the standard optimization programs and it can be used in the iteration process of 
the structural optimization. The proposed approach facilitates investigation of the effect of physical and 
geometrical parameters on the bending response of sandwich composite structures. 
 
Keywords:    static; truncated conical sandwich panels; improved higher order sandwich panel theory; 
point load; uniform distributed load on a patch 
 
 
1. Introduction 

 
Sandwich structures, owing to their high strength and stiffness and low weight and durability, 

are widely used in many engineering applications. These structures generally consist of two stiff 
face sheets and a soft core, which are bonded together. The advantages of this construction method 
are used to obtain the plates with high bending stiffness characteristics and extremely low weight. 

Conical sandwich shells are often used as transition elements between cylinders of different 
diameters and/or end closures and sometimes as stand-alone components in various engineering 
applications such as tanks and pressure vessels, missiles and spacecraft, submarines, nuclear 
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reactors, jet nozzles and other civil, chemical, mechanical, marine and aerospace engineering 
structures (Sofiyev 2011). 

Based on Love's first-approximation shell theory, free vibration analysis of conical and 
cylindrical shells with various boundary conditions was performed by Wilkins et al. (1970). In 
their theory, transverse shear strain was not ignored. Using the finite deformation theory, Struk 
(1984) studied the buckling analysis of shallow open conical sandwich shells under uniform 
external pressure. Ren-huai and Jun (1995) performed non-linear free vibration analysis of shallow 
conical sandwich shells. They studied the effects of geometrical and physical parameters on free 
vibration response of shallow sandwich shell. In their theory the core and face sheets are 
transversely incompressible. Bardell et al. (1999) investigated a finite element vibration analysis 
of conical sandwich panels with different types of boundary conditions. They assumed that the 
core and face sheets were transversely incompressible. They also ignored the transverse shear 
strains in the face sheets. For bending analysis of sandwich structures, higher order sandwich panel 
theory was developed by Frostig and Shenar (1995), who considered two types of computational 
models in order to express the governing equations of the core. The second model assumed a 
polynomial description of the displacement fields in the core that was based on the displacement 
fields of the first model. Their theory did not impose any restrictions on the distribution of 
deformation through the core thickness. The improved higher order sandwich plate theory 
(IHSAPT), applying the first-order shear deformation theory for the face sheets, was introduced by 
Malekzadeh et al. (2005). Zhong and Reimerdes (2007) used a higher order theory and studied 
buckling analysis of cylindrical and conical sandwich shells with flexible core. Thermal and 
mechanical buckling of FG truncated conical shells based on the first-order shell theory and the 
Sanders nonlinear kinematics equations was done by Naj et al. (2008). Free vibration and buckling 
analyses of truncated conical shells with non-homogeneous material properties under uniform 
lateral and hydrostatic pressure were also done by Sofiyev et al. (2009). Biglari and Jafari (2010) 
presented a complex three layer theory for free vibration and bending analysis of open single 
curved sandwich structures. In their model, they used Donell's theory for the face sheets. Zhen and 
Wanji (2010) applied a C0-type higher order equivalent single layer theory and investigated 
bending analysis of laminated composite and sandwich plates subjected to thermal and mechanical 
loads. Continuity conditions of transverse shear stresses at interfaces and conditions of zero 
transverse shear stresses on the upper and lower surfaces were also considered. Bending analysis 
of laminated composite plates under bi-sinusoidal loading using an equivalent single layer plate 
theory was done by Stürzenbecher and Hofstetter (2011). In their theory, transverse shear strains 
jumped at layer interfaces; but, transverse shear stresses were continuous and normal stress was 
ignored. Sofiyev (2011) studied non-linear buckling behavior of FG truncated conical shells 
subjected to a uniform axial compressive load based on 3D FEM. Bending analysis of FG conical 
panels was carried out by Aghdam et al. (2011), who used first-order shear deformation theory. 
Nedelcu (2011) investigated buckling behavior of isotropic conical shells under axial compression 
using generalized beam theory. Free vibration analysis of FG conical shell using meshless method 
and first-order shear deformation shell theory was done by Zhao and Liew (2011). Stürzenbecher 
et al. (2012) investigated bending analysis of sandwich panels with different core geometries 
including corrugated, honeycomb and X cores by neglecting transverse shear strains of the face 
sheets. Classical and first-order shear deformation theories were employed for the face sheets and 
core, respectively. Bich et al. (2012) studied linear buckling of FG truncated conical panels 
subjected to axial compression, external pressure and combination of these loads using the 
classical thin shell theory. Abediokhchi et al. (2013) investigated bending analysis of FG conical 

