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Abstract.  This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams 
with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during 
their fabrication. For this purpose, a simple displacement field based on higher order shear deformation 
theory is implemented. The proposed theory is based on the assumption that the transverse displacements 
consist of bending and shear components in which the bending components do not contribute toward shear 
forces and, likewise, the shear components do not contribute toward bending moments. The most interesting 
feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the 
thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam 
without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam 
theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. 
The rule of mixture is modified to describe and approximate material properties of the FG beams with 
porosity phases. By employing the Hamilton’s principle, governing equations of motion for coupled 
axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing 
some of the present results with those of the first-order and the other higher-order theories reported in the 
literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume 
fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams. 
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1. Introduction 

 
It is well-known that classical Euler-Bernoulli theory of beam bending, also known as 

elementary theory of bending (ETB), disregards the effects of the shear deformation. The theory is 
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suitable for slender beams and is not suitable for thick or deep beams since it is based on the 
assumption that the transverse normal to the neutral axis remains so during bending and after 
bending, implying that the transverse shear strain is zero. Since the theory neglects the transverse 
shear deformation, it underestimates deflections and overestimates the natural frequencies in case 
of thick beams, where shear deformation effects are significant. The other well-known beam 
theory is Timoshenko beam theory or the first-order shear deformation beam theory (FSDBT) in 
which straight lines perpendicular to the mid-plane before bending remain straight, but no longer 
remain perpendicular to the mid-plane after bending. Bresse (1859), Rayleigh (1880), and 
Timoshenko (1921) were the pioneer investigators to include refined effects such as the rotatory 
inertia and shear deformation in the beam theory. Timoshenko showed that the effect of transverse 
shear is much greater than that of rotatory inertia on the response of transverse vibration of 
prismatic bars. In FSDBT, the distribution of the transverse shear stress with respect to the 
thickness coordinate is assumed constant. Thus, a shear correction factor is required to compensate 
for the error because of this assumption in FSDBT. Cowper (1966) has given refined expressions 
for the shear correction factor for different cross-sections of the beam. The accuracy of 
Timoshenko beam theory for transverse vibrations of simply supported beam with respect to the 
fundamental frequency is verified by Cowper (1966) with a plane stress exact elasticity solution. 
To remove the discrepancies in the classical theory and FSDBT, higher-order or equivalent refined 
shear deformation theories were developed and are available in the open literature for static and 
vibration analysis of beams. The higher-order shear deformation beam theories consider the 
warping of the cross-sections and satisfy the zero transverse shear stress condition of the upper and 
lower fibers of the cross-section without a shear correction factor. In the literature, various 
higher-order shear deformation theories which satisfy the above-mentioned conditions are 
proposed by several researchers. The well-known higher-order beam theories are as follows: (i) 
parabolic shear deformation beam theory (PSDBT) (Reddy 1984); (ii) trigonometric shear 
deformation beam theory (TSDBT) (Touratier 1991); (iii) exponential shear deformation beam 
theory (ESDBT) (Karama et al. 2003). 

Recently, advanced composite materials known as functionally graded material have attracted 
much attention in many engineering applications due to their advantages of being able to resist to 
high temperature gradients while maintaining structural integrity (Koizumi 1997). The 
functionally graded materials (FGMs) are microscopically inhomogeneous, in which the 
mechanical properties vary smoothly and continuously from one surface to the other. They are 
usually made from a mixture of ceramics and metals to attain the significant requirement of 
material properties. 

