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Abstract.  Recent years, explosive welding structures have been widely used in many engineering fields. 
The bonding state detection of explosive welding structures is significant to prevent unscheduled failures 
and even catastrophic accidents. However, this task still faces challenges due to the complexity of the 
bonding interface. In this paper, a new method called dual-tree complex wavelet transform based 
permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from 
the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift 
invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those 
characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, 
permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space 
reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more 
accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are 
proposed to extract the state information from the vibration response signal of explosive welding structure, 
and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the 
bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are 
presented to illustrate the feasibility and effectiveness of the proposed method. 
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1. Introduction 

 
Explosive welding is a solid state welding method in which two or more plates are welded 

together under high temperature and high pressure coming from explosive detonation (Findik 2011, 
Zareie Rajani and Akbari Mousavi 2012). Explosive welding structures possess some superior 
properties such as high temperature resistance, high pressure resistance, corrosion resistance, etc. 
With those superior properties, such structures have been widely applied in a variety of fields 
including oil and gas, aviation and aerospace, chemical industry and military industry. Like all 
welding methods, interfacial bonding state dominates the ultimate mechanical and metallurgical 
characteristic of such structures (Gulenc 2008).The poor interfacial bonding state may cause 
defects such as wrinkling, bulge, separation and peeling in service, which may leads to the 
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degradation of the service performance, failure and even catastrophic accidents. Thus, it is urgent 
to develop an effective method for the bonding state detection of explosive welding structures. 

At present the destructive detecting methods such as the tensile-shear test, charpy impact test 
and bending test (Akbari Mousavi et al. 2008, Kaya and Kahraman 2013) have been used to detect 
the bonding strength of explosive welding structure. However, those methods have the 
disadvantages that they are destructive inspection with high cost and low efficiency; they can be 
only used to detect the local area of the structure, and cannot be used for global and online 
detection. The existing nondestructive testing methods such as ultrasonic (Chen et al. 2012), 
acoustic emission (Scholey et al. 2010), x-ray (Hanke et al. 2008) etc. are mainly used to detect 
the defects of the structures such as lamination, crack, pore, etc. But for detecting the defect of 
bonding interface of explosive welding structure which is close-grained but without enough 
bonding strength, those methods don’t work well. There are very few nondestructive detecting 
methods reported in the literatures to detect the bonding state of such structures. Therefore, it is 
important to develop an effective nondestructive method to detect the bonding state of explosive 
welding structures. 

Structural vibration response signals carry a great deal of information on the state or damage of 
the structures. The vibration response analysis is a potential way for structure health monitoring 
and has been often used in structure damage identification (Liu et al. 2010, Wang et al. 2010a, 
Hester and González 2012) and machine fault diagnosis (Jayaswal et al. 2010, Feng and Zuo 
2013). Structure state detection based on vibration response signals analysis method is mainly to 
extract sensitive feature information from response signals of structure under certain excitation, 
and then identify and assess the structural state according to the change of the extracted feature 
information. However, because the explosive welding structure is made of two different materials, 
the vibration response signal of the structure is complex and non-stationary. Furthermore, the 
change of vibration response signal induced by the change of local bonding state is very weak. 
Thus, detection and extraction of the bonding state information from vibration response signals is 
the key point to bonding state detection of explosive welding structures. 

With the advantage of multi-resolution analysis, wavelet transform is an effective tool for 
non-stationary signal processing, and is very useful in structural damage detection (Yan et al. 2010, 
Ren and Sun 2008). However, traditional wavelet transform such as discrete wavelet transform 
(DWT) and second-generation wavelet transform (SGWT) frequently suffers from the 
disadvantages that spectral aliasing and shift-variant, which may cause the redundancy and loss of 
the feature information. Dual-tree complex wavelet transform (DTCWT), has many attractive 
properties such as reduced spectral aliasing, nearly shift-invariance, perfect reconstruction and 
limited data redundancy. All those properties can help overcome the problems of traditional 
wavelet transform. DTCWT was first proposed by Kingsbury (1998) and further investigated by I. 
Selesnick et al. (2005). It has been applied in many fields. Wang et al. (2010b) adopted the 
DTCWT to detect the multiple faults of industrial equipment and successfully extract the multiple 
features of air compressor. Chen et al. (2009) proposed an invariant pattern recognition descriptor 
based on DTCWT and the Fourier transform, which achieved high recognition rates for different 
combinations of rotation angles and noise levels. Hu (2011) presented a method based on 
multiscale DTCWT for face recognition and successfully recognized the face images under large 
illumination variations. Chen (2014) detected EEG seizure by using dual-tree complex 
wavelet-Fourier features. DTCWT shows great advantage in characterizing the vibration response 
signal. It can decompose a complex signal into several simple signals with lower spectral aliasing 
and information losing. In this paper, DTCWT is used to process vibration response signals of 
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explosive welding structures. 
One more important problem is how to describe and evaluate the bonding state of explosive 