1334



 
 
 
 
 
 

Higher order static analysis of truncated conical sandwich panels with flexible cores 

panels under transverse compression using first-order shear deformation theory and generalized 
differential quadrature method. The literature survey revealed that most of the researches have 
been performed on bending analysis of flat and curved composite sandwich panels and very little 
work has been carried out in the field of sandwich conical shells, most of which deal with buckling 
and vibration of isotropic, laminate and functionally graded (FG) conical shells. Therefore, there is 
no research on higher order bending analysis of conical sandwich panels with flexible cores. In 
addition, in these studies, the sandwich structures have been subjected to simple loadings while, in 
this paper, sandwich structures were subjected to multiple loading conditions including point load, 
uniform distributed load on a patch, harmonic and uniform distributed loads which were imposed 
on the top and/or bottom face sheets of the sandwich structure. Also, in this paper, using an 
improved higher order sandwich panel theory (Malekzadeh et al. 2005) and second computational 
model of Frostig (2004), bending analysis of conical composite sandwich panels was investigated. 
Also, the in-plane circumferential hoop stresses of the core were considered. Analytical solution of 
the displacement field of the core in terms of polynomials with unknown coefficients was 
presented according to the second computational model by Frostig and Thomsen (2004). Moreover, 
simply supported and fully clamped boundary conditions were considered. In order to assure 
accuracy of the present formulations, convergence of the results was examined in detail. Since 
there was few research on static bending analysis of a composite conical sandwich panel, to 
validate the obtained results, a conical sandwich panel was modeled in ABAQUS FE code and the 
results obtained from analytical formulations and FE code were compared with each other. Finally, 
effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on 
static bending analysis of the truncated conical composite sandwich panels were studied. 
 
 

2. Theoretical formulation 
 

2.1 Basic assumptions 
 

Consider a conical composite sandwich panel which is composed of two composite laminated 
face sheets. Thickness of the top face sheet, bottom face sheet and core is ht, hb and hc, respectively, 
in which indices t and b refer to the top and bottom face sheets of the conical sandwich panel, 
respectively, as shown in Fig. 1. The assumption used in the present analysis is small deformation 
of linearly elastic materials. Conical apex angle is 2ϕ or 2α. 

 
 

Fig. 1 Composite conical sandwich panel with laminated face sheets along with coordinates and 
dimensions of the panel 

1335



 
 
 
 
 
 

Keramat Malekzadeh Fard 

2.2 Kinematic relations 
 
Base on the first shear deformation theory, the displacements u, v and w of the face sheets in 

the x, θ and z (thickness) directions are expressed through the following relations (Reddy 2004) 
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where 
i
x  and 

i
  are rotation components of the transverse normal along x and θ-axes of the 

mid-surface of the top and bottom face-sheets. Also, iu0  and 
iv0  are displacement components in 

the x and θ directions, respectively, and 
iw0  is vertical deflection of the top and bottom face-sheets. 

Zi is vertical coordinate of the face-sheets which is measured upward from the mid-plane of the 
face-sheets (see Fig. 1). Kinematic equations for the strains in the face sheets are as follows (Qatu 
2004) 
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and 
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The displacements fields are based on model II of Frostig (Frostig and Thomsen 2004) for the 

core and take a cubic pattern for the in-plane displacements and a quadratic one for the vertical 
displacement 
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where c

ku  and c
kv  (k = 0, 1, 2, 3) are unknowns of the in-plane displacements of the core, 

respectively, and c
kw  (k = 0, 1, 2) are unknowns of its vertical displacements. Rc (x) is the radius 

of curvature of the core in θ-z plane that varies with x 
 

0( ) sin( ) c cR x R x   (6)
 
Kinematic relations of the core for a conical sandwich panel are 
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where 
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2.3 Governing equations 
 
The equilibrium equations for the face sheets and core are derived using principle of minimum 

potential energy 
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where δU and δWext denote variations of strain energy and potential energy due to the applied loads, 
respectively. Also, δ denotes the variation operator. 

