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Abstract. A new refined hyperbolic shear and normal deformation beam theory is developed to study the
free vibration and buckling of functionally graded (FG) sandwich beams under various boundary conditions.
The effects of transverse shear strains as well as the transverse normal strain are taken into account. Material
properties of the sandwich beam faces are assumed to be graded in the thickness direction according to a
simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still
homogeneous and made of an isotropic material. Equations of motion are derived from Hamilton’s principle.
Analytical solutions for the bending, free vibration and buckling analyses are obtained for simply supported
sandwich beams. Illustrative examples are given to show the effects of varying gradients, thickness
stretching, boundary conditions, and thickness to length ratios on the bending, free vibration and buckling of
functionally graded sandwich beams.
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1. Introduction

Sandwich structures are applied in mechanical and civil engineering since the middle of 20th
century. It offers great potential for large civil infrastructure projects, such as industrial buildings
and vehicular bridges. In recent years, the functionally graded materials (FGMs) are taken into
account in the sandwich structure industries. The FG sandwich structures commonly exist in two
types: FG facesheet homogeneous core and homogeneous facesheet FG core. For the case of
homogeneous core, the softcore is commonly employed because of the light weight and high
bending stiffness in the structural design. The homogeneous hardcore is also used in other fields
such as control or in the thermal environments. With the wide application of FG sandwich
structures, understanding vibration and buckling of FG sandwich structures becomes an important
task. For functionally graded materials, great progress has been made in elasticity theory as well as
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plates and beams. However, for FG sandwich plates/beams, related studies are very limited.
Etemadi et al. (2009) investigated the low velocity impact behavior of sandwich panels with a FG
core using a three-dimensional finite element simulation. Bhangale and Ganesan (2006) studied
vibration and buckling analysis of a FG sandwich beam having constrained viscoelastic layer in
thermal environment by using finite element formulation. Amirani et al. (2009) used the element
free Galerkin method for free vibration analysis of sandwich beam with FG core. Bui et al. (2013)
investigated transient responses and natural frequencies of sandwich beams with inhomogeneous
FG core using a truly meshfree radial point interpolation method. Natarajan and Manickam (2012)
examined the bending and free vibration response of two types of FG sandwich plates. Bourada et
al. (2012) investigated the thermal buckling response of FG sandwich plates. Based on the
first-order shear deformation plate theory (FSDT), Yaghoobi and Yaghoobi (2013) examined the
buckling behavior of sandwich plates with FG face sheets resting on elastic foundation. Kettaf ez
al. (2013) proposed a new hyperbolic shear displacement model for thermal buckling behavior of
FG sandwich plates. Tounsi et al. (2013) analytically investigated the thermoelastic bending
problem of FG sandwich plates based on the refined trigonometric shear deformation theory.
Bessaim et al. (2013) presented a novel higher-order shear and normal deformation theory for the
static and free vibration responses of sandwich plates with FG isotropic face sheets. Houari et al.
(2013) studied the thermoelastic bending behavior of FG sandwich plates via a new higher order
shear and normal deformation theory. Xiang et al. (2013) analyzed the free vibration response of
FG sandwich plates by employing an nth-order shear deformation theory and a meshless method,
while Ait Amar Meziane et al. (2014) investigated the buckling and free vibration responses of FG
sandwich plates using a simple refined shear deformation theory. Khalfi et al. (2014) proposed a
refined and simple shear deformation theory for thermal buckling of solar FG plates resting on
elastic foundation. Attia et al. (2015) discussed the free vibration analysis of FG plates with
temperature-dependent properties using various four variable refined plate theories. Ait Yahia et al.
(2015) investigated the wave propagation in FG plates with porosities using various higher-order
shear deformation plate theories. Al-Basyouni et al. (2015) proposed a novel unified beam
formulation and a modified couple stress theory that considers a variable length scale parameter in
conjunction with the neutral axis concept to study bending and dynamic behaviors of FG micro
beam Recently, the thickness stretching effect on mechanical response of FG structures is
demonstrated by Bousahla et al. (2014), Fekrar et al. (2014), Belabed et al. (2014), Hebali et al.
(2014), Houari et al. (2013), Bessaim et al. (2013), Saidi ef al. (2013), Hamidi et al. (2015),
Bourada et al. (2015), Larbi Chaht et al. (2015).

Hyperbolic shear deformation theories have been applied to various problems in literature such
as bending and vibration of beams (Ghugal and Sharma 2009, Li ef al. 2013, Sayyad and Ghugal
2011, Berrabah et al. 2013, Ould Larbi ef al. 2013); bending, vibration and buckling of plates
(Ghugal and Pawar 2011, Ghugal 2011); bending, vibration and buckling of laminated composite
plates (Nedri et al. 2014, Grover et al. 2013, Akavci and Tanrikulu 2008, Akavci 2010) and
bending, vibration and buckling of FG plates (Akavci 2014a, b, Hebali et al. 2014, Mahi et al.
2015, Belkorissat et al. 2015, El Meiche ef al. 2011). Noting the fact that hyperbolic shear
deformation theories have been utilized earlier in flexure, vibration and buckling analysis of beams
and plates; and also taking a cue from exact three dimensional theory of elasticity solutions of
plate, hyperbolic functions are used in the present work, for describing displacement variation
across plate thickness.

In this work, a new hyperbolic shear and normal deformation beam theory is presented to study
the vibration and buckling responses of FG sandwich beams under boundary conditions. By
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dividing the transverse displacement into bending, shear and thickness stretching parts, the motion
equations of the functionally graded sandwich beams are obtained together with Hamilton’s
principle. Material properties of the sandwich beam faces are assumed to vary in the thickness
direction only according to power-law form distribution in terms of the volume fractions of the
constituents. The core layer is still homogeneous and made of an isotropic material. Numerical
examples are given to show the effects of varying gradients, thickness stretching, boundary
conditions, and thickness to length ratios on the bending, free vibration and buckling of FG
sandwich beams.

2. Refined plate theory for functionally graded sandwich beams
2.1 Problem formulation

Consider a sandwich beam with homogeneous core and FG face layers, with total height (%),
length (L), and width (b) referred to the Cartesian coordinates (x, y, z) as shown in Fig. 1. The top
and bottom faces of the beam are at z = £k /2, and the horizontal edges of the beam are parallel to
axes x and y.

The sandwich beam is composed of three layers, namely, “Layer 17, “Layer 2”, and “Layer 3”,
from bottom to top of the beam. The vertical ordinates of the bottom, the two interfaces, and the
top are denoted by 4 =-h/2, h,, hy, h, = h/2, respectively.

