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Abstract.  In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a 
functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two 
uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are 
presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material 
properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are 
estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent 
orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell 
theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid 
velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of 
different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium 
and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. 
Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system. 
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1. Introduction 

 
Piezoelectric coupled cylindrical shells are one of the key components in smart structures due 

to their electromechanical coupling characteristics. Smart structures are widely used as sensors and 
actuators in various engineering applications, including passive/semi-active/active vibration 
control, acoustic noise suppression, shape control, active damping and health monitoring of 
engineering structures. Piezoelectric actuators in the form of discs or rings were employed to 
produce motion in circular/ annular plates used in micro-pumps and micro-valves (Spencer et al. 
1978, Dong et al. 2002), in devices for generating and detecting sounds (Chee et al. 1998), in 
implantable medical devices (Cao et al. 2001), and in microswitches with piezoelectric-film 
actuation (Chen et al. 2004). Due to their wide range of applications, accurate natural frequencies 
of smart cylindrical shells must be known to achieve an appropriate design. 

The coupling effect existing between the elastic and electric fields in piezoelectric materials has 
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been used in various engineering applications. There are two characteristics of piezoelectric 
materials which permit them to be used as sensors and actuators. One is their direct effect which 
implies that the materials induce electric charge or electric potential when they are subjected to 
external mechanical deformations. Conversely, they are deformed if some electric charge or 
electric potential is imposed on them. Literature dealing with research on the behaviour of 
electro-elastic structures has gained more importance recently as these smart or intelligent 
materials have ability of converting energy from electric to mechanical, or conversely. The early 
investigations of elasto-electric characteristic for composite cylindrical shells are reviewed in the 
following. Lester and Lefebvre (1991) investigated the coupling between the cylindrical mode and 
internal acoustic cavity modes using modal spectra and proved theoretically that the piezoelectric 
actuator can be used for internal cavity noise control. Clark and Fuller (1991) carried out acoustic 
control experiments using a piezoceramic actuator, microphone, PVDF sensor mounted on an 
aluminum shell and the Filtered-xL MS control technique. Siao et al. (1994) presented a finite 
element method for determining the vibration characteristic of a circular cylinder composed of 
bounded piezoelectric layers. The finite element modeling occurs in the radial direction only using 
quadratic polynomials. Lu et al. (2001) presented an approach for investigating vibration 
characteristics of piezoelectric cylindrical shells under transverse vibration modes. Based on a 
previous work for elastic shells they developed a formula to estimate the transverse frequencies of 
the piezoelectric cylindrical shells. Bending and free vibration of multilayered cylindrical shells 
with piezoelectric properties using a semi-analytical axisymetric shell finite element model with 
piezoelectric layers using the 3D linear elasticity was depicted by Santos et al. (2008). Free 
vibration of piezoelectric laminated cylindrical shells under a hydrostatic pressure by making the 
use of Hamilton’s principle nonlinear dynamic equation by Li et al. (2001). On the basis of the 
piezoelectric equations and wave equations, with ignoring the shearing strain, the three- 
dimensional coupled vibration of the longitudinally polarized piezoelectric ceramic hollow 
cylinder whose height and thickness are comparable with its radius is studied analytically by Lin 
(2004). Vel and Baillargeon (2005) presented an analytical solution for the static deformation and 
steady-state vibration of simply supported cylindrical shells consisting of fiber-reinforced layers 
with embedded piezoelectric shear sensors and actuators. Suitable displacement and electric 
potential functions that identically satisfy the boundary conditions at the simply supported edges 
are used to reduce the governing equations of static deformation and steady-state vibrations. Free 
vibration problem of multilayered shells with embedded piezoelectric materials was discussed by 
D’Ottavio et al. (2006) by using a series of hierarchic, two-dimensional axiomatic shell theories 
which are presented within the ‘‘unified formulation”. Chen et al. (2006) developed three- 
dimensional state space analysis for a simply supported, cross-ply piezoelectric laminated 
cylindrical panel with inter laminar bonding imperfections by using a layer wise method. Sohn et 
al. (2006) analyzed the natural vibration characteristics of the cylindrical shell equipped with an 
MFC actuator using the finite element code and proved theoretically that the LQG controller could 
be used as an active vibration controller. Dynamic modeling, active vibration controller design and 
experiments for a cylindrical shell equipped with piezoelectric sensors and actuators were 
presented by Moon et al. (2009). Free vibration analysis of laminated cylindrical shell with 
integrated surfaces piezoelectric layers with arbitrary edges condition based on 3D theory of 
elasticity and using DQ in conjunction with state space method has not been considered yet. 