The first variation of the internal potential energy for a composite conical sandwich panel 
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The variation of the external work is sum of the applied loads on the top and bottom face sheets 
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Using the principle of minimum potential energy (Eqs. (9)-(11)) and kinematic relations (Eqs. 
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where stress resultants per unit length can be defined. They were shown in appendix A. Also using 
the principle of minimum potential energy (Eqs. (9)-(11)) and kinematic relations (Eqs. (1)-(8)), 
the boundary conditions equations can be obtained. The simply supported geometrical and 
physical boundary conditions for a truncated conical shell at the edges x = 0, a of the top, bottom 
face-sheets and the core are 
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3. Analytical solution 
 

The displacement field based on double Fourier series for a conical composite sandwich panel 
with simply supported boundary conditions at the top and bottom face-sheets was assumed to be in 
the following form 
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where ,0
j
mnU  ,0

j
mnV  ,0

j
mnW  ,j

xmn  ,j
mn  ,c

kmnU  
c

kmnV  and 
c

lmnW  are Fourier coefficients and m and 
n are half wave numbers along x and θ directions, respectively. The above double Fourier series 
functions can satisfy simply supported boundary condition on all edges for a conical composite 
sandwich panel. However, when all edges are clamped, only the function cosαmx in the above 
series expansions must be replaced with sinαmx. 
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In Eqs. (16)-(17), the static loads (qj (j = t, b)) normal to the top and/or the bottom face sheets 
of a conical composite sandwich are assumed to be represented by series expansion as follows 

 

1 0

( , ) sin( ) cos( ) ; ,j
j mn m

m n

q x q x n j t b  
 

 

  (29)

 
Where qmn is Fourier coefficient that is dependent on types of loads. Fourier coefficient for the 

uniform distributed load on the top and/or bottom face sheets of the conical sandwich panel can be 
obtained as follows 
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For the point load acting on an arbitrary point (xi, θi) can be determined as follows 
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For the uniform static load distributed on the patch with length 2L1 (R(θ2 – θ1) = 2L1)) and width 

2L2 (R(x2 – x1) = 2L2)), the applied load was assumed to be only in the radial direction over a small 
rectangular area (2L1 × 2L2) and other external excitations were neglected. Constant Fourier 
coefficients 

j
mnq  could be determined as follows 
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For the harmonic load on the top and/or bottom face sheets, they can be determined as follows 
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Therefore, the governing equation of motion to the static bending analysis of conical composite 
sandwich panel can be written as follows 
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where some coefficients of stiffness matrix [K] (15 m (n + 1)) × (15 m (n + 1)) are given in Appendix 
B which for SS B.C. and [Q] is (15 m (n + 1)) × (1) vector of the arbitrary static force or forces. 

 
 

4. Results and discussion 
 
In this section, some examples are considered and the obtained results are validated and 

discussed. In order to demonstrate their capability in predicting static bending analysis of a 
composite conical sandwich panel, some examples are presented. Since there has been no research 
on static bending analysis of a composite conical sandwich panel for validating the obtained 
results, a conical sandwich panel was modeled in ABAQUS FE code and the results obtained from 
analytical formulations and FE code were compared with each other. The agreement between the 
results was very good. 

 
Example 1: 
Static bending analysis of a composite conical sandwich panel with SS and CC B.Cs. 
 
In this example static bending of a composite conical sandwich panel was studied. Properties of 

the conical structure are given in Table 1. It is assumed that static load (q0) was uniformly applied 
to the area (UAL) (A = 2L1 × 2L2, L1 = L2 = L/8), uniformly (UDL) and harmonically (SSL) 
distributed loads on the top (outer) face sheet of the sandwich structure. In Table 2, convergence of  

 
 

Table 1 Material properties of a conical composite sandwich panel 

Foam core Composite face sheets 
E1 = E2 = E3 = 0.1036 GPa, 
G12 = G13 = G23 = 0.05 GPa, 

v = 0.036, ρ = 130 kg/m3 

E1 = 131 GPa, E2 = 10.34 GPa, 
G12 = G13 = 6.895 GPa, G23 = 6.205 GPa, 

v12 = 0.22, ρ = 1627kg/m3 

Geometrical properties: hc/h = 0.88, Rc1 = 10h, L = Rc1, [0 90 0 / core / 0 90 0], φ = 30° 
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Table 2 Convergence of dimensionless deflection at the center of top face sheet of a composite conical 
sandwich panel subjected to the UDL, SSL and UAL on the top face sheet 