The face layers of the sandwich beam are made of an isotropic material with material properties
varying smoothly in the z-direction only. The core layer is made of an isotropic homogeneous
material. For the brevity, the ratio of the height of each layer from bottom to top is denoted by the
combination of three numbers, i.e., ‘*“1-0-1"’, “°2-1-2"” and so on. As shown in Fig. 1.

L /.

hy=+h/2

Layer 03

hs

v

hy

Layer 01

hy=-h2

& ;|
L) Ll

Fig. 1 Coordinate and geometry of a FG sandwich beam in the rectangular Cartesian coordinates
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2.2 Material properties

The properties of FGM vary continuously due to gradually changing the volume fraction of the
constituent materials, usually in the height direction only. Power-law function is used to describe
these variations of materials properties

k

—h
yo | 270 , elh,h la
(hz_hl] z [1 2] (la)
V=1, z elhy,hy] (1b)

0 k

7

V(3)=(ﬁJ, zelh,hy] (lc)

where V', (n=1, 2, 3) denotes the volume fraction function of layer #; k is the volume fraction
index (0 <k <+400), which dictates the material variation profile through the height of beam.

The effective material properties, like Young’s modulus £, Poisson’s ratio v, and mass density
p, then can be expressed by the rule of mixture (Benachour et al. 2011, Bachir Bouiadjra ef al.
2012, Tounsi et al. 2013, Bouderba et al. 2013, Bachir Bouiadjra et al. 2013, Zidi et al. 2014) as
follows

P"(z)=P,+ (R =PV ©)

where P is the effective material property of FGM of layer n. Where, P; and P, are the
properties of the top and bottom faces of layer 1, respectively, and vice versa for layer 3 depending
on the volume fraction V™, (n=1, 2, 3).

For simplicity, Poisson’s ratio of plate is assumed to be constant in this study for that the effect
of Poisson’s ratio on the deformation is much less than that of Young’s modulus (Dellal and
Erdogan 1983).

2.3 Basic assumptions
The assumptions of the present theory are as follows:

(1) The displacements are small in comparison with the beam thickness and, therefore, strains
involved are infinitesimal.

(i1) The transverse displacement w includes three components of bending w;, shear w,, and
stretching effect wy,. The two first components are functions of coordinate x only and the
third one is function of x and z.

w(x,z,t) =w, (x,1) + w,(x,8) + w,, (x,z,1) 3)
(ii1) The displacements u in x-direction consist of extension, bending, and shear components.

U=uy+u, +u, 4
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The bending component u,, is assumed to be similar to the displacement given by the classical
beam theory. Therefore, the expression for u, can be given as

ow,
=—zZ—), 5
“ : Oox )

The shear component u gives rise, in conjunction with wy, to the sinusoidal variations of shear
strain y,, and hence to shear stress 7., through the thickness of the beam in such a way that shear
stress 7. is zero at the top and bottom faces of the beam. Consequently, the expression for u; can
be given as

u =—f &), ©)
where
h . T
—sinh | —z |-z
5] o

f(z2)= ’[

O

The component due to the stretching effect w,, can be given as
wy, (x,2,1) = g(2) p(x,1) (®)

The additional displacement ¢ accounts for the effect of normal stress is included and g(z) is

given as follows
cosh(” zj -1
h :

gz)=1-——F+~—; ©
cosh(ZJ -1

2.4 Kinematicsand constitutive equations

Based on the assumptions made in the preceding section, the displacement field can be
obtained using Egs. (3)-(9) as

U 2,8) = g (6,6) — 20— ()% (10a)
ox Ox
w(x,z,t) =w, (x,1) + w,(x,1) + g(2) p(x,1) (10b)

The strains associated with the displacements in Eq. (10) are

e =&+zk>+ f(2)k: (11a)



526 Riadh Bennai, Hassen Ait Atmane and Abdelouahed Tounsi

Ve =87l (11b)
g.=g'(z) & (11c)
where
0= g _a;;b, . _a;»?, =2 0oy (11d)
and
g'(z) =82 (11¢)

By assuming that the material of FG beam obeys Hooke’s law, the stresses in the beam become

o, =012, +05(2)¢,, 7,.=0:5(2)y,., and o, =0;(2)¢, +053(2)e, (12a)

where

Qn(Z):Qaa(Z):(IE_—(;)): Ois(2)=v 0, (z), and QOs(z)=

E(2)

2(1+v)

(12b)

2.5 Equations of motion

Hamilton’s principle is used here in to derive the equations of motion. The principle can be
stated in analytical form as (Reddy 2002, Draiche et al. 2014)

15}
j(5U+5V—5K)dz=o (13)
4

where ¢ is the time; ¢, and £, are the initial and end time, respectively; oU is the virtual variation of

the strain energy; dVis the variation of work done by external forces; and JK is the virtual variation
of the kinetic energy. The variation of the strain energy of the beam can be stated as

e (14)

L 2 2
:J- Nd§u0+N5¢J—Mbd §2w,, _Msd 52wS+Q{d5wS+d§(p} i
0 dx dx dx dx dx

where N, M, My, N, and Q are the stress resultants defined as

h h

o | =

2 2
(N,M,,M,)= j(l,z, f(z)o,dz, N.= jazg'(z)dz and Q= [r_g(z)dz (15)
h h

N>

2 2
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The variation of work done by externally transverse loads ¢ and axial force N can be

expressed as

L L
oV = —jqé’(wb + ws)dx+J.]Vd(Wb +:;z +80p) 5w, +dv:€ i go¢)dx (16)
0 0

The variation of the kinetic energy can be expressed as
h
L2
oK = [ [ p(2)id i +v6 i) dzdx
0

= j{lo[’fio&fio +(Wb + Ws)(é‘wb +§We)]+J0[(Wb + Wv)5¢+¢ 5(Wb + Wv)] (17)
0

_[1(”0 dow, N dw, 5aoj+[2(%d5%j_]{% dow, N dw, 5%)
dx dx dx dx dx dx
e dw, do w, “J, dw, do w, N dw, do w, £ Ky 8 b
dx dx dx dx dx dx

where dot-superscript convention indicates the differentiation with respect to the time variable I;
and (/;, J;, K;) are mass inertias defined as

(1,2,22 )p(z)dz (18a)

e 0 |

(10711712)2

| =

(g.f.2 f)p(2)dz (18b)

o | =

(J07J1»J2)=

SRR

(g2, /2)p(z)dz (18¢)

0 |

(KO’KZ):