In the present study, nonlinear vibration and instability of piezoelectric sandwich cylindrical 
shells conveying viscous fluid resting on temperature-dependent orthotropic Pasternak medium are 
investigated. The nonlinear formulation is based on the first-order shear deformation shell theory 
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and the Von Kármán assumption accounting for transverse shear strains, rotary inertia and 
moderate rotations. Two kinds of CNTRC cylindrical shell, namely, UD and FG distributions of 
the reinforcement are considered in middle layer. The material properties of FG-CNTRCs are 
assumed to be graded in the thickness direction and are estimated through the rule of mixture. 
Frequency and critical fluid velocity of sandwich structure are obtained using DQM. The effects of 
the volume fractions of CNT, Pasternak medium, temperature and CNTs patterns on the frequency 
and critical fluid velocity of the system are disused in detail. 
 
 
2. Rule of mixture 

 
As shown in Fig. 1, a CNTRC cylindrical shell integrated with piezoelectric layers is 

considered. The sandwich structure is surrounded by an orthotropic Pasternak medium which is 
simulated by KW, Kgξ and Kgη correspond Winkler foundation parameter, shear foundation 
parameters in ξ and η directions, respectively. 

Four types of CNTRC cylindrical shell namely as uniform distribution (UD) along with three 
types of FG distributions (FGA, FGO, FGX) of CNTs along the thickness direction of a CNTRC 
cylindrical shell are considered. In order to obtain the equivalent material properties two-phase 
nanocomposites (i.e., polymer as matrix and CNT as reinforcer), the rule of mixture (Esawi and 
Farag 2007) is applied. According to mixture rule, the effective Young and shear moduli of 
CNTRC cylindrical shell can be written as 
 

,)1(11111 mCNTrCNT EVEVE                          (1) 
 

,
)1(

2222

2

m

CNT

r

CNT

E

V

E

V

E





                           (2) 

 

,
)1(

1212

3

m

CNT

r

CNT

G

V

G

V

G





                           (3) 

 

where Er11, Er22 and Gr11 indicate the Young’s moduli and shear modulus of SWCNTs, 
respectively; Em, Gm represent the corresponding properties of the isotropic matrix; ηj is called the 
CNT efficiency parameter; VCNT and Vm are the volume fractions of the CNTs and matrix, 
respectively. The uniform and three types of FG distributions of the CNTs along the thickness 
direction of the CNTRC cylindrical shells take the following forms 
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Fig. 1 Configurations of the SWCNT distribution in a sandwich structure. (a) UD; (b) FGA; (c) 
FGO; (d) FGX 
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where wCNT, ρm and ρCNT are the mass fraction of the CNT, the densities of the matrix and CNT, 
respectively. Similarly, the thermal expansion coefficients in the longitudinal and transverse 
directions respectively (α11 and α22), Poisson’s ratio (v12) and the density (ρs) of the CNTRC 
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cylindrical shell can be determined as 
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where vr12 and vm are Poisson’s ratios of the CNT and matrix, respectively; αr11, αr22 and αm are the 
thermal expansion coefficients of the CNT and matrix, respectively. It should be noted that v12 is 
assumed as constant over the thickness of the FG-CNTRC cylindrical shells. 

 
 

3. Mathematical modeling of system 
 

3.1 Mindlin theory 
 
In order to peruse physical behaviour of cylindrical shells in confront with lateral and in-plane 

forces, Mindlin theory of plates has been opted. Displacement filed corresponds to this theory is 
expressed as (Reddy 1984) 
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where (ux, uθi, uz) denote the displacement components at an arbitrary point (x, θ, z) in the shell, 
and (u, v, w) are the displacement of a material point at (x, θ) on the mid-plane (i.e., z = 0) of the 
shell along the x-, θ-, and z-directions, respectively; ψx and ψθare the rotations of the normal to the 
mid-plane about x- and θ- directions, respectively. 

The von Kármán strains associated with the above displacement field can be expressed in the 
following form 
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3.2 Constitutive equations 
 
3.2.1 CNTRC Cylindrical shell 
Constitutive equation of an orthotropic cylindrical shell is written as 
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Noted that Qij and αxx, αθθ may be obtained using rule of mixture (i.e., Eqs. (1)-(12)). 
 