)/(100 4
102

3*
ttt RqEhWw   

Convergence (m = n) S.S. Boundary conditions C.C. Boundary conditions 

3 3.8795 5.6458 3.3204 5.3371 5.7150 1.9690 

5 3.7891 5.6550 3.3873 5.8505 5.6392 3.8058 

9 3.5693 5.6685 3.3922 6.1208 5.5724 5.6741 

13 3.6217 5.6822 3.4411 6.2079 5.5632 6.2193 

15 3.6131 5.6887 3.4643 6.2467 5.5664 6.3258 

17 3.6129 5.6889 3.4645 6.2469 5.5665 6.3259 
 
 

Table 3 Comparing dimensionless central deflection of a composite conical sandwich panel subjected to the 
area load (UAL) 

30   ,5.0)sin(   ),/(100 1
4

102
3*   tttt RLRqEhWw  

B.Cs. Present model ABAQUS Maximum error (%) 

S.S. 3.6129 3.3683 6.77 

C.C. 6.2469 6.0192 3.64 
 
 

 

Fig. 2 The 3D view of the deflection of a composite conical sandwich panel with S.S. B.Cs. 
subjected to area load 

 
 

the dimensionless central deflection for both boundary conditions is presented. In this example, 30 
MPa was considered for values of all the applied loads. It can be seen from Table 2, central 
deflection for all the applied loads converged after 225 expressions (m = n = 15). 

In Table 3, results of the presented formulations are validated using results of ABAQUS 
analysis. In this study, composite conical sandwich panel with foam core was meshed using SC8R 
elements. In the finite element model presented in this study, the motion of the face sheet is related 
to the motion of the core through constraint equations utilizing the concept of slave and master 
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nodes. The finite element model is capable of taking transverse flexibility into consideration. In 
particular, certain boundary conditions which may not be studied analytically can be studied using 
the present finite element model. This table showed little difference between the results and the 
presented formulations was in very good agreement with FE results. The 3D view of deflection of 
a conical structure subjected to the area load obtained from ABAQUS code for simply supported 
boundary conditions (S.S. B.Cs.) is presented in Fig. 2. Also, 3D view of the dimensionless 
deflection of a composite conical sandwich structure subjected to the area and harmonic loads for 
S.S. B.Cs. is given in Fig 3. These results obtained from the present analytical solution. 

 
Example 2: 
Effect of conical angle on static response of a composite conical sandwich panel 
 

In this example, effect of conical angle on the static response of a composite conical sandwich 
panel subjected to uniformly (UDL) and harmonically (SSL) distributed loads with S.S. and C.C. 
B.Cs. was investigated. Mechanical and geometrical properties of the composite conical sandwich 
panel are given in Table 4. Variations of the face sheet deflections with conical angles for a 
composite conical sandwich panel subjected to SSL and UDL with S.S. B.Cs. at (x, θ, zi) = (L/2, 0, 
hi/2), (i = t, b) are presented in Fig. 4. With increasing the conical angle, the dimensionless 
deflections of the top (outer) and bottom (inner) face sheets in all the cases increased and, in all the 
cases, increasing rates of deflection were approximately equal, as shown in Fig. 4. Moreover, for 
both load conditions, the top and bottom face sheet deflections subjected to SSL were higher than  

 
 

(a) UAL, S.S. B.Cs. (b) SSL, S.S. B.Cs. 