Due to the increased relevance of the FGMs structural components in the design of engineering 
structures, their static and vibration characteristics have attracted the attention of many scientists in 
recent years (Tounsi et al. 2013a, Bouderba et al. 2013, Bachir Bouiadjra et al. 2013, Saidi et al. 
2013, Hebali et al. 2014, Fekrar et al. 2014, Belabed et al. 2014, Ait Amar Meziane et al. 2014, 
Chakraverty and Pradhan 2014, Zidi et al. 2014, Bousahla et al. 2014, Khalfi et al. 2014, 
Swaminathan and Naveenkumar 2014, Najafov et al. 2014, Ait Yahia et al. 2015, Hamidi et al. 
2015, Attia et al. 2015, Mahi et al. 2015, Duc and Thang 2015). It is observed from the literature 
that the amount of such work carried out for isotropic beams are considerable, and limited 
literature is available on composite beams. However, very few literatures on the analysis of the 
FGMs beam exist. Furthermore, the literature on the static and the dynamic analysis of FG beams 
is still limited in numbers compared to plates and shells. Sankar (2001) gave an elasticity solution 
based on the Euler-Bernoulli beam theory for functionally graded beam subjected to static 
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transverse loads by assuming that Young’s modulus of the beam vary exponentially through the 
thickness. Zhong and Yu (2007) presented an analytical solution of a cantilever FG beam with 
arbitrary graded variations of material property distribution based on two-dimensional elasticity 
theory. Li (2008) proposed a new unified approach to investigate the static and the free vibration 
behavior of Euler-Bernoulli and Timoshenko beams. Kadoli et al. (2008) studied the static 
behavior of an FG beam by using higher-order shear deformation theory and finite element method. 
Benatta et al. (2008) proposed an analytical solution to the bending problem of a symmetric FG 
beam by including warping of the cross-section and shear deformation effect. Sallai et al. (2009) 
investigated the static responses of a sigmoid FG thick beam by using different beam theories. 
Benatta et al. (2009) presented a mathematical solution for bending of short hybrid composite 
beams with variable fibers spacing. Bedjilili et al. (2009) presented exact solutions for shear 
flexible symmetric composite beams with a variable fiber volume fraction through thickness. Ould 
Larbi et al. (2013) presented an efficient shear deformation beam theory based on neutral surface 
position for bending and free vibration of FG beams. Yaghoobi and Torabi (2013a) investigated 
the post-buckling and nonlinear vibration of imperfect FG beams. Yaghoobi and Torabi (2013b) 
examined analytically the large amplitude vibration and post-buckling of FG beams resting on 
non-linear elastic foundations. Yaghoobi et al. (2014) studied also the post-buckling and nonlinear 
free vibration response of FG beams resting on nonlinear elastic foundation under thermo- 
mechanical loading using the variational iteration method (VIM). A simple refined nth-order shear 
deformation theory is presented by Yaghoobi and Fereidoon (2014) to discuss the mechanical and 
thermal buckling behaviors of FG plates supported by elastic foundation. Hadji et al. (2014) 
studied the bending and vibration responses of FG beams via a higher shear deformation beam 
theory. Bourada et al. (2015) used the concept of the neutral surface position to develop a simple 
and refined trigonometric higher-order beam theory for bending and vibration behavior of FG 
beams. Al-Basyouni et al. (2015) proposed a novel unified beam formulation and a modified 
couple stress theory for bending and dynamic behaviours of FG micro-beam. Recently, Larbi 
Chaht et al. (2015) studied the bending and buckling behaviors of size-dependent FG nanobeams 
including the thickness stretching effect. In this work, the size-dependent FG nanobeam is 
investigated on the basis of the nonlocal continuum model (Heireche et al. 2008, Benzair et al. 
2008, Amara et al. 2010, Tounsi et al. 2013b, c, d, Berrabah et al. 2013, Semmah et al. 2014, 
Benguediab et al. 2014). 

However, in FGM fabrication, micro voids or porosities can occur within the materials during 
the process of sintering. This is because of the large difference in solidification temperatures 
between material constituents (Zhu et al. 2001). Wattanasakulpong et al. (2012) also gave the 
discussion on porosities happening inside FGM samples fabricated by a multi-step sequential 
infiltration technique. Therefore, it is important to take in to account the porosity effect when 
designing FGM structures subjected to dynamic loadings. Recently, Wattanasakulpong and 
Ungbhakorn (2014) studied linear and nonlinear vibration problems of elastically end restrained 
FG beams having porosities. 

In this paper, a variationally consistent shear deformation theory is developed using a new 
displacement field for thick FG beams having porosities. The displacement field of the proposed 
theory is chosen based on the following assumptions: (1) the axial and transverse displacements 
consist of bending and shear components in which the bending components do not contribute 
toward shear forces and, likewise, the shear components do not contribute toward bending 
moments; (2) the bending component of axial displacement is similar to that given by the 
Euler-Bernoulli beam theory; and (3) the shear component of axial displacement gives rise to the 
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parabolic variation of shear strain and hence to shear stress through the thickness of the beam in 
such a way that shear stress vanishes on the top and bottom surfaces of the beam without using 
shear correction factors. The model is applied to simply supported FGM beam of rectangular 
cross-section for both static and free vibration analysis. A general solution is obtained. The results 
obtained are compared with those of elementary, refined, and exact beam theories available in the 
literature. 
 
