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Abstract.  The thermomechanical bending response of anti-symmetric cross-ply composite plates is 
investigated by the use of the simple four variable sinusoidal plate theory. The theory accounts for sinusoidal 
distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and 
bottom surfaces of the plate without using shear correction factor. By dividing the transverse displacement 
into bending and shear parts, the number of unknowns and governing equations for the present theory is 
reduced, significantly facilitating engineering analysis. The validity of the present theory is demonstrated by 
comparison with solutions available in the literature. Numerical results are presented to demonstrate the 
behavior of the system. The influences of aspect ratio, side-to-thickness ratio, thermal expansion coefficients 
ratio and stacking sequence on the thermally induced response are studied. The present study is relevant to 
aerospace, chemical process and nuclear engineering structures which may be subjected to intense thermal 
loads. 
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1. Introduction 

 
Laminated composite plates are widely used in the aerospace, automotive, marine, civil and 

other engineering applications because of advantageous features such as high ratio of stiffness and 
strength to weight and low maintenance cost. The physical properties, such as higher strength- 
to-weight ratio, stiffness-to-weight ratio and versatility, are achieved by combining different 
materials to meet specific requirement. 

In the open literature, basically two different approaches were used in order to study laminated 
composite structures: equivalent single layer (ESL) theories and discrete layer theories. In the 
single layer theories laminated structures are assumed to be composed from one layer whereas in 
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latter case each layer is considered in the analysis. The ESL theories can be divided into three 
main categories: classical plate theory (CPT), first order shear deformation theory (FSDT), and 
higher-order shear deformation theories (HSDTs). The CPT ignores shear deformation effects and 
provides reasonable results for thin laminates. However, it underestimates deflection and 
overestimates buckling load and frequency of moderately thick or thick laminates where shear 
deformation effects are more pronounced (Whitney and Leissa 1969, Grover et al. 2014, Nedri et 
al. 2014, Draiche et al. 2014, Mahi et al. 2015). The FSDT proposed by Reissner (1945) and 
Mindlin (1951) accounts for shear deformation effects by the way of linear variation of in-plane 
displacements through the thickness. Since the FSDT violates the equilibrium conditions on the 
top and bottom surfaces of the plate, a shear correction factor is required to compensate for the 
difference between actual stress state and assumed constant stress state (Castellazzi et al. 2013, 
Cui et al. 2011, Bouremana et al. 2013, Sadoune et al. 2014, Yaghoobi and Yaghoobi 2013, 
Berrabah et al. 2013, Tounsi et al. 2013a, b). The HSDTs account for shear deformation effects by 
higher-order variations of in-plane displacements or both in-plane and transverse displacements 
through the thickness, and satisfy the equilibrium conditions on the top and bottom surfaces of the 
plate without requiring any shear correction factors. For example, Ambartsumian (1958), proposed 
a transverse shear stress function in order to explain plate deformation. A similar method was used 
later by Soldatos and Timarci (1993), for dynamic analysis of laminated shells. Later some new 
functions were proposed by Reddy (1984), Karama et al. (2003), Zenkour (2004), Ait Atmane et 
al. (2010), Benachour et al. (2011), EL Meiche et al. (2011), and Ait Amar Meziane et al. (2014). 
Thermal flexural investigation of symmetric laminated plates subjected to a single sinusoidal 
thermal load is illustrated by Ali et al. (1999) by employing displacement-based higher-order 
theory. Wu et al. (2007) presented a global-local higher order theory including transverse normal 
deformation to study the thermal behavior of a laminated plate subjected to a single sinusoidal 
thermal load. Recently, new inverse hyperbolic theories were developed by Sahoo and Singh 
(2013) and Grover et al. (2013). An equivalent single-layer shear deformation theory is presented 
by Ghugal and Kulkarni (2013a, b) for evaluation of displacements and stresses of cross-ply 
laminated plates subjected to uniformly distributed nonlinear thermo-mechanical load. Ghugal and 
Kulkarni (2011) discussed thermal stresses in cross-ply laminated plates subjected to a sinusoidal 
thermal load through the thickness of the plate using refined shear deformation theory. For the 
evaluation of displacements, critical buckling temperature and stresses in functionally graded 
structures subjected to thermal and mechanical loadings, a two-dimensional higher-order 
deformation theory is developed by Matsunaga (1999), Bachir Bouiadjra et al. (2013), Bouderba et 
al. (2013), Tounsi et al. (2013c), Houari et al. (2013), Kettaf et al. (2013), Saidi et al. (2013), Ould 
Larbi et al. (2013), Khalfi et al. (2014), Zidi et al. (2014), Hebali et al. (2014), Belabed et al. 
(2014), Bousahla et al. (2014), Swaminathan and Naveenkumar (2014), Said et al. (2014), 
Bourada et al. (2015), Hamidi et al. (2015), Ait Yahia et al. (2015), Larbi Chaht et al. (2015), 
Belkorissat et al. (2015) and Bouchafa et al. (2015). 