N =

Substituting the expressions for oU, 0V, and 0K from Eqs. (14), (16), and (17) into Eq. (13) and
integrating by parts, and collecting the coefficients of dug, dw,, dw, and dg, the following equations

of motion of the FG beam are obtained

dN . aw, aw,
ouy,: —=1, O—Ild—xb—J1 n (19a)
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2

_ 2
5W[;: d Mb +q+N(d (Wb+ws+g0¢))J

dx? d;c: o N (19b)
:IO(Wb+ws)+']0¢+]1d_;_12?2b—¢]2?25
oW, %+Cé—g+q+ﬁ(d2(“’b +dW2s+go¢’)j
x x y x . N (190
:IO(Wb+v‘{/S)+JO¢+J1d—;—J2 dxzb -k,
5o %— N, + ﬁgo(dz(wb ;;V; * gow)J = J, (i, +0,)+ Koo (19d)

Egs. (19a)-(19d) can be expressed in terms of displacements (ug, wp, ws and @) by using Egs.
(10), (11), (12) and (15) as follows

d’u, d*w, . dw, ® .. aw, aw,
A, o -B, o - B}, 3 +L—=IOL10—]1E—J1 0 (20a)
3 4 4 2 (12
B duO_D de Dsdws_'_La (o+q+Nd(Wb+Ws+g0(0)
" Tt Tt x? dx?
(20b)
N .. dii d*w, d*v,
zlo(Wb+Ws)+Jo¢’+11d_xo_12 w2 e
d*u d*w d*w . d*w, o .d? —( d*(w, +w, +
By, 30 - Dy, 4b —Hj\ — 5+ A5 —— +(R+A55)—f+q+N ( : 5 et
dx dx dx dx dx dx (200)
dii d*w d*
=1,(W, +W) +J,p+J,—2>—J b_K s
0 (W, D+ o9+ J, dx 20 272
3 4 4 2 (g2
BduO_Dde_Ddes+Lad¢)+q+Nd(wb+ws+g0¢))
e Tt Tt dx? dx?
(20b)
dii d>vw d*
=100, +w )+J o+ —L -1, —>L—J —=
O(Wb Ws) o T4 e 20 2T
d’u d*w d*w . d*w, ,.d? —( d*(w, +w, +
By SR - Dy Sy SR 4 SR (R 4 S L g+ N Ly > )
dx dx dx dx dx dx (200)
dii d*w d*
= 1,00, + W) +Jyp+J, —>—J b_K s
oW, + W) +J@ +J, ax 22 27
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du, d*w, d*w o — (d*(w,+w, + gogz))
Lo 1o 8% (R4 a3) 22+ RUp— 43, ZL 4 N, .
i a (R 45) a2 T e T ax (20d)
= J, (i, +170, )+ Koo

where 4,1, By, etc., are the beam stiffness, defined by

0, (.22, f(2).2 f(2). f(2) = (21a)

A LA

(All’BU’DII’BISI’DISI’HISI)=

[N

and

Oulv.v.zv.f(2).g'(2)]g'(2)dz (21b)

0 |

h

>
a5 = [0slg@F dz, |11, R, RY]=
h
>

N =

3. Analytical solution

The exact solution of Egs. (20a)-(20d) for the FG sandwich beam under various boundary
conditions can be constructed. The boundary conditions for an arbitrary edge with simply
supported and clamped edge conditions are

e Clamped (C):

Uy=w, =0w,/ox=w,=0w,/ox=p=0p/ox=0 at x=0,L (22a)
e and simply supported (S)
w,=w,=¢=0 at x=0,L (22b)

The following representation for the displacement quantities, that satisfy the above boundary
conditions, is appropriate in the case of our problem

U, U,X,e®!
Wp _ VV}vameiw '
W, - vaXm eiw ' (23)

¢ ®S[me elw '

where U,,, Wy, W, and @y, are arbitrary parameters to be determined, w is the eigenfrequency
associated with mth eigenmode, and A = mz / L. The function X,,(x) is suggested by Reddy (2004)
to satisfy at least the geometric boundary conditions given in Eqs. (22a)-(22b) and represents
approximate shapes of the deflected beam. These functions, for the different cases of boundary
conditions, are listed in Table 1.
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Table 1 The admissible functions X,,(x) (Reddy 2004)

Boundary conditions at x = 0, a The functions X,,(x)
sin(Ax)
SS X,,(0)=X7(0)=0
A=mn/a
sin(/,x) — sinh(4,,x) — &, [cos(4,x) — cosh(4,,x)]
CcC X,(0)=X,(0)=0 &y = [sin(4,,a) — sinh(4,,a)] / [cos(4,,a) — cosh(4,,a)]

An=(m+0,5)7r/a

The transverse load ¢ is also expanded in Fourier series as

q(x) =Y 0, sin(2 x) (24)

m=1

where Q,, is the load amplitude calculated from
L
2 .
0, = qu(x)sm(ﬂ, x)dx (25)
0

The coefficients Q,, are given below for some typical loads. For the case of a sinusoidally
distributed load, we have
m=1 and Q =g¢q, (26a)

and for the case of uniform distributed load, we have
0 =3 (135 (26a)
mru

Substituting Egs. (23) and (24) into Eq. (20), the analytical solutions can be obtained; for free
vibration problem the load parameters vanish and the free vibrating solution can be obtained as
eigenvalue problem for any fixed value of m, as

(K]-e[Mm])fa}=1{o} 27)

For buckling problems, the natural frequency vanishes and the buckling equation can be
expressed as the following eigenvalue problem

(&]-AlvDiaj={o} (28)
In the case of static problems, we obtain the following operator equation

[K]ia}=1{F} (29)
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where
ay 4y Q3 Ay my my om0
ay) Ay Q3 Ay My My, Myz My,
[K]-= ., [M]=
Q3 A3 Qi3 dyy myy My Mzz Ny
Ay Qg Qu3 Ay 0 my, my my,
and
0 0 0 0 U, 0
0 Na; Nay Ngpo, Wim O,
NI=lo N Na Fge | Tl p HIE
a; a; 804; sm m
Vs Yo 2
0 Ngya; Ngya, Ngoas D, 0
where
— — — s —
a, =A4,a,, a,=-Bya,, a,=-Bla,, a,=La,,
_ _ R oY _ ga
a, =B,as, ay=-D,as, a,=-Djas, ay=La,,
_ ps _ s _ s s _ s
a, = Bjas, ay=-Dyas, ay=—-H\as4d5a;,, ay = (Ass + R)aw
_ _ a _ s _ pa s
ay, =La;y, ay,=-Lay, a,= _(Ass + R)azn a, =R'a - 4sa;,
my =—lya,, my=La,, my=Ja,, my;=0
my =—lay, my=-lo +1L,a, my=-lao+J,a, my=-J
my =—J,ay, my, =-la +J,0;, my=-lo +K,a,, my =-Jy
my =0, my=Joa, my=Jya, my=Ka,
with

m

(o, ct5,c15) =IOL (x,. X7 . x ) X, dx

(0‘2’0‘4): JOL(X;”,X,'Z) X, dx

531

(30)