 
2. Theoretical formulation 

 
The theoretical formulation of a uniform FG thick beam having porosities based on certain 

kinematical and physical assumptions is presented. The variationally correct forms of differential 
equations and boundary conditions, based on the assumed displacement field are obtained using 
the principle of virtual work. As it is seen in Fig. 1, the beam under consideration occupies the 
region 

2/2/;2/2/;0 hzhbybLx                    (1) 
 

where x, y, z are Cartesian coordinates, L is the length, b is the width, and h is the total depth of 
beam. The beam is subjected to transverse load of intensity q(x) per unit length of the beam. The 
beam can have any meaningful boundary conditions. 

 
2.1 Effective material properties of metal ceramic functionally graded beams 
 
A FG beam made from a mixture of two material phases, for example, a metal and a ceramic. 

The material properties of FG beams are assumed to vary continuously through the thickness of 
the beam. In this investigation, the imperfect beam is assumed to have porosities spreading within 
the thickness due to defect during production. Consider an imperfect FGM with a porosity volume 
fraction, α (α << 1), distributed evenly among the metal and ceramic, the modified rule of mixture 
proposed by Wattanasakulpong and Ungbhakorn (2014) is used as 
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Fig. 1 Co-ordinates and geometry of functionally graded beam 

372



 
 
 
 
 
 

A computational shear displacement model for vibrational analysis of functionally graded beams 

Now, the total volume fraction of the metal and ceramic is: Vm + Vc =1, and the power law of 
volume fraction of the ceramic is described as 
 

k

c h

z
V 






 

2

1
                               (3) 

 

Hence, all properties of the imperfect FGM can be written as 
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It is noted that the positive real number k (0 ≤ k ≤ ∞) is the power law or volume fraction index, 
and z is the distance from the mid-plane of the FG plate. The FG beam becomes a fully ceramic 
plate when k is set to zero and fully metal for large value of k. 

Thus, the Young’s modulus (E) and material density (ρ) equations of the imperfect FGM beam 
can be expressed as 
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However, Poisson’s ratio (v) is assumed to be constant. The material properties of a perfect FG 
beam can be obtained when α is set to zero. 

In addition, for another scenario of porosity distribution, it is possible to obtain imperfect FGM 
samples which have almost porosities spreading around the middle zone of the cross-section and 
the amount of porosity seems to be on the decrease to zero at the top and bottom of the 
cross-section. Based on the principle of the multi-step sequential infiltration technique that can be 
employed to fabricate FGM samples (Wattanasakulpong et al. 2012), the porosities mostly occur 
at the middle zone. At this zone, it is difficult to infiltrate the materials completely, while at the top 
and bottom zones, the process of material infiltration can be performed easier and leaves less 
porosity. Consider this scenario, the equations of Young’s modulus (E) and material density (ρ) in 
Eqs. (5)-(6) are replaced by the following forms 
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2.2 Assumptions made in the theoretical formulation 
 
(i) The displacements are small in comparison with the beam thickness and, therefore, strains 

involved are infinitesimal. 
(ii) The transverse displacement w includes two components of bending wb, and shear ws. 
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These components are functions of coordinate x only. 
 

)()(),( xwxwzxw sb                             (9) 
 

(iii) The transverse normal stress σz is negligible in comparison with in-plane stress σx. 
(iv) The axial displacement u consists of extension, bending, and shear components. 

 
,0 sb uuuu                               (10) 

 
The bending components ub and vb are assumed to be similar to the displacements given by the 

classical beam theory (ETB). Therefore, the expression for ub can be given as 
 

,
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The shear component us gives rise, in conjunction with ws, to the parabolic variations of shear 

strain γxz and hence to the shear stress τxz through the thickness of the beam in such a way that the 
shear stress τxz is zero at the top and bottom faces of the beam. Consequently, the expression for us 
can be given as (Shimpi and Patel 2006a, b, Tounsi et al. 2013b) 
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2.3 Kinematics and constitutive equations 
 
Based on the above-mentioned assumptions, the displacement field of the present beam theory 

is given by 

),(),(),,(

3

5

4

1
 ),(),,(

2

0

txwtxwtzxw

x

w

h

z
z

x

w
ztxutzxu

sb

sb





























                (13) 