Fig. 3 The 3D view of the dimensionless deflection of a composite conical sandwich panel with 
S.S. B.Cs. subjected to the area and the harmonic loads (Sinusoidal load) 

 
 

Table 4 Mechanical and geometrical properties of a conical composite sandwich panel 

Foam core E1 = E2 = E3 = 0.1036 GPa, G12 = G13 = G23 = 0.05 GPa, v = 0.036, ρ = 130 kb/m3 

Composite 
face sheets 

E1 = 131 GPa, E2 = 10.34 GPa, G12 = G13 = 6.895 GPa, 
G23 = 6.205 GPa, v12 = 0.22, ρ = 1627 kb/m3 

Geometry hc/h = 0.88, Rc1 = 10h, L = Rc1, [0 90 0 / core / 0 90 0]  
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Fig. 4 Variation of the dimensionless face sheet deflections with the conical angles for UDL and 
SSL loads at (x, θ, zi) = (L/2, 0, hi/2), (i = t, b) 

 
 

those subjected to UDL. The dimensionless deflection at the center of the bottom face sheet was 
lower than that at the center of the top face sheet because, in the current method, flexibility of the 
core was modeled and caused deflections of the top and bottom face sheets to be different. 

Variations of the transverse normal stress of the core with the conical angle for a composite 
conical sandwich panel subjected to SSL and UDL with S.S. B.Cs. at (x, θ, zc) = (L/2, 0, hc/2) are 
presented in Fig. 5. This figure shows that increasing the conical angle caused those values of the 
transverse normal stresses of the core in both cases to increase. Also, increasing rate of this value 
for SSL was much higher than that for UDL. 

 
 

10 15 20 25 30 35 40 45 50 55 60
-64

-62

-60

-58

-56

-54

-52

-50

-48

-46

 zz
 (

pa
)

Conical Angle (Degree)

 

 

SS B.Cs.-UDL

SS B.Cs.-SSL

 

Fig. 5 Variation of transverse normal stress of the core with the conical angles at (x, θ, zc) = (L/2, 
0, hc/2) for UD and SS loads (q0 = 100 N) 
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Fig. 6 Variation of transverse shear stress of the face sheets with the conical angles at (x, θ, zi) = 
(L/2, 0, hc/2), (i = t, b) for UDL and SSL loads (q0 = 100 N) 

 
 
Variations of the transverse shear stress of the top and bottom face sheets (σxz) with the conical 

angles for a composite conical sandwich panel subjected to SSL and UDL with S.S. B.Cs. at (x, θ, 
zi) = (L/2, 0, hc/2), (i = t, b) are presented in Fig. 6. As is obvious in this figure, with increasing the 
conical angle, values of the transverse shear stresses of the face sheets in all the cases were 
increased. Unlike the transverse normal stress of the core and deflection of the face sheets in Figs. 
5 and 4, values of the transverse shear stresses of the face sheets subjected to UDL for all conical 
angles were much higher than those subjected to SSL. Also, Fig. 6 shows that increasing rate of 
transverse shear stress of the face sheets with the conical angle for a composite conical sandwich 
panel subjected to UDL was much higher than that subjected to SSL. 

 
Example 3: 
Effect of fiber angle on static response of a composite conical sandwich panel 
 

In this example, effect of the fiber angle on the static response of a composite conical sandwich 
panel subjected to uniformly (UDL) distributed load with SS and C.C. B.Cs. was investigated. 
Mechanical and geometrical properties of the composite conical sandwich panel are given in Table 
5. Variations of the face sheet deflections with the fiber angles for a composite conical sandwich 
panel subjected to UDL with SS and C.C. B.Cs. at (x, θ, zi) = (L/2, 0, hi/2), (i = t, b) are presented 
in Fig. 7. With increasing the fiber angle, values of the dimensionless deflections of the top and 
bottom face sheets in all the cases decreased and, in the all cases, decreasing rates of deflection 
were approximately equal, as demonstrated in Fig. 7. 

 
 

Table 5 Material properties of a conical composite sandwich panel 

Foam core E1 = E2 = E3 = 0.1036 GPa, G12 = G13 = G23 = 0.05 GPa, v = 0.036, ρ = 130 kg/m3

Composite face sheets 
E1 = 131 GPa, E2 = 10.34 GPa, G12 = G13 = 6.895 GPa, 

G23 = 6.205 GPa, v12 = 0.22, ρ = 1627 kg/m3
 

Geometry hc/h = 0.88, ϕ = 30, Rc1 = 10 h, L = Rc1 [–θ 0 θ / core / θ 0 –θ]
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Fig. 7 Variation of dimensionless deflections of the top (outer) and the bottom (inner) face sheet with 
the fiber angles at (x, θ, zi) = (L/2, 0, hc/2), (i = t, b) for SS and CC B.Cs. (q0 = 100 N) 