welding structure based on the DTCWT coefficients. Permutation entropy (PE), as a complexity 
measure for time series analysis, was initially proposed by Bandt and Pompe (2002). According to 
the permutation entropy theory, the most uncertain distribution possesses the largest permutation 
entropy value, and the more regular the time series is, the smaller the permutation entropy value. 
Many scholars have successfully used the PE in engineering applications. Yan (2012) used PE to 
detect the working status of rolling bearings. Tiwari (2013) adopted multi-scale permutation 
entropy and adaptive neuro fuzzy classifier to diagnose incipient bearing faults. Nicolaou and 
Georgiou (2012) detected epileptic seizure by using permutation entropy and support vector 
machines. The PE was also applied for online chatter detection in turning process (Nair et al. 
2010), and tool flute breakage detection in end milling (Li et al. 2008). Explosive welding 
structure can be taken as a dynamics system with stiffness, mass and damping. Once the bonding 
state of the structure is changed, the structural model parameters and the dynamic response signal 
will change. PE is a viable tool to describe the change of the response signals measured on the 
structures. In this paper, the PE derived from DTCWT is used to extract the state feature from the 
vibration response signal of explosive welding structures. 

After feature extraction, a classifier is required to achieve automated state detection. Support 
vector machine (SVM) is an effective classification method due to its high accuracy and good 
generalization capabilities. SVM is good at solving the machine learning problem of small sample 
and high dimensional, and has been successfully applied to fault diagnosis (Sugumaran et al. 2008, 
He et al. 2010), pattern recognition (Tang et al. 2010, Lihong et al. 2009), etc. 

The aim of this study is to develop an online and nondestructive detecting method for bonding 
state detection of explosive welding structures. Previous studies (Acarer et al. 2004, Kahraman et 
al. 2005, 2007, Durgutlu et al. 2005, Mousawi and Sartangi 2009, Wronka 2010) are mainly use 
destructive detecting methods to test the quality of the the interface of explosive welding structures. 
These methods have the disadvantages of high cost, big error, low speed and low credibility, and 
cannot be used to detect the structures in service. Moreover, there is no non-destructive detection 
method reported in the literatures for the purpose. For these reasons, a nondestructive detecting 
method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) and 
SVM is proposed in this paper. 

This method consists of three steps. Initially, DTCWT is used to decompose the vibration 
response signal into several sub-band signals. Then, the PE values of the sub-band signals are 
extracted to describe the bonding state of the structures. Finally, support vector machine (SVM) is 
served as a classifier to identify the bonding state of the structures automatically. The proposed 
method is applied to the bonding state detection of explosive welding pipes. Comparison with 
conventional DB wavelet transform (DB4) method, second generation wavelet transform (SGWT) 
method, dual-tree complex wavelet transform based approximate entropy (DTCWT-AE) and 
dual-tree complex wavelet transform based morphological fractal dimension (DTCWT-MFD), the 
proposed method displays a better performance in terms of accuracy and robustness. 
 
 
2. Methods and principles 

 
2.1 Dual-tree complex wavelet transform 
 
DTCWT possesses two parallel DWTs with two different sets of filters, as shown in Fig. 1, and 
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each set satisfies the perfect reconstruction condition. Let ψh (t) and ψg (t) respectively denote the 
real-valued wavelet in the two trees. Then a complex-valued wavelet ψC (t) in DTCWT can be 
obtained as 

( ) ( ) ( )C
h gt t j t   

                           
 (1) 

 
Note that ψC (t) is only supported on the positive of the frequency axis with the characteristic of 

approximate analytic expression. Furthermore, the DTCWT can reduce frequency aliasing and 
increase shift invariance. 