€2))

(32a)
(32b)
(32¢)
(32d)
(32e)
(32f)
(32g)

(32h)

(32i)

(32))

For non-trivial solutions of eigenvalue problem of Egs. (27), (28) the following determinants

should be zero

& ]-er[m] =10}

[x]-A[N] = {o}

(33a)

(33b)
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The Eqgs. (33a)-(33b) give the natural frequencies w and buckling loads A of the FG sandwich
beam.

4. Results and discussion

In this section, various numerical examples are presented and discussed to check the accuracy
of the present theory. For verification purpose, the fundamental natural frequencies and critical
buckling loads of FG sandwich beams predicted by the present model are compared in Tables 2-13
with those Vo ef al. (2014) and (2015). The material properties adopted here are as follows

e Ceramic (P.: Alumina, Al,Os): E. =380 GPa; v=10.3; p. = 3960 kg/m3.
e Metal (P,: Aluminium, Al): E,, = 70 GPa; v=0.3; p,, = 2707 kg/m3.

Table 2 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with
homogeneous hardcore (L/ A =5)

K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (&, # 0) 5.1629 5.1629 5.1629 5.1629 5.1629
0 Present (¢, = 0) 5.1529 5.1529 5.1529 5.1529 5.1529
Vo et al. (2014) 5.1528 5.1528 5.1528 5.1528 5.1528
Vo et al. (2015) 5.1618 5.1618 5.1618 5.1618 5.1618
Present (&, # 0) 4.1352 4.2438 4.3394 4.4895 4.8526
0.5 Present (¢, = 0) 4.1270 4.2353 4.3305 4.4799 4.8425
Vo et al. (2014) 4.1268 4.2351 4.3303 4.4798 4.8422

Vo et al. (2015) 4.1344 4.2429 4.3383 4.4881 4.8511
Present (&, # 0) 3.5809 3.7376 3.8840 4.1199 4.6900

1 Present (¢, = 0) 3.5730 3.7302 3.8754 4.1108 4.6091
Vo et al. (2014) 3.5735 3.7298 3.8755 4.1105 4.6084
Vo et al. (2015) 3.5803 3.7369 3.8830 4.1185 4.6884
Present (&, # 0) 3.0741 3.2433 3.4267 3.7424 4.5248

5 Present (¢, = 0) 3.0672 3.2368 3.4187 3.7336 4.5151
Vo et al. (2014) 3.0680 3.2365 3.4190 3.7334 4.5142

Vo et al. (2015) 3.0737 3.2427 3.4257 3.7410 4.5231
Present (&, # 0) 2.7490 2.8492 3.0247 3.3854 4.3607

5 Present (¢, =0) 2.7433 2.8436 3.0178 3.3770 43511
Vo et al. (2014) 2.7446 2.8439 3.0181 3.3771 4.3501
Vo et al. (2015) 2.7493 2.8489 3.0238 3.3840 4.3589
Present (g, # 0) 2.6971 2.7399 2.8867 3.2438 4.2882
10 Present (¢, = 0) 2.6918 2.7353 2.8806 3.2353 4.2782
Vo et al. (2014) 2.6932 2.7355 2.8808 3.2356 4.2776

Vo et al. (2015) 2.6978 2.7400 2.8860 3.2422 4.2864
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Table 3 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with
homogeneous hardcore (L /4 = 20)

K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (g, # 0) 5.4634 5.4634 5.4634 5.4634 5.4634
0 Present (¢, = 0) 5.4603 5.4603 5.4603 5.4603 5.4603
Vo et al. (2014) 5.4603 5.4603 5.4603 5.4603 5.4603
Vo et al. (2015) 5.4610 5.4610 5.4610 54610 5.4610
Present (&, # 0) 43173 44316 4.5351 4.7006 5.1095
0.5 Present (¢, = 0) 4.3148 4.4290 4.5324 4.6979 5.1067
Vo et al. (2014) 4.3148 4.4290 4.5324 4.6979 5.1067
Vo et al. (2015) 43153 4.4296 4.5330 4.6985 5.1073
Present (&, # 0) 3.7169 3.8791 4.0352 4.2914 4.9259
1 Present (¢, = 0) 3.7146 3.8768 4.0328 4.2889 4.9233
Vo et al. (2014) 3.7147 3.8768 4.0328 4.2889 4.9233
Vo et al. (2015) 3.7152 3.8773 4.0333 4.2895 4.9239
Present (&, # 0) 3.1785 3.3488 3.5413 3.8793 4.7406
) Present (¢, = 0) 3.1763 3.3465 3.5389 3.8769 4.7382
Vo et al. (2014) 3.1764 3.3465 3.5389 3.8769 4.7382
Vo et al. (2015) 3.1768 3.3469 3.5394 3.8774 4.7388
Present (&, # 0) 2.8457 2.9331 3.1134 3.4946 4.5577
5 Present (¢, = 0) 2.8438 2.9310 3.1110 3.4921 4.5554
Vo et al. (2014) 2.8439 2.9310 3.1111 3.4921 4.5554
Vo et al. (2015) 2.8443 2.9314 3.1115 3.4926 4.5560
Present (&, # 0) 2.8057 2.8207 2.9685 3.3434 4.4772
10 Present (¢, = 0) 2.8040 2.8188 2.9661 3.3406 4.4749
Vo et al. (2014) 2.8041 2.8188 2.9662 3.3406 4.4749
Vo et al. (2015) 2.8045 2.8191 2.9665 3.3411 4.4755

Two cases of FG sandwich beams with two values of span-to-height ratio, L / 4 =5 and 20, are
examined:

e Hardcore: homogeneous core with AL,O; (E, = E.; vi = ve; p1 = p.) and FG faces with top
and bottom surfaces made of Al (E; = E,;; V2 = Vi, p2 = Pim)-

e Softcore: homogeneous core with Al (E; = E,;; vi = vy, p1 = pm) and FG faces with top and
bottom surfaces made of ALLO; (E> = E.; va =V, pa = pe).