 
 
Furthermore, for both boundary conditions, value of the dimensionless deflection at the center 

of the bottom face sheet was lower than that at the center of the top face sheet, for the same 
above-mentioned reason. Variations of the shear stress of the top and bottom face sheets (σxθ) with 
the fiber angles for a composite conical sandwich panel subjected to UDL with S.S. and C.C. B.Cs. 
at (x, θ, zi) = (L/2, 0, hc/2), (i = t, b) are presented in Fig. 8. This figure shows that, with increasing 
fiber angle, variations of the shear stresses (σxθ) for the top face sheet were much higher than those 
for the bottom face sheet and, for all fiber angles except 0 degree, values of the shear stresses (σxθ) 
for the top face sheet were much higher than those for the bottom face sheet. Also, Fig. 8 shows 
that maximum values of the shear stresses (σxθ) for the top face sheet for both boundary conditions 
occurred in approximately 45 degrees of fiber angle. 
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Fig. 8 Variation of σxθ at (x, θ, zi) = (L/2, 0, hc/2), (i = t, b) with the fiber angles for SS and CC 
B.Cs. (q0 = 100 N) 
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Fig. 9 Variation of σθθ at (x, θ, zi) = (L/2, 0, hc/2), (i = t, b) with the fiber angles for SS and CC 

B.Cs. (q0 = 100 N) 
 
 
Variations of the tangential stress of the top and bottom face sheets (σθθ) with the fiber angles 

for a composite conical sandwich panel subjected to UDL with S.S. and C.C. B.Cs at (x, θ, zi) = 
(L/2, 0, hc/2), (i = t, b) are presented in Fig. 9. Like Fig. 8, Fig. 9 shows that, with increasing the 
fiber angle, variations of the tangential stress and their values for the top face sheet were much 
higher than those for the bottom face sheets. 

 
Example 4: Variations of the normal, circumferential and transverse shear stresses and 
strains through thickness of the core of a truncated conical sandwich panel under a 
concentrated load 
 

In this example, variations of the normal, circumferential and transverse shear stresses and 
strains through the thickness direction (along z axis) of the core were studied. The bending 
analysis of a conical sandwich panel subjected to concentrated load on the top (outer) face sheet 
with S.S. and C.C. B.Cs. was investigated. Mechanical and geometrical properties of the panel 
were given in Table 5. The magnitude of concentrated load is 30000 N at point (x, θ, zt) = (L/2, 0, 
ht/2). Variations of the normal (σxx) and transverse shear (σxz) stresses along the thickness direction 
of the core at (x, θ) = (L/4, 0) were presented in Fig. 10. This figure shows that, variations of the 
normal and transverse shear stresses along the thickness direction (z axis) of core for C.C. B.Cs. 
are a little different. They have nonlinear patterns. It can be observed from this figure that the 
magnitude of transverse shear (σxz) stress is more than the magnitude of normal (σxx) stress in the 
core and this is a direct consequence of the low shear modulus of the soft core. 

Fig. 11 shows variations of the normal (εxx) and circumferential (εθθ) strains along z axis in the 
core under a concentrated load with S.S. B.Cs. at (x, θ) = (L/4, 0). They have nonlinear patterns. 

The results of the presented formulations are validated using results of ABAQUS analysis. In 
this figure both results of the present analytical and finite element ABAQUS methods were 
compared with each other. This Figure showed little difference between the results and the 
presented formulation was in very good agreement with F.E. results. It can be observed from Fig. 
11 that the absolute magnitude of circumferential strain is more than the magnitude of normal 
strain. 
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Fig. 10 Variation of the normal and transverse shear stresses along the thickness direction (z axis) of 
sandwich panel under a concentrated load with C.C. B.Cs. at (x, θ) = (L/4, 0) (q0 = 30000 N) 

 
 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-6

-4

-2

0

2

4
x 10

-4

z
c
/h

c



 

 

: Present theory


xx

: Present theory


xx

: ABAQUS

: ABAQUS

 

Fig. 11 Variation of the normal (εxx) and circumferential (εθθ) strains along the thickness direction (z axis) of 
sandwich panel under a concentrated load with S.S. B.Cs. at (x, θ) = (L/4, 0) (q0 = 30000 N) 

 
 
Variations of the circumferential (σθθ) and transverse normal (σzz) stresses through the thickness 

direction of the core under a concentrated load with S.S. and C.C. B.Cs. at (x, θ) = (L/4, 0) were 
presented in Figs. 12 and 13, respectively. 