3.2.2 Piezoelectric layers 
Constitutive equations correspond to piezoelectric layers are (Ghorbanpour Arani et al. 2013) 
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where Cij are linear elastic constants and e31, e33, e15 are linear piezoelectric constants. Superscript 
P refers to piezoelectric material. Ei (i = x, θ, z) shows electric filed intensity and can be obtained 
(Ghorbanpour Arani et al. 2014) 
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where ϕ is applied electric potential to piezoelectric layers. On the other hand, electric 
displacement of piezoelectric material may be presented as (Ghorbanpour Arani et al. 2012) 
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in this equation, K11, K33 are dielectric constants. In this investigation, electric field is applied 
along x direction and along two other directions considered zero. For our particular problem 
constitutive and electric displacement equations in expanded forms are summarized as follows 
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3.3 Deriving motion equations 
 
In this investigation, energy method has been used to derive higher order motion equations. Its 

familiar form can be written as 
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where Utot, Ktot and Wtot are total potential energy, total kinetic energy and work done by external 
forces, respectively. 

 
3.3.1 Potential energy 
The virtual potential energy of piezoelectric layer can be expressed as 
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On the other hand, the virtual potential energy of CNTRC cylindrical shell can be written as 
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However, the total virtual potential energy of system is obtained as follows 

 

      

     
     .10

1010

1010

dAdzEDz

zz

zzUUU

xxxxzxz
P
xzxz

zz
P
zzxx

P
xx

P
xxxx

P
xxxx

S

Pstot















 
    (28) 

 
Now, substituting Eq. (14) and into Eq. (28) and simplifying the statements, the following 

integration equation is obtained 
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where stress and moment resultants can be calculated as 
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In which k′ is shear correction coefficient. 
 
3.3.2 Kinetic energy 
The virtual kinetic energy of piezoelectric layer may be written as 
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On the other hand, the virtual kinetic energy of CNTRC cylindrical shell can be written as 
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where ρs and ρP are density of CNTRC cylindrical shell and piezoelectric layers, respectively. Now, 
substituting Eq. (13) into Eq. (34) and simplifying the statements, the following integration 
equation is obtained 
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where the mass moment of inertia may be written as 
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3.3.3 Work done 
In this paper, the work done is due to elastic medium and viscous fluid which can be written as 
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 Viscous fluid work 
 
Consider the flow of fluid in inner layer of system in which the flow is assumed to be axially 

symmetric, Newtonian, laminar and fully developed. The basic momentum governing equation of 
the flow simplifies to 
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where ρb and Pare fluid mass density and flow fluid pressure, respectively. The fluid force acted 
on the system can be calculated from Eq. (38). Since the velocity and acceleration of the 
cylindrical shell and fluid at the point of contact between them are equal (Wang and Ni 2009), the 
fluid flow work may be written as 
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where ρf is density of fluid. 
 
 Orthotropic Pasternak foundation 
 
The external force of orthotropic Pasternak medium can be expressed as (Kutlu and Omurtag 

2012, Benrahou et al. 2015) 
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where angle θ describes the local ξ direction of orthotropic foundation with respect to the global 
x-axis of the shell. Since the surrounding medium is relatively soft, the foundation stiffness KW 
may be expressed by 
 

721



 
 
 
 
 
 

Mahmood Rabani Bidgoli, Mohammad Saeed Karimi and Ali Ghorbanpour Arani 

    ,2exp5625
)2)(1(4 11

2
12

1
2
0

0 






cL

E
KW              (41) 

 

where 
   ,exp2 111  c                          (42) 

,1 L

H s                               (43) 

 

,
)1( 20

s

sE
E


                             (44) 

 

,
)1(0

s

s





                             (45) 

 
where Es, vs, Hs are Young’s modulus, Poisson’s ratio and depth of the foundation, respectively. In 
this paper, Es is assumed to be temperature-dependent while vs is assumed to be a constant. 

Finally, substituting Eqs. (29), (35) and (37) into Eq. (29) yields the following governing 
equations 
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where in above relations, substituting Eqs. (15) and (19)-(24) into Eqs. (30)-(32), the stress resultant- 
displacement relations can be obtained as follow 
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Substituting Eqs. (52) to (63) into Eqs. (46) to (51), the governing equations can be written as 

follow 
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4. DQM 
 
In this method, the differential equations are changed into a first order algebraic equation by 

employing appropriate weighting coefficients. Because weighting coefficients do not relate to any 
special problem and only depend on the grid spacing. In other words, the partial derivatives of a 
function (say w here) are approximated with respect to specific variables (say x and θ), at a 
discontinuous point in a defined domain as a set of linear weighting coefficients and the amount 
represented by the function itself at that point and other points throughout the domain. The 
approximation of the nth and mth derivatives function with respect to x and y, respectively may be 
expressed in general form as (Ghorbanpour Arani et al. 2013). 
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where Nx and Nθ, denotes the number of points in x and θ directions, f(x, θ) is the function and Ajk, 