Among the aforementioned HSDTs, the Reddy’s theory is the most widely used due to its high 
efficiency and simplicity. Since the in-plane displacements of the Reddy’s theory are expanded as 
cubic function of the thickness coordinate, the equations of motion are more complicated than 
those of FSDT. Hence, there is a scope to develop an accurate theory, which is simple to use. In 
addition, the use of composite structures in environments with large temperature changes requires 
knowledge of thermally induced deflections and stresses. Further, thermal stresses are also induced 
during the fabrication of composite materials. For example, the static thermoelastic response of 
symmetric and antisymmetric cross-ply laminated plates has been discussed by Zenkour (2004) 
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using the sinusoidal shear deformation theory (SSDT). 
In the present work, a simple higher order shear deformation theory is developed for the 

thermo-mechanical bending analysis of laminated composite plates. The displacement field is 
chosen based on a sinusoidal variation of in-plane and transverse displacements through the 
thickness. The partition of the transverse displacement into the bending, and shear components 
leads to a reduction in the number of unknowns, and consequently, makes the new theory much 
more amenable to implementation. Closed-form solutions of simply supported antisymmetric 
cross-ply laminates are obtained and the results are compared with the existing solutions. The 
analysis is relevant to aerospace and nuclear engineering structures experiencing significant heat 
effects. 
 
 
2. Problem formulation 

 
Consider a rectangular laminated plate of length a, width b and uniform thickness h (see Fig. 1). 

The plate is composed of n orthotropic layers oriented at angles θ1; θ2; . . .; θn. The material of 
each layer is assumed to posses one plane of elastic symmetry parallel to the x-y plane. Perfect 
bonding between the orthotropic layers and temperature-independent mechanical and thermal 
properties are assumed. Let the plate be subjected to a transverse load q(x, y) and temperature field 
T(x, y, z). 

 
2.1 Basic assumptions 
 
The assumptions of the present theory are as follows 
 
 

 

Fig. 1 Coordinate system and layer numbering used for a typical laminated plate 
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(i) The displacements are small in comparison with the plate thickness and, therefore, strains 
involved are infinitesimal. 

(ii) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y only 

 
),(),(),,( yxwyxwzyxw sb                           (1) 

 
(iii) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
(iv) The displacements u in x-direction and v in y-direction consist of extension, bending, and 

shear components. 
 

sbsb vvvvuuuu  00 ,                        (2) 
 

The bending components ub and vb are assumed to be similar to the displacements given by the 
classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components us and vs give rise, in conjunction with ws, to the trigonometric variations 

of shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such a 
way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as 
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2.2 Kinematics 
 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (1)-(5) as 
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The kinematic relations can be obtained as follows 
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2.3 Constitutive and governing equations 
 
The stress–strain relationships, accounting for transverse shear deformation and thermal effects, 

in the plate coordinates for the kth layer can be expressed as 
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where T = T(x, y, z) is the temperature distribution; and (αx; αy; αxy) are the thermal expansion 
coefficients in the plate coordinates, and are related to the coefficients (αL; αT; 0) in the material 
principal directions. ijQ  are the transformed elastic coefficients are the transformed material 
constants given as (Bogdanovich and Pastore 1996) 
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where Qij are the (plane stress-reduced) material stiffness of the lamina 
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in which Ex and Ey are Young’s moduli in the x and y material principal directions, respectively; vxy 
and vyx are Poisson’s ratios; and Gxy; Gyz and Gxz are shear moduli in the x–y, y–z and x–z surfaces, 
respectively. 