 
The strains associated with the displacements in Eq. (13) are 
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By assuming that the material of FGM beam obeys Hooke’s law, the stresses in the beam 

become 
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xzxzxx zGzE   )(and )(                        (16) 
 
2.4 Governing equations and boundary conditions 
 
Using Eqs. (14)-(16) for strains and stresses and dynamic version of principle of virtual work 

(Draiche et al. 2014, Nedri et al. 2014), variationally consistent governing differential equations 
and boundary conditions for the beam under consideration are obtained. The principle of virtual 
work when applied to the beam leads to 
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Collecting the coefficients δu0, δwb and δws in Eq. (17), equations of motion are obtained as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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and (I0, I2) are mass inertias defined as 
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Eq. (18) can be expressed in terms of displacements (u0, wb, ws) by using Eqs. (13), (14), (15) 
and (19) as follows 
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where the stiffness components and inertias are given as 
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3. Analytical solution 
 

The equations of motion admit the Navier solutions for simply supported beams. The variables 
u0, wb, ws can be written by assuming the following variations 
 




 
































1    

   

   
0

 ) sin(

 ) sin(

 ) cos(

m ti
sm

ti
bm

ti
m

s

b

exW

exW

exU

w

w

u











                      (22) 

 
where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with mth eigenmode, and λ = mπ / L. 

Substituting Eqs. (21) and (22) into equations of motion (20) enables to get below eigenvalue 
equations for any fixed value of m, for free vibration problem 
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4. Numerical results and discussion 
 
In numerical analysis, fundamental frequencies of simply supported perfect and imperfect FG 

beams are evaluated. The FG beams are made of aluminium (Al; Em = 701 GPa, ρm = 2700 kg/m3, 
vm = 0.23) and alumina (Al2O3; Ec = 380 GPa, ρc = 3800 kg/m3, vc = 0.23) and their properties 
change through the thickness of the beam according to power-law. The bottom surfaces of the FG 
beams are aluminium rich, whereas the top surfaces of the FG beams are alumina rich. 

To validate accuracy of the proposed theory, the comparisons between the present results and 
the available results obtained by Koochaki (2011) and Sina et al. (2009) are shown in Tables 1 

 
 

Table 1 Comparison of non-dimensional fundamental frequencies of homogenous beams 


















 dzzEIhL
h

h

2/

2/

0
2 )()/ (    

h / L 
ETB 

(Reddy 1999) 
FSDBT 

(Koochaki 2011) 
PSDBT 

(Koochaki 2011) 
Present 

0.01 2.985526 2.986137 2.9861380 2.9861344 

0.0125 2.985232 2.985827 2.9858280 2.9858287 

0.0142 2.984340 2.985556 2.9855680 2.9855821 

0.0166 2.984865 2.985155 2.9851680 2.9851807 

0.02 2.983701 2.984505 2.9845054 2.9845054 

0.025 2.982588 2.983285 2.9832858 2.9832858 

0.033 2.979668 2.980657 2.9806572 2.9807765 

0.04 2.976570 2.978020 2.9780220 2.9780222 

0.05 2.971688 2.973193 2.9731941 2.9731941 

0.066 2.962858 2.962858 2.9628610 2.9633287 

0.1 2.931568 2.934044 2.9340570 2.9340576 
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Table 2 Non-dimensional fundamental frequency of FG beam:

















 dzzEIhL
h

h

2/

2/

0
2 )()/ (    

L / h k Present Sina et al. (2009) 

10 
0 2.879551 2.879 

0.3 2.774811 2.774 

30 
0 2.922108 2.922 

0.3 2.813328 2.813 

100 
0 2.927100 2.927 

0.3 2.817838 2.817 

 
 
and 2. Indeed, in Table 1, the nondimensional natural frequency of a simply supported 
homogenous beam (k = 0) obtained from the present new beam theory are compared with other 
beams theories results (Koochaki 2011) for three different values of thickness-to-length ratio. As 
can be seen the results of three shear deformation theories are in good agreement with the 
Euler-Bernoulli beam theory results. Also, the frequencies predicted by the present beam theory 
and the other two shear deformation theories are very close to each other. 

Table 2 shows non-dimensional natural frequencies for the perfect FG beam with k = 0 and 0.3 
for different length-to-height ratios. The results of the present formulation are compared with those 
of Sina et al. (2009) and the agreement is very satisfactory. 