For convenience, the following dimensionless forms are used.

2 . 2
oL &’ ])cr:leL
h \E E W

m m

5:
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4.1 Results for free vibration analysis

For free vibration analysis, different types of FG sandwich beams are considered. Tables 2-5
contain dimensionless fundamental natural frequencies for simply supported FG sandwich beams
with both hardcore and softcore. The obtained results are compared with those of Vo et al. (2014)
and Vo et al. (2015) for various values of material parameter k. It is observed that the proposed
theory without the thickness stretching effect (¢, = 0) and the model of Vo et al. (2014) give
solutions close to each other, and these solutions are in an excellent agreement with both the
present theory and Vo et al. (2015) that considers the thickness stretching effect (¢, # 0) for
moderately thick beams (L/4 = 20). However, the present theory without the thickness stretching
effect (¢, = 0) and the model of Vo et al. (2014) slightly overestimate the frequency for thick
beams (L/h = 5) due to ignoring the thickness stretching effect.

Table 4 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with
homogeneous softcore (L /4 = 20)

K Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1
Present (&, # 0) 2.6826 2.6826 2.6826 2.6826 2.6826
0 Present (¢, = 0) 2.6774 2.6774 2.6774 2.6774 2.6774
Vo et al. (2014) 2.6773 2.6773 2.6773 2.6773 2.6773
Vo et al. (2015) 4.4557 43184 4.1968 4.0016 3.4379
Present (&, # 0) 4.4446 4.3067 4.1924 3.9959 3.4374
0.5 Present (¢, = 0) 4.4427 4.3046 4.1839 3.9921 3.4342
Vo et al. (2014) 4.8683 4.7368 4.6050 4.3814 3.7101
Vo et al. (2015) 4.8593 4.7254 4.5922 4.3726 3.7052
Present (g, # 0) 4.8525 4.7178 4.5858 4.3663 3.7065
! Present (¢, = 0) 5.1108 5.0190 4.8984 4.6677 3.9344
Vo et al. (2014) 5.1002 5.0012 4.8815 4.6512 3.9296
Vo et al. (2015) 5.0945 4.9970 4.8740 4.6459 3.9303
Present (g, # 0) 5.2022 5.1818 5.0968 4.8841 4.1194
5 Present (¢, = 0) 5.1916 5.1644 5.0769 4.8646 4.1140
Vo et al. (2014) 5.1880 5.1603 5.0703 4.8564 4.1139
Vo et al. (2015) 5.1973 5.2165 5.1561 4.9622 4.1920
Present (&, # 0) 5.1869 5.2057 5.1376 4.9408 4.1857
5 Present (¢, = 0) 5.1848 5.1966 5.1301 4.9326 4.1855
Vo et al. (2014) 2.6826 2.6826 2.6826 2.6826 2.6826
Vo et al. (2015) 2.6774 2.6774 2.6774 2.6774 2.6774
Present (&, # 0) 2.6773 2.6773 2.6773 2.6773 2.6773
10 Present (¢, = 0) 4.4557 43184 4.1968 4.0016 3.4379
Vo et al. (2014) 4.4446 4.3067 4.1924 3.9959 3.4374

Vo et al. (2015) 4.4427 4.3046 4.1839 3.9921 3.4342
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Table 5 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with
homogeneous softcore (L /4 = 20)

K Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1
Present (&, % 0) 2.8387 2.8387 2.8387 2.8387 2.8387

0  Present (. = 0) 2.8371 2.8371 2.8371 2.8371 2.8371
Vo et al. (2014) 2.8371 2.8371 2.8371 2.8371 2.8371
Present (&, % 0) 4.8607 4.7488 4.6320 44181 3.7271

0.5  Present (. = 0) 4.8582 4.7465 4.6297 44161 3.7257
Vo et al. (2014) 4.8579 4.7460 4.6294 4.4160 3.7255
Present (&, % 0) 5.3023 5.2250 5.1193 4.8965 4.0664

1 Present (¢, = 0) 5.2996 5.2220 5.1165 4.8941 4.0647
Vo et al. (2014) 5.2990 5.2217 5.1160 4.8938 4.0648
Present (e, # 0) 5.5273 5.5150 5.4449 5.2479 4.3558

2 Present (e, = 0) 5.5244 5.5118 5.4415 5.2448 4.3541
Vo et al. (2014) 5.5239 5.5113 5.4410 5.2445 43542
Present (e, # 0) 5.5679 5.6422 5.6284 5.4884 4.6007

5  Present (e. = 0) 5.5648 5.6387 5.6247 5.4847 4.5991
Vo et al. (2014) 5.5645 5.6382 5.6242 5.4843 4.5991
Present (e, # 0) 5.5335 5.6491 5.6663 5.5617 4.6977

10 Present (¢, = 0) 5.5303 5.6459 5.6627 5.5579 4.6961
Vo et al. (2014) 5.5302 5.6452 5.6621 5.5575 4.6960

Tables 6 and 7 show the dimensionless fundamental natural frequencies for clamped — clamped
FG sandwich beam with homogenous hardcore for both thick and moderately thick beams,
respectively. In general, a good agreement between present results and previous solutions can be
remarked.

Table 6 Non-dimensional fundamental natural frequencies of clamped — clamped FG sandwich beams with
homogeneous hardcore (L/h=15)

K Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1
Present (&, # 0) 10.5190 10.5190 10.5190 10.5190 10.5190
0 Present (¢, = 0) 10.2571 10.2571 10.2571 10.0306 10.2571
Vo et al. (2014) 10.0678 10.0678 10.0678 10.0678 10.0678
Vo et al. (2015) 10.1851 10.1851 10.1851 10.1851 10.1851
Present (&, # 0) 8.7065 8.9289 9.1100 9.3800 9.9996
0.5 Present (¢, = 0) 8.4689 8.6857 8.8632 9.1291 9.7420
Vo et al. (2014) 8.3600 8.5720 8.7423 8.9942 9.5731

Vo et al. (2015) 8.4635 8.6780 8.8498 9.1036 9.6857
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Table 6 Continued

K Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1
Present (&, # 0) 7.6568 7.9915 8.2792 8.7196 9.7207
1 Present (¢, = 0) 7.4386 7.7638 8.0450 8.4774 9.4658
Vo et al. (2014) 7.3661 7.6865 7.9580 8.3705 9.3076
Vo et al. (2015) 7.4611 7.7854 8.0595 8.4752 9.4174
Present (&, # 0) 6.6494 7.0366 7.4111 8.0218 9.4333
5 Present (¢, = 0) 6.4542 6.8282 7.1929 7.7906 9.1815
Vo et al. (2014) 6.4095 6.7826 7.1373 7.7114 9.0343
Vo et al. (2015) 6.4952 6.8740 7.2328 7.8114 9.1415
Present (&, # 0) 5.9358 6.2420 6.6199 7.3413 9.1444
5 Present (¢, = 0) 5.7633 6.0534 6.4193 7.1229 8.8959
Vo et al. (2014) 5.7264 6.0293 6.3889 7.0691 8.7605
Vo et al. (2015) 5.8016 6.1124 6.4780 7.1652 8.8653
Present (&, # 0) 5.7474 6.0072 6.3400 7.0645 9.0158
10 Present (¢, = 0) 5.5863 5.8260 6.1467 6.6869 8.5622
Vo et al. (2014) 5.5375 5.8059 6.1240 6.8087 8.6391
Vo et al. (2015) 5.6074 5.8848 6.2099 6.9030 8.7430

Table 7 Non-dimensional fundamental natural frequencies of clamped — clamped FG sandwich beams with
homogeneous hardcore (L /4 = 20)

K Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1
Present (&, # 0) 12.5691 12.5691 12.5691 12.5691 12.5691
0 Present (¢, = 0) 12.1642 12.1642 12.1642 12.1642 12.1642
Vo et al. (2014) 12.2228 12.2228 12.2228 12.2228 12.2228
Vo et al. (2015) 12.2660 12.2660 12.2660 12.2660 12.2660
Present (&, # 0) 9.9635 10.2267 10.4635 10.8407 11.7685
0.5 Present (¢, = 0) 9.6400 9.8947 10.1240 10.4893 11.3883
Vo et al. (2014) 9.6942 9.9501 10.1800 10.5460 11.4459
Vo et al. (2015) 9.7297 9.9865 10.2172 10.5842 11.4867
Present (&, # 0) 8.5895 8.9644 9.3227 9.9087 11.3523
1 Present (¢, = 0) 8.3096 8.6722 9.0191 9.5865 10.9851
Vo et al. (2014) 8.3594 8.7241 9.0722 9.6411 11.0421
Vo et al. (2015) 8.3908 8.7569 9.1061 9.6768 11.0815
Present (&, # 0) 7.3519 7.7478 8.1912 8.9668 10.9316
) Present (¢, = 0) 7.1117 7.4944 7.9234 8.6743 10.5775
Vo et al. (2014) 7.1563 7.5417 7.9727 8.7262 10.6336

Vo et al. (2015) 7.1839 7.5711 8.0035 8.7593 10.6719
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Table 7 Continued
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K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (g, # 0) 6.5812 6.7911 7.2080 8.0849 10.5156

5 Present (¢, = 0) 6.3663 6.5685 6.9716 7.8203 10.1746
Vo et al. (2014) 6.4064 6.6116 7.0170 7.8692 10.2298
Vo et al. (2015) 6.4308 6.6379 7.0451 7.9000 10.2669
Present (&, # 0) 6.4817 6.5313 6.8741 7.7371 10.3323

10 Present (¢, = 0) 6.2707 6.3173 6.6485 7.4834 9.8974
Vo et al. (2014) 6.3086 6.3590 6.6924 7.5311 10.0519
Vo et al. (2015) 6.3319 6.3841 6.7194 7.5609 10.0884

5,5

5,0

45

4,04

354

3,04

25

0

4 6
Power law index (4)

10

Fig. 2 Variation of fundamental frequencies @ versus the material parameter k& for (1-1-1)
simply supported FG sandwich beams with homogeneous hardcore
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Fig. 3 Variation of fundamental frequencies @ versus the material parameter £ for (1-1-1)
simply supported FG sandwich beams with homogeneous softcore
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Figs. 2 and 3 depict the fundamental frequencies parameters versus the material parameter k of
simply supported power-law (1-1-1) FG sandwich beams with both homogeneous hardcore and
softcore, respectively. It can be seen, that as the material parameter increases, the natural
frequencies decrease for sandwich beams with hardcore and increase for sandwich beams with
softcore.

4.2 Results for buckling analysis

The accuracy of the proposed hyperbolic shear and normal deformation beam theory is also
verified for the buckling analysis of a simply supported FG sandwich beams. Tables 8-11 show the
nondimensional critical buckling loads for different types of FG sandwich beams with both
hardcore and softcore. The results are obtained via the proposed theory and compared to those of

Table 8 Non-dimensional critical buckling loads of simply supported FG sandwich beams with
homogeneous hardcore (L/h =5)

K Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1
Present (&, # 0) 49.7122 49.7122 49.7122 49.7122 49.7122
0 Present (¢, = 0) 48.5991 48.5991 48.5991 48.5991 48.5991
Vo et al. (2014) 48.5959 48.5959 48.5959 48.5959 48.5959
Vo et al. (2015) 49.5906 49.5906 49.5906 49.5906 49.5906
Present (&, # 0) 28.5487 30.7776 32.6737 35.6322 43.0068
0.5 Present (¢, =0) 27.8534 30.0274 31.8783 34.7701 42.0004
Vo et al. (2014) 27.8574 30.0301 31.8784 34.7653 41.9897
Vo et al. (2015) 28.4624 30.6825 32.5699 35.5156 42.8751
Present (g, # 0) 20.1540 22.7837 25.1971 29.1839 39.7489
! Present (¢, = 0) 19.6467 22.2062 24.5578 28.4487 38.7970
Vo et al. (2014) 19.6525 22.2108 24.5596 28.4447 38.7838
Vo et al. (2015) 20.7425 22.7065 25.1075 29.0755 39.6144
Present (&, # 0) 13.9254 16.3324 18.8488 23.4004 36.6032
5 Present (¢, = 0) 13.5728 15.9090 18.3551 22.7885 35.7061
Vo et al. (2014) 13.5801 15.9152 18.3587 22.7863 35.6914
Vo et al. (2015) 13.8839 16.2761 18.7772 23.3042 36.4677
Present (&, # 0) 10.3878 11.9641 14.0859 18.5891 33.6301
5 Present (¢, = 0) 10.1363 11.6596 13.7155 18.0909 32.7877
Vo et al. (2014) 10.1460 11.6676 13.7212 18.0914 32.7725
Vo et al. (2015) 10.3673 11.9301 14.0353 18.5092 33.4958
Present (&, # 0) 9.6681 10.7939 12.5805 16.8308 32.3594
10 Present (¢, = 0) 9.4411 10.5256 12.2536 16.3754 31.3243
Vo et al. (2014) 9.4515 10.5348 12.2605 16.3783 31.5265