According to the wavelet theory, the wavelet coefficients ( )e
ld k

 
and scaling coefficients ( )e

Jc k

 
of the real part transform are obtained via inner products as (Wang et al. 2010b). 
 

2( ) 2 ( ) (2 ) 1, ,e l l
l hd k x t t k dt l J




   

                  
 (2) 

 
2( ) 2 ( ) (2 )e J J

J hc k x t t k dt



                         

 (3) 

 
In which, l is the scale factor and J is decomposition level. Similarly, the coefficients of the 

imaginary part transform can be computed as 
 

2
g( ) 2 ( ) (2 ) 1, ,m l l

ld k x t t k dt l J



   

                 
 (4) 

 
2

g( ) 2 ( ) (2 )m J J
Jc k x t t k dt




                        

 (5) 

 
Where the wavelet filter bank ψh and ψg must form an appropriate Hilbert transform pair ψg = 

H{ψh}. There are various approaches to design the filters for DT-CWT (Selesnick et al. 2005). In 
this paper, we use the (13,19)-tap near-orthogonal filters at level 1 and 14-tap Q-shift filters at 
level beyond 1 (Kingsbury 2001). Thus, the wavelet and scaling coefficients of DTCWT can be 
obtained as follows (Wang et al. 2010b) 
 

( ) ( ) ( )C e m
l l ld k d k jd k     1, ,l J                       (6) 

 
( ) ( ) ( )C e m

J l Jc k c k jc k                              (7) 
 

Then, the scaling or wavelet coefficients can be reconstructed as follows (Wang et al. 2010b) 
 

( 1) 2( ) 2 [ ( ) (2 ) ( ) (2 )] 1, ,l e l m l
l l h l g

n m

d t d k t n d k t m l J         
       

 (8) 

 
( 1) 2( ) 2 [ ( ) (2 ) ( ) (2 )]J e J m J

J J h J g
n m

c t c k t n c k t m       
            

 (9) 

 
The vibration signal x(t) decomposed by DTCWT can be expressed as 
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Fig. 1 The flow chart of two-stage DTCWT decomposition 
 
 

1

( ) ( ) ( )
J

J l
l

x t c t d t


 
                           

 (10) 

 
Note that dl (t) l = 1, 2,..., J and cJ (t) are the sub-band signals, arranging from high frequency to 

low frequency. For the dynamic response signal of explosive welding structure, a set of simple 
oscillation modes with lower spectral aliasing and information losing can been obtained after 
DTCWT. 

 
2.2 Permutation entropy 
 
PE is a complexity measure for time series based on comparison of neighboring values in 

reconstructed phase space (Cao et al. 2004). According to the embedding theorem, the phase space 
of a time series x(i) = {i = 1, 2,..., N} can be reconstructed as 
 

(1) (1) (1 ) ... (1 ( 1) )

(2) (2) (2 ) ... (2 ( 1) )

( ) ( ) ( ) ... ( ( 1) )
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X x x x m
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 

  

     
        
   

    
     

   
              

    

    

      

 (11) 

 
Where m is the embedding dimension and τ is the time lag. For a given embedding dimension 

m, there will be m! permutations. The m real values contained in each X(i) can be arranged in an 
increasing order as x(i + (j1 − 1) τ) ≤ x(i + (j2 – 1) τ)) ≤ x(i + (jm − 1) τ). Whenever an equality occurs, 
e.g., x(i + (j1 − 1) τ) = x(i + (j2 – 1) τ)) their original positions are sorted such that for j1 < j2, we 
write x(i + (j1 − 1) τ) < x(i + (j2 – 1) τ)), Hence, each vector X(i) is uniquely mapped onto πj = [j1, 
j2,..., jm], (1 ≤ j ≤ m!), where πj is one of m! permutations. For permutation πi, we determine the 
relative frequency by 
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{ | ( 1) , ( ) }
( )

( 1)
j j j

j

Number t t N m X i has type
p

N m

 



  


              

 (12) 

 
Thus, based on the concept of Shannon entropy, the PE of order m for the time series x(i) = {i = 

1, 2,..., N} can be defined as 
!