Fig. 2 shows the non-dimensional fundamental natural frequency versus length-to-height ratio 
for simply supported perfect FG beam based on PSDBT and the present beam theory. As it can 
 
 

 
Fig. 2 Variation of the fundamental frequency ))/( )/ (( 2

MM EhL   of FG beams with L / h 
ratio for various values of the power-law exponent 
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be seen, the power-law exponent plays an important role on the fundamental frequency of the 
perfect FG beam and the frequencies are increased when the value of L / h is increased. In addition, 
the comparisons show that the agreement between the present results and those obtained using 
PSDBT is satisfactory. 

 

Table 3 Six first Non-dimensional frequencies 

















 dzzEIhL
h

h

2/

2/

0
2 )()/ (   of FG beam (L / h = 5) 

K α 1  2  3  4  5  6  

0.5 

0.0 2.652071106 9.227581431 17.69478543 26.95936800 36.56997080 46.35346951

0.1 2.629935615 9.163948853 17.59574226 26.83563397 36.43006594 46.20291888

0.2 2.601215142 9.080767423 17.46517379 26.67110200 36.24244879 45.99940418

1.0 

0.0 2.581070224 8.998837152 17.29734773 26.41699106 35.91550139 45.61898733

0.1 2.527515127 8.838878481 17.03790125 26.08073189 35.52391636 45.18878939

0.2 2.450084220 8.604783550 16.65295765 25.57471517 34.92630325 44.52326210

2.0 

0.0 2.586406159 8.950808821 17.11088871 26.04796748 35.35579761 44.88145525

0.1 2.487791307 8.651090665 16.61507660 25.39454980 34.58585936 44.03039853

0.2 2.316541140 8.123771581 15.72853020 24.20495086 33.15759214 42.42204192

5.0 

0.0 2.792915979 9.395559685 17.55065355 26.27845939 35.25569424 44.39249113

0.1 2.694743432 9.069598562 16.96555175 25.44949237 34.21042237 43.15861543

0.2 2.450980911 8.307099364 15.65914662 23.66287326 32.02232974 40.64091433
 
 

 

Fig. 3 Variation of the fundamental frequency
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with L / h ratio for various values of the porosity volume fraction by considering the first 
solution 
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Fig. 4 Variation of the fundamental frequency
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with L / h ratio for various values of the porosity volume fraction by considering the second 
solution 

 
 
 

 

Fig. 5 Variation of the fundamental frequency
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The first six dimensionless frequencies of perfect and imperfect FG beams are provided in 
Table 3. It should be noted that the materials properties are predicted using Eqs. (4)-(5). The 
results reveal that the frequency results decrease as the volume fraction of porosity (α) increases. 

In Figs. 3 and 4, the effect of the porosity the fundamental frequencies of FG beams with two 
different types of porosity distribution is illustrated. It is noted that Solution I refers to the result of 
imperfect FG beams with evenly distributed porosities using Eqs. (4)-(5), while, Solution II is for 
the beams with another type of porosity distribution using Eqs. (6)-(7). It can be seen from Fig. 3 
that the porosity leads to an increase of frequency and hence this type of porosity distribution 
(Solution I) makes the beam stiffer. However, the effect of porosity on fundamental frequencies 
(Fig. 4) using Solution II is reversed and this type of porosity distribution makes the beam flexible. 

It is interesting to compare the free vibration results obtained from different types of porosity 
distribution. Thus, the next numerical examples are given for this purpose. In Fig. 5, the 
fundamental frequencies of imperfect FG beams with two different types of porosity distribution 
are plotted versus the power-law exponent (k). As observed, Solution II provides higher 
frequencies than those of Solution I; moreover, the frequencies increase with the increase of the 
power-law exponent (k) when this latter takes values more than 2. 

 
 

5. Conclusions 
 
A new shear deformation beam theory is proposed for free vibration of perfect and imperfect 

FG beams. The theory accounts for a quadratic variation of the shear strains across the thickness, 
and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam 
without using shear correction factor. The modified rule of mixture covering porosity phases is 
used to describe and approximate material properties of the imperfect FG beams. Numerical 
examples show that the proposed theory gives solutions which are almost identical with those 
obtained using other shear deformation theories. The influence of the porosities on natural 
frequencies is then discussed. The formulation lends itself particularly well to wave propagation in 
orthotropic non-homogeneous medium (Mahmoud et al. 2014), which will be considered in the 
near future. 
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