It can be seen from these figures that the circumferential and transverse normal stresses in the 
core of conical sandwich panel with S.S. B.Cs. are a little more than those with C.C. B.Cs.. Fig. 12 
shows that, the circumferential stress along z axis of the core from the bottom (inner) to the top 
(outer) interfaces decreases for both boundary conditions while in Fig. 13, the transverse normal 
stress along z axis of the core from the inner to the outer interfaces increases for both boundary 
conditions. In Fig. 12 both results of the present analytical and finite element ABAQUS methods 
were compared with each other. This Figure showed little difference between the results. 
Therefore, the presented formulation was in very good agreement with F.E. results. 
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Fig. 12 Variation of σθθ along the thickness direction (z axis) of a sandwich panel under a 
concentrated load with SS and C.C. B.Cs. at (x, θ) = (L/4, 0) (q0 = 30000 N) 
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Fig. 13 Variation of σzz along the core thickness direction (z axis) of a sandwich panel under a 
concentrated load with SS and C.C. B.Cs. at (x, θ) = (L/4, 0) (q0 = 30000 N) 

 
 

5. Conclusions 
 
In this study, bending analysis of a composite conical sandwich panel subjected to various 

types of applied static loads with S.S. and C.C. B.C.s. was studied. Using the improved higher 
order sandwich plate theory (IHSAPT) based on the three layers model, the governing equations 
on the composite conical sandwich panel were derived based on the principle of minimum 
potential energy. To validate the obtained results, a conical sandwich panel was modeled in 
ABAQUS F.E. code and the results obtained from analytical formulations and F.E. code were 
compared with each other. The agreement between these results was very good. Effect of types of 
boundary conditions, types of applied loads, conical angles and fiber angles on the static bending 
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analysis of truncated conical composite sandwich panels were also studied in detail. The above 
analysis is quite general and valid for any type of core, any type of boundary conditions, as well as 
for the cases where the conditions at the top (outer) face sheet are different from those at the 
bottom (inner) one along the same edge. Similarly, loading may be of any type, distributed or 
localized. The thickness of the top (outer) face sheet may be different from that of the bottom 
(inner) face sheet. Transverse shear and rotary inertia effects of face sheets have been taken into 
consideration. 

With increasing the conical angle from 10 to 60 degrees, the dimensionless deflections of the 
top (outer) and bottom (inner) face sheets in all the cases increased and, in all the cases, increasing 
rates of deflection were approximately equal. The results show that with increasing the conical 
angle from 10 to 60 degrees, the magnitudes of the transverse normal stresses in the core increase 
about 20 percent. The results show that, the circumferential stress along z axis of the core from the 
inner to the outer interfaces decreases for both simply supported and fully clamped boundary 
conditions while the transverse normal stress along z axis of the core from the inner to the outer 
interfaces increases for both boundary conditions. Also, the results show that, with increasing fiber 
angle, variations of the shear stresses (σxθ) for the outer face sheet were much higher than those for 
the inner face sheet and, for all fiber angles except 0 degree, values of the shear stresses (σxθ) for 
the outer face sheet were much higher than those for the inner face sheet. With increasing the fiber 
angle, variations of the circumferential stress and their values for the outer face sheet were much 
higher than those for the inner face sheets. Nowadays, in order to optimum design of structures, 
engineers usually try to minimize the weight and the cost functions and maximize the structural 
strength function (fitness function) with optimum selecting of the design parameters. Using 
standard optimization programs like the commercial Genetic algorithm software, one can optimize 
the design parameters. The present approach can be linked with the standard optimization 
programs and it can be used in the iteration process of the structural optimization. The proposed 
approach facilitates investigation of the effect of physical and geometrical parameters on the 
bending response of sandwich composite structures. 
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Appendix A: Stress resultants per unit length 
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Appendix B: Some coefficients of stiffness matrix 
 
 

 
 
 
where 
 
 

 

1354