Vo et al. (2015) 9.6535 10.7689 12.5393 16.7574 32.2264
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Table 9 Non-dimensional critical buckling loads of simply supported FG sandwich beams with
homogeneous hardcore (L /4 = 20)

K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (&, # 0) 53.3621 53.3621 53.3621 53.3621 53.3621
0 Present (¢, = 0) 53.2366 53.2366 53.2366 53.2366 53.2366
Vo et al. (2014) 53.2364 53.2364 53.2364 53.2364 53.2364
Vo et al. (2015) 53.3145 53.3145 53.3145 53.3145 53.3145
Present (&, # 0) 29.7909 32.1328 34.1705 37.4075 45.6821
0.5 Present (¢, = 0) 29.7172 32.2533 34.0862 37.3162 45.5749
Vo et al. (2014) 29.7175 32.2629 34.0862 37.3159 45.5742
Vo et al. (2015) 29.7626 32.1022 34.1380 41.8227 45.6424
Present (&, # 0) 20.7741 23.4811 26.0251 30.3066 41.9993
1 Present (¢, = 0) 20.7208 23.4208 25.9586 30.2309 41.9014
Vo et al. (2014) 20.7212 23.4211 25.9588 30.2307 41.9004
Vo et al. (2015) 20.7530 23.4572 25.9989 30.2774 41.9639
Present (&, # 0) 14.2348 16.6499 19.2518 24.0527 38.4734
) Present (¢, = 0) 14.1967 16.6045 19.3122 23.9901 38.3841
Vo et al. (2014) 14.1973 16.6050 19.3116 23.9900 38.3831
Vo et al. (2015) 14.2190 16.6307 19.2299 24.0276 38.4419
Present (&, # 0) 10.6436 12.1215 14.2694 18.9403 35.16836
5 Present (¢, =0) 10.6164 12.0877 14.2280 18.8873 35.0867
Vo et al. (2014) 10.6171 12.0883 14.2284 18.8874 35.0856
Vo et al. (2015) 10.6330 12.1068 14.2505 18.9172 35.1400
Present (&, # 0) 10.0082 10.9361 12.7186 17.0966 33.7641
10 Present (¢, = 0) 9.9840 10.9068 12.6814 17.0441 33.5708
Vo et al. (2014) 9.9847 10.9075 12.6819 17.0443 33.6843
Vo et al. (2015) 9.9995 10.9239 12.7014 17.0712 33.7367

Vo et al. (2014) and (2015). Noted that the results given by Vo et al. (2014) and (2015), are
obtained based on finite element model. Again, the proposed theory without the thickness
stretching effect (¢, = 0) and the model of Vo ef al. (2014) give solutions close to each other, and
these solutions are in an excellent agreement with the present theory that considers the thickness
stretching effect (¢, # 0) for moderately thick beams (L /4 = 20). However, the present theory
without the thickness stretching effect (¢, = 0) and the model of Vo et al. (2014) slightly
overestimate the critical loading loads for thick beams (L /4 = 5) due to ignoring the thickness
stretching effect.

Tables 12 and 13 contain dimensionless critical buckling loads for clamped — clamped FG
sandwich beam with homogenous hardcore for both thick and moderately thick beams,
respectively. Also, a good agreement between present results and other previous solutions is
demonstrated from this comparison.
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Table 10 Non-dimensional critical buckling loads of simply supported FG sandwich beams with
homogeneous softcore (L/h =5)

K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (g, # 0) 9.1575 9.1575 9.1575 9.1575 9.1575
0 Present (¢, = 0) 8.9524 8.9524 8.9524 8.9524 8.9524
Vo et al. (2014) 8.9519 8.9519 8.9519 8.9519 8.9519
Vo et al. (2015) 29.0755 26.5470 24.5952 21.8303 15.4469
Present (&, # 0) 28.4995 25.9956 24.1306 21.4239 15.1495
0.5 Present (¢, = 0) 28.4280 25.9503 24.0540 21.3821 15.1589
Vo et al. (2014) 37.0638 33.7041 30.9841 27.0786 18.2334
Vo et al. (2015) 36.3172 32.9786 30.3046 26.5884 17.8974
Present (&, # 0) 36.2103 32.8974 30.2449 26.4801 17.9093
1 Present (¢, = 0) 43.4657 39.8517 36.6422 31.7878 20.7839
Vo et al. (2014) 42.5601 38.9753 35.8463 31.2146 20.4130
Vo et al. (2015) 42.4501 38.8589 35.7058 31.0152 20.4222
Present (&, # 0) 47.7566 44.6508 41.4173 35.9875 23.0939
) Present (¢, = 0) 46.7208 43.6303 40.4032 35.3273 22.6907
Vo et al. (2014) 46.6504 43.5338 40.3235 35.0357 22.6881
Vo et al. (2015) 48.9012 46.2561 43.2072 37.7129 24.0628
Present (&, # 0) 47.8231 45.2333 42.1412 36.7453 23.6402
5 Present (¢, =0) 47.7825 45.1141 42.0693 36.6874 23.6329
Vo et al. (2014) 9.1575 9.1575 9.1575 9.1575 9.1575
Vo et al. (2015) 8.9524 8.9524 8.9524 8.9524 8.9524
Present (&, # 0) 8.9519 8.9519 8.9519 8.9519 8.9519
10 Present (¢, = 0) 29.0755 26.5470 24.5952 21.8303 15.4469
Vo et al. (2014) 28.4995 25.9956 24.1306 21.4239 15.1495
Vo et al. (2015) 28.4280 25.9503 24.0540 21.3821 15.1589

Table 11 Non-dimensional critical buckling loads of simply supported FG sandwich beams with
homogeneous softcore (L /4 = 20)

K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (&, # 0) 9.8299 9.8299 9.8299 9.8299 9.8299
0 Present (¢, = 0) 9.8067 9.8067 9.8067 9.8067 9.8067
Vo et al. (2014) 9.8067 9.8067 9.8067 9.8067 9.8067
Present (&, # 0) 33.2953 30.9259 28.8816 25.6595 17.4709
0.5  Present (¢, =0) 33.2249 30.8623 28.8236 25.6094 17.4347