1

( ) ( ) ln ( )
m

PE j j
j

H m p p 


 
                       

 (13) 

 
PE can describe the time series quantitatively. When all permutations of the time series have 

the same probability, i.e., p(π) = 1/m!, the PE HPE has the maximum value. The smaller the value 
of HPE, the more regular the time series is. The change of HPE can reflect the subtle change of the 
time series. 

 
2.2.1 Simulation analysis 
In this research, the vibration response signal of explosive welding structure is a kind of 

unilateral oscillation damping signal. In order to study the validity of PE for detecting the change 
of this kind of signal, a simulated impact response signal is designated as 
 

2y( ) exp( 2 ) sin(2 1 ) 0.01 (t)t ft ft n                        (14) 
 

In which f represents the natural frequency, ζ represents the damping ratio and n(t) is the 
noise signal. Fig. 2 shows the simulation signal at f = 200 Hz, ζ = 0.005.The sampling frequency is 
1000 Hz and the data points are 1000. 

Figs. 3 and 4 respectively show the change of HPE with the change of the signal under different 
natural frequency and damping ratio, where embedded dimension m = 6 and delay time τ = 1. It 
can be seen from the two figures that the values of HPE increase with the increase of the natural 
frequency and damping ratio of the signal, and the PE HPE is much more sensitive to the change of 
damping ratio than natural frequency of the signal. Meanwhile, the damping ratio is just one of the 
sensitive parameters for the change of the bonding state of explosive welding structure. Thus, PE 
is a powerful statistical index to detect the change of the bonding state of explosive welding 
structure. 

 
 

Fig. 2 The simulation signal 
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Fig. 3 Effect of natural frequency on PE value 
 
 

Fig. 4 Effect of damping ratio on PE value 
 
 

Fig. 5 Effect of embedded dimension m on PE entropy value 
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2.2.2 Selection of parameters 
The parameters embedded dimension m and time delay τ also affect the calculation of PE. 

Selecting suitable m and τ are important for PE to detect the change of the vibration response 
signals. In the literature (2002), Bandt and Pompe recommended to select m = 3 – 7. In this 
research, the simulation signal in Section 2.2.1 is used to investigate the effect of m and τ on the 
PE HPE. 

The relationship between the PE HPE of the signal and embedded dimension m is illustrated in 
Fig. 5, where the HPE is calculated by selecting m = 3 − 7, under time delay τ = 1. From Fig. 5, it 
can be seen that the larger the embedded dimension is, the more sensitive the PE to the change of 
the signal. However, the larger embedded dimension is, the more expensive the computation of PE. 
Thus, we select m = 6 in this research. The relationship between the PE HPE of the signal and time 
delay τ is illustrated in Fig. 6, where the HPE is calculated by selecting τ = 1 − 4, under embedded 
dimension m = 6. It can be found in Fig. 6 that the change of HPE with respect to different time 
delay τ is much small. Therefore, we select τ = 1 and m = 6 to calculate the HPE of the vibration 
response signals in this paper. 

 
 

3. The proposed detection method based on DTCWT-PE 
 

Explosive welding structure can be taken as a dynamics system with stiffness, mass and 
damping. Once the bonding state of the structure is changed, the structural model parameters are 
change. The dynamic response signal, which contains a wealth of information about modal 
parameters such as natural frequency, damping ratio etc., are also change. Thus, extraction of state 
feature information from vibration response signal is a reliable way for bonding state detection of 
explosive welding structure. The key issue in bonding state detection is how to extract state feature 
information from vibration response signal and identify the bonding state. In this paper, a 
DTCWT-PE and SVM method is proposed for this task. The flow chart of the proposed detection 
method is shown in Fig. 7. The main steps of the method are given as follows. 