Bjl are the weighting coefficients (Ghorbanpour Arani et al. 2013). The solution of the motion 
equations can be assumed as follows 

 

00000000 ,,,,,,),(),,(  


xwvudexdtxd               (71) 
 

where 
E

h f   is the dimensionless natural frequency and λ is the (Fundamental) natural 

frequency. Finally, the governing equations in matrix form can be expressed as 

 
  ],0[][][][][ 0

2  dMCKK NLL                     (72) 

 
where [KL] and [KNL] are respectively, linear and nonlinear stiffness matrixes; [C] is damp matrix 
and [M] is the mass matrix. For solving the Eq. (72) and reducing it to the standard form of 
eigenvalue problem, it is convenient to rewrite Eq. (72) as the following first order variable as 
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},]{[}{ ZAZ                              (73) 

 
in which the state vector Z and state matrix [A] are defined as 
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where [0] and [I] are the zero and unitary matrices, respectively. However, the frequencies 
obtained from the solution of Eq. (72) are complex due to the damping existed in the presence of 
the viscous fluid flow. Hence, the results are containing two real and imaginary parts. The real part 
is corresponding to the system damping, and the imaginary part representing the system natural 
frequencies. 
5. Numerical results 

 
This section reports the outcome of nonlinear analyses and instability of simply supported 

(Najafov et al. 2014) piezoelectric sandwich cylindrical shell for comparison and verification of 
accuracy as well as effectiveness of the present method. Then detailed parametric studies are 
presented to illustrate the nonlinear responses of CNTRC cylindrical shell integrated with 
piezoelectric layers. Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-pphenylene) vinylene]}, 
referred as PmPV, is selected as the matrix with isotropic material properties vm = 0.34 and Em = 
(3.51 – 0.0047T) GPa, where T = T0 + ΔT and T0 = 300 K (room temperature). As material properties 
of SWCNTs are charity, size and temperature-dependent, typical values are taken from analytical 
results of Shen (2009). Furthermore, the piezoelectric layers are made from PZT-5A with elastic 
and thermal constants of E = 61(1 – 0.005ΔT) GPa and α = 0.9 × 10-6 (1 + 0.0005ΔT) 1/K. The 
elastomeric medium is made of Poly dimethylsiloxane (PDMS) which the temperature-dependent 
material properties of which are assumed to be vs = 0.48 and Es = (3.22 – 0.0034T) GPa in which T 
= T0 + ΔT and T0 = 300 K (room temperature) (Shen 2009). For the present analysis, fourteen DQ 
grid points is used which yields accurate results. 

Figs. 2(a) and (b) show the effect of distribution type of SWCNT in cylindrical shell on the 
dimensionless natural frequency (Im(ω) and damping (Re(ω)) of sandwich structure versus 

dimensionless flow velocity ),/( 11 xf vCU   respectively. For the CNTRC cylindrical shell, 

UD and three types of FG distribution patterns of SWCNT reinforcements are assumed. As can be 
seen, Im(ω) decreases with increasing U, while the Re(ω) remains zero. These imply that the 
system is stable. When the natural frequency becomes zero, critical velocity is reached, which the 
system loses its stability due to the divergence via a pitchfork bifurcation. Hence, the eigen 
frequencies have the positive real parts, which the system becomes unstable. In this state, both real 
and imaginary parts of frequency become zero at the same point. It is worth to note that for these 
four types of CNTRC cylindrical shell that have the same mass fraction of CNTs, FGO cylindrical 
shell have the lowest values of the non-dimensional frequency and the maximum values of the 
non-dimensional frequency occurs for FGX cylindrical shell. We can conclude that CNTs 

 
 

727



 
 
 
 
 
 

Mahmood Rabani Bidgoli, Mohammad Saeed Karimi and Ali Ghorbanpour Arani 

(a) (b) 

Fig. 2 Effects of CNT distribution on the (a) dimension frequency (Im(ω)); (b) dimension 
frequency (Re(ω)) versus dimension flow velocity 

 

Fig. 3 Effects of CNT distribution on frequency ration versus maximum amplitude 
 
 
distributed close to top and bottom surfaces are more efficient in increasing the stiffness of the 
cylindrical shell than CNTs distributed near the mid-plane. Therefore, designers can obtain desired 
stiffness of CNTRC cylindrical shell by regulating distributions of CNTs. 