Vo et al. (2014) 33.2187 30.8546 28.8167 25.6086 17.4355
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Table 11 Continued
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K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (g, # 0) 42.2809 39.5081 36.9329 32.6526 21.1098
1 Present (¢, = 0) 42.1902 39.4266 36.8594 32.5906 21.0688
Vo et al. (2014) 42.1810 39.4124 36.8445 32.5803 21.0698
Present (&, # 0) 48.8388 46.3198 43.6517 38.8121 24.5803
2 Present (¢, = 0) 48.7307 46.2216 43.5632 38.7387 24.5348
Vo et al. (2014) 48.7215 46.2035 43.5408 38.7192 24.5356
Present (&, # 0) 52.4921 50.8904 48.6442 43.8770 27.8236
5 Present (¢, = 0) 523711 50.7776 48.5416 43.7922 27.7739
Vo et al. (2014) 52.3655 50.7608 48.5163 43.7637 27.7736
Present (&, # 0) 53.1605 52.1127 50.2228 45.7224 29.1999
10 Present (¢, =0) 53.0363 51.9945 50.1143 45.6354 29.1492
Vo et al. (2014) 53.0331 51.9804 50.0902 45.6040 29.1471

Table 12 Non-dimensional critical buckling loads of clamped — clamped FG sandwich
homogeneous hardcore (L//# =5)

beams with

K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1

Present (&, # 0) 165.7137 165.7137 165.7137 165.7137 165.7137

0 Present (¢, = 0) 154.5978 154.5978 154.5978 154.5978 154.5978
Vo et al. (2014) 152.1470 152.1470 152.1470 152.1470 152.1470

Vo et al. (2015) 160.2780 160.2780 160.2780 160.2780 160.2780
Present (&, # 0) 102.0793 109.8888 116.1127 125.3367 146.8777

0.5 Present (¢, = 0) 94.4652 101.7035 107.5141 116.1804 136.6076
Vo et al. (2014) 92.8833 99.9860 105.6790 114.1710 134.2870

Vo et al. (2015) 98.4559 105.9750 111.9680 120.8630 141.7880
Present (&, # 0) 74.4910 84.2031 92.5165 105.5315 137.4443

1 Present (¢, = 0) 68.6650 77.6050 85.3186 97.4780 127.6257
Vo et al. (2014) 67.4983 76.2634 83.8177 95.7287 125.3860

Vo et al. (2015) 71.7654 81.0936 89.0834 101.6130 132.5510
Present (&, # 0) 52.7606 62.2868 71.4009 86.9540 128.1608

) Present (¢, = 0) 48.5114 57.2000 65.5961 80.0364 118.8061
Vo et al. (2014) 47.7010 56.2057 64.4229 78.5608 116.6580

Vo et al. (2015) 50.8183 59.9354 68.6743 83.6159 123.4770
Present (&, # 0) 39.2032 46.5945 54.7453 70.8229 119.2304

5 Present (¢, =0) 36.0974 42.7203 50.1642 64.9913 110.3426
Vo et al. (2014) 35.5493 42.0033 49.2763 63.7824 108.2970

Vo et al. (2015) 37.8295 44.8488 52.6395 68.0510 114.7700
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Table 12 Continued

K Theory 1-0-1 2-1-2 I-1-1 1-2-1 1-8-1
Present (g, # 0) 35.4627 42.1045 49.2629 64.7226 115.3670

10 Present (¢, = 0) 32.7650 38.6182 45.1208 59.3329 106.6885
Vo et al. (2014) 32.3019 37.9944 44.3374 58.2461 104.6920
Vo et al. (2015) 34.2824 40.5544 47.3804 62.1959 111.0120

Table 13 Non-dimensional critical buckling loads of clamped — clamped FG sandwich beams with
homogeneous hardcore (L /4 = 20)

K Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1
Present (e, # 0) 228.3777 228.3777 228.3777 228.3777 228.3777
0 Present (¢, =0) 213.5879 213.5879 213.5879 213.5879 213.5879
Vo et al. (2014) 208.9510 208.9510 208.9510 208.9510 208.9510
Vo et al. (2015) 210.7420 210.7420 210.7420 210.7420 210.7420
Present (&, # 0) 128.3061 138.3757 147.0931 160.8884 195.9677
0.5 Present (¢, =0) 119.9188 129.3312 137.4835 150.3902 183.2318
Vo et al. (2014) 117.3030 126.5080 134.4810 147.1040 179.2350
Vo et al. (2015) 118.3530 127.6410 135.6840 148.4130 180.8010
Present (g, # 0) 89.7126 101.4032 112.3328 130.6555 180.3802
! Present (¢, = 0) 83.8241 94.7462 104.9626 122.0979 168.6366
Vo et al. (2014) 81.9927 92.6741 102.6650 119.4220 164.9490
Vo et al. (2015) 82.7434 93.5248 103.6060 120.5090 166.4060
Present (g, # 0) 61.5867 72.0716 83.2946 103.9198 165.4276
5 Present (¢, = 0) 57.5336 67.3225 77.8079 97.0883 154.6386
Vo et al. (2014) 56.2773 65.8489 76.1020 94.9563 151.2500
Vo et al. (2015) 56.7986 66.4664 76.8166 95.8403 152.6000
Present (&, # 0) 46.0361 52.54716 61.8472 81.9806 151.3849
5 Present (¢, = 0) 43.0119 49.0795 57.7618 76.5732 141.4945
Vo et al. (2014) 42.0775 48.0070 56.4958 74.8903 138.3880
Vo et al. (2015) 42.4596 48.4588 57.0343 75.6019 139.6370
Present (&, # 0) 43.1931 47.4158 55.1536 74.0377 145.4102
10 Present (¢, = 0) 40.3659 44.2893 51.5090 69.1453 135.9027
Vo et al. (2014) 39.4930 43.3233 50.3811 67.6270 132.9170
Vo et al. (2015) 39.8436 43.7273 50.8611 68.2737 134.1220

Figs. 4 and 5 plot the critical buckling loads parameters versus the material parameter £ of
simply supported power-law (1-1-1) FG sandwich beams with both homogeneous hardcore and
softcore, respectively. It can be seen, that as the material parameter increases, the critical buckling
loads decrease for sandwich beams with hardcore and increase for sandwich beams with softcore.
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Fig. 4 Variation of critical buckling load P,, versus the material parameter & for (1-1-1) simply
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Fig. 5 Variation of critical buckling load P,, versus the material parameter k for (1-1-1) simply
supported FG sandwich beams with homogeneous softcore

5. Conclusions

A simple hyperbolic shear deformation beam theory with thickness stretching effect for the
buckling and vibration analysis of FG sandwich beams is developed. The equations of motion are
obtained by utilizing the Hamilton’s principle. Results prove that the present model is able to
introduce the thickness stretching effect and providing very accurate results compared with the
other existing higher-order beam theories.
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