 
 
 

Fig. 6 Effect of time delay τ on PE entropy value 
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Fig. 7 The flow chart of the proposed method 

 
 
(1) Response signals are collected as samples from the explosive welding structures with 

different bonding state. 
(2) The original response signals are decomposed by DTCWT for 4 levels, and then we get 

the corresponding DTCWT coefficients d1(t), d2(t), d3(t), d4(t) and c1(t). 
(3) PE HPE of the DTCWT coefficients are calculated to form a feature vector [ 1d

PEH  
2d

PEH  
3d

PEH  
4d

PEH  
4c

PEH ]. 
(4) The feature vectors are input into SVM to classify the bonding state of explosive welding 

structures, in which the Gaussian RBF is used as the kernel function of SVM. 
 
 

4. Experimental validations 
 
Explosive welding pipes of stainless steel and carbon steel have been widely used in oil and gas, 

chemical power and other long-distance pipeline fields. It is important to detect the bonding state 
of the pipes for avoiding failures. The structure of the pipe is shown in Fig. 8. In this section, three 
types of explosive welding pipes for bonding state detection are presented to validate the 
effectiveness of the proposed method. 

In order to verify the superiority of the proposed method, the DB wavelet transform (DB4) and 
second generation wavelet transform (SGWT) are adopted to process the same vibration signals. 
Similarly, the signals are decomposed by DB4 wavelet and SGWT for 4 levels respectively, and 
the PE value of each sub-signal is calculated to form a feature vector. The feature vectors DB-PE 
and SGWT-PE are used as input vectors to SVM to identify the bonding state of the pipes. 
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(a) The pipe welded by explosive welding (b) Local structure of the pipe 

Fig. 8 Explosive welding pipe 
 
 

Table 1 Major dimensions and parameters of explosive welding pipes 

Types Number 

Size of the pipes 
Explosive
loads (g)Length 

(mm) 
Pipe O.D. 

(mm) 
Thickness of stainless 

steel (mm) 
Thickness of carbon 

steel (mm) 

Short pipes 

1 1000 90 2 5 5 

2 1000 90 2 5 10 

3 1000 90 2 5 15 

Medium-length 
pipes 

I 2000 114 3 8 8 

II 2000 114 3 8 13 

III 2000 114 3 8 15 

Long pipes 

a 9600 114 3 8 8 

b 9600 114 3 8 13 

c 9600 114 3 8 15 

 
 

Meanwhile, the proposed method is also compared with DTCWT-AE and DTCWT-MFD methods 
to further validate its advantage. 

It is well known that explosive load is one of the most important parameters affecting the 
quality (state) of the bonds in explosive welding. With the increase of explosive load, the bonding 
quality is improved (Gulenc 2008, Zareie Rajani and Akbari Mousavi 2012). In order to obtain the 
explosive welding pipes with different bonding state, the explosive loads is changed for different 
pipes in the welding when other welding parameters remain constant. The major dimensions and 
parameters of the three types of pipes are given in Table 1, in which explosive loads represent the 
weight of explosive in unit length. 

 
4.1 Experimental setup and data acquisition 
 
The experimental setup of explosive welding pipes is shown in Fig. 9, which consists of 

various explosive welding pipes, hammer, accelerometer and data acquisition instrument. The 
pipes are freely supported on both ends. The accelerometer is mounted on the middle of the pipes. 
The pipes are excited by the hammer at the point away from the middle of the pipe 300 mm. The 
vibration response signal is measured by accelerometer, and the signal is sampled by the data 
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acquisition instrument. Three sets of data are obtained from the short pipes, the medium-length 
pipes and the long pipes, respectively. The detailed information of the data sets is given in Table 2. 
The date samples of the nine subsets are shown in Fig. 10. 

 
 

 

Fig. 9 Experimental setup of explosive welding pipe detection 
 
 

Table 2 The detailed information of the data sets 

Data sets 
Subset 

numbers 
Sample numbers

of each subset

Training 
samples of 
each subset

Testing 
samples of
each subset

Data points 
of each 
sample 

Sampling 
frequency

Short pipes 3 30 15 15 5000 10240 

Medium-length pipes 3 12 6 6 5000 10000 

Long pipes 3 12 6 6 5000 1000 
 
 

 

Fig. 10 Data samples of the three type pipes 
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Fig. 11 Decomposition result of the pipe 1 sample x(t) 
 
 

Table 3 Testing accuracies of DTCWT-PE, SGWT-PE, DB4-PE, DTCWT-AE and DTCWT-MFD in the 
three types of pipes 