Fig. 3 illustrates the nonlinear to linear frequency of sandwich structure with respect to 
maximum amplitude for different types of FG-CNTRC cylindrical shell. It can be concluded that 
the FGX and FGO patterns have minimum and maximum frequency ratio, respectively. 
Furthermore, with increasing maximum amplitude, the effect of CNT patterns on frequency ration 
of sandwich structure becomes more considerable. 

Effects of the SWCNT volume fraction on the dimensionless natural frequency and damping of 
the system are presented in Figs. 4(a) and (b). It can be observed that the frequency and critical 
fluid velocity of the system increases with increasing volume fraction of CNTs since stiffness of 
sandwich structure increases when the CNT volume increases. 
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(a) (b) 

Fig. 4 Effects of CNT volume fraction on the (a) dimension frequency (Im(ω)); (b) dimension 
frequency (Re(ω)) versus dimension flow velocity 

 

Fig. 5 Effects of CNT volume fraction on frequency ration versus maximum amplitude 
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Fig. 6 Effects of elastic medium type on the (a) dimension frequency (Im(ω)); (b) dimension 
frequency (Re(ω)) versus dimension flow velocity 

 
 
Fig. 5 shows the volume percent of CNT on the frequency ration of system with respect to the 

maximum deflection. As can be seen, with increasing CNT volume percent, the frequency ratio 
decreases. In other words, the effects of nonlinear term in motion equation become lower. In 
addition, this effect on the frequency ration becomes more prominent at higher maximum 
deflection. 

In order to show the effect of elastic foundation type, Figs. 6(a) and (b) are plotted. In this 
figure, four cases are considered namely as (I) without elastic medium, (II) Winkler medium, (III) 
orthotropic Pasternak medium and (IV) Pasternak medium. It is sown that the frequency and 
critical fluid velocity of system in the case of without elastic medium have minimum values since 
the stiffness of system is minimum. Furthermore, the effect of the Pasternak-type is higher than the 
Winkler-type on the natural frequency and critical fluid velocity of the sandwich structure. It is 
perhaps due to the fact that the Winkler-type is capable to describe just normal load of the elastic 
medium while the Pasternak-type describes both transverse shear and normal loads of the elastic 
medium. Meanwhile, the frequency and critical fluid velocity predicted by orthotropic Pasternak 
medium is lower that Pasternak medium since in orthotropic Pasternak medium, the angle of shear 
layer is considered 45. 

Frequency ratio of sandwich structure is plotted in Fig. (7) against maximum amplitude for 
different elastic medium type. All of the results of Figs. 6(a) and (b) may be found in this figure. It 
is also concluded that neglecting elastic foundation, the effect of nonlinear terms on frequency of 
system become higher. 

Figs. 8(a) and (b) show the dimensionless natural frequency and damping of the sandwich 
structure for different temperature gradients. As can be seen, the natural frequency and critical 
fluid velocity of the system decrease with increasing temperature. It is due to the fact that with 
increasing temperature gradient, the stiffness of system decreases. 

 
 

Fig. 7 Effects of elastic medium type on frequency ration versus maximum amplitude 
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(a) (b) 

Fig. 8 Effects of temperature gradient on the (a) dimension frequency (Im(ω)); (b) dimension 
frequency (Re(ω)) versus dimension flow velocity 

 

Fig. 9 Effects of temperature gradient on frequency ration versus maximum amplitude 
 
 
Fig. 9 demonstrates the effect of temperature gradient on the frequency ration of sandwich 

structure. As can be seen, the effect of temperature gradient is very low with respect to other 
parameters. In addition, with increasing temperature gradient, the frequency ration increases due to 
decrease in stiffness of system. 

 
 

6. Conclusions 
 
Nonlinear vibration and instability of temperature-dependent piezoelectric coupled FG- 

CNTRC-cylindrical shell conveying viscous fluid based on the Mindlin theory were studied. 
Material properties of the CNTRC-cylindrical shells were assumed to be graded in the thickness 
direction and effective material properties were estimated by rule of mixture. The surrounding 
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elastic foundation was modeled with temperature-dependent orthotropic Pasternak foundation. 
Considering coupling of mechanical and electrical fields, the motion equations were derived based 
on Mindlin theory. Frequency and critical fluid velocity of sandwich structure were obtained based 
on DQM. The effects of the volume fractions of CNTs, distribution type of CNT, elastic medium 
and temperature were considered. Results indicate that FGO cylindrical shells have the lowest 
values of the non-dimensional frequency and the maximum values of the non-dimensional 
frequency occurs for FGX cylindrical shell. Furthermore, frequency and critical fluid velocity of 
the system increases with increasing volume fraction of CNTs since stiffness of sandwich structure 
increases when the CNT volume increases. 
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