Type 
SVM with 

DTCWT-PE 
SVM with 
SGWT-PE 

SVM with 
DB4-PE 

SVM with 
DTCWT-AE 

SVM with 
DTCWT-MFD

1 100 97.78 93.33 91.11 93.33 

2 100 88.89 83.33 94.44 88.89 

3 94.44 83.33 66.67 88.89 88.89 
 
 
4.2 Detection results 
 
4.2.1 The short pipes detection result 
The three data subsets of short pipes acquired respectively from pipes 1, 2, 3 are applied to 

validate the effectiveness of the proposed method in detecting the bonding state of explosive 
welding structures. The signal is decomposed by DTCWT for 4 levels. Fig. 11 shows 
the decomposition result of the pipe 1 sample x(t). It can be seen from the Fig.11 that the vibration 
response signal is decomposed into several simple oscillation signals. Then, the PE HPE of each 
simple oscillation signal is calculated to form a feature vector. Finally, SVM is trained by the 
training samples, and then the trained SVM is used to identify the testing samples. The number of 
training samples and testing samples are given in Table 3. The testing results of short pipes are 
shown in Table 3 and Fig. 12, in which all testing samples of the short pipes are classified 
correctly. The testing results based on SGWT-PE, DB4-PE, DTCWT-AE and DTCWT-MFD 
methods are also given in Table 3 and Fig. 12. It can be seen that the DTCWT-PE method shows 
100% accuracy while SGWT-PE, DB4-PE, DTCWT-AE and DTCWT-MFD methods show 
classification accuracies of 97.78%, 93.33%, 91.11% and 93.33% respectively. The proposed 
method based on DTCWT-PE and SVM gets the best identification result. 

 
4.2.2 The medium-length pipes and long pipes detection results 
In order to validate the reliability and robustnessof the proposed method, the bonding state of 

the medium-length pipes and long pipes are also detected by the proposed method. Table 3 and 
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Fig. 12 Testing accuracies of the five methods in the three types of pipes 

 
 

Fig. 12 present the testing results of the five methods on identifying the different bonding state of 
medium-length pipes and the long pipes. For the medium-length pipes, the testing accuracies of 
the five methods are respectively 100%, 88.89%, 83.33%, 94.44% and 88.89%. The proposed 
DTCWT-PE method can more accurately identify the different bonding state of medium-length 
pipes than SGWT-PE, DB4-PE, DTCWT-AE and DTCWT-MFD methods. For the long pipes, the 
testing accuracy of the proposed method is 94.44%, which is higher than the testing accuracies of 
83.33%, 66.67%, 88.89% and 88.89% corresponding to the other four methods. 

All the results of the three experiments imply that the proposed method based on DCTWT-PE 
and SVM has higher identification accuracy and better robustness in detecting the bonding state of 
explosive welding structures, and obviously outperforms DB4-PE, SGWT-PE, DTCWT-AE and 
DTCWT-MFD methods in this task. 

 
 

5. Conclusions 
 
order to realize the bonding state online detection of explosive welding structures, a new 

method based on DTCWT-PE and SVM is proposed in this paper. Benefiting from the complex 
analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) enjoys better shift 
invariance and reduced spectral aliasing, which is good for characterizing the vibration response 
signal. In the proposed method, we use the DTCWT to decompose the vibration response signal of 
explosive welding structures. PE is a powerful index to detect the change of the signal. The PE 
values of DTCWT coefficients are calculated to describe the state of explosive welding structure. 
The SVM is used to classify the structures with different bonding state. 

In the experiments, three types of explosive welding pipes such as short pipes, medium-length 
pipes and long pipes are detected by using the proposed method. The testing accuracies of the 
proposed method to short pipes, medium-length pipes and long pipes are 100%, 100% and 94.44%, 
respectively, which demonstrate that the proposed method can detect the bonding state of the 
pipes efficiently. Compared with SGWT-PE, DB4-PE, DTCWT-AE and DTCWT-MFD methods, 
the testing results indicate that the proposed method improve the identification accuracy by 
11.11%, 27.77%, 5.55% and 5.55% for long pipes. Thus, the proposed method is a much more 
effective way to detect the bonding state of explosive welding structures online and globally. 
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