The stress and moment resultants of a laminated composite plate made up of n layers of 
orthotropic laminae can be obtained by integrating (9) over the thickness, and are written as 
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and stiffness components and inertias are given as 
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Note that, zk represents the distance from the mid-plane to the lower surface of the kth layer. 

The stress and moment resultants, ;, T
y
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x NN . . . etc., due to thermal loading are defined by 
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Consistent with the present unified plate theory, the temperature variation through the thickness 

is assumed to be 
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The governing equations of equilibrium can be derived by using the principle of virtual 

displacements. The equilibrium equations associated with the present four variable sinusoidal plate 
theory are 
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Eq. (17) can be expressed in terms of displacements (u0, v0, wb and ws) by substituting for the 

stress resultants from Eq. (12). For homogeneous laminates, the equations of motion (17) take the 
form 
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where {p} = {p1, p2, p3, p4}

t is a generalized force vector given by 
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3. Analytical solutions for antisymmetric cross-ply laminates 
 

The Navier approach is employed to obtain the closed-form solutions of the partial differential 
equations in Eq. (18) for simply supported rectangular plates. For antisymmetric cross-ply 
laminates, the following plate stiffnesses are identically zero 
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The following boundary conditions for antisymmetric cross-ply laminates can be written as 
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To solve this problem, Navier assumed that the transverse mechanical and temperature loads, q, 

T1, T2, and T3 in the form of a double trigonometric series as 
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where λ = mπ / a, μ = nπ / b, and m and n are mode numbers. q0, t1, t2 and t3 are constants. 

Following the Navier solution procedure, we assume the following solution form for u0, v0, wb 
and ws that satisfies the boundary conditions 
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where Umn, Vmn, Wbmn, and Wsmn are arbitrary parameters to be determined subjected to the 
condition that the solution in Eq. (23) satisfies governing Eqs. (18). One obtains the following 
operator equation 
 

    ,PC                                 (24) 
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where {Δ} = {U, V, Wb, Ws}
t and [C] is the symmetric matrix given by 
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The components of the generalized force vector {P} = {P1, P2, P3, P4}

t are given by 
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4. Numerical results and discussion 
 
In this section, various numerical examples are described and discussed to verify the accuracy 

of the present theory. The thermo-mechanical bending behaviors of the simply-supported 
anti-symmetric cross-ply composite plates are considered. Computations were carried out for the 
fundamental mode (i.e., m = n = 1). All of the lamina are assumed to be of the same thickness and 
made of the same orthotropic material. In all problems, the lamina properties are assumed to be 

 
.25.0psi, 102.0psi, 105.0psi, 10psi, 1025 6666  xyyzxzxyxx GGGEE   

 
Note that, values of αx (≡ α1) and αy (≡ α2) are given during the discussion of material results. 

We will assume in all of the analyzed cases (unless otherwise stated) that a / h = 10, a / b = 1, t1 = 
1, and α2 / α1 = 3. 

The thermomechanical bending analysis of the present example problem has been studied by 
several authors, and their results were used here for further comparison purposes. Zenkour (2004) 
presented a generalized HSDT and presented the closed-form solution of a plate subjected to 
thermal and mechanical loads, thus providing benchmark results. Reddy and Hsu (1980) 
developed for thermal bending of laminated plates, a finite-element model that possesses 
competitive accuracy. 

Table 1 presents results of non-dimensionalized center deflections )/(10 2
21 aTwhw   of two- 

layer cross-ply (0°/90°) plates due to thermal loading. After a detailed comparison analysis, it can 
be concluded that the present four variable sinusoidal plate theory gives very closed results to the 
values obtained by the conventional sinusoidal plate theory (SSDT) obtained by Zenkour (2004). 

In Table 2, the following non-dimensionalized deflection w~  of two-layer cross-ply (0°/90°) 
plates subjected to combined loading is used (see Reddy and Hsu (1980)) 
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Table 1 Nondimensional center deflections )/(10 2

21 aTwhw   of cross-ply square plates (0°/90°) 
subjected to thermal loading )0( 3 T  

a / h Exact (a) Present HSDT (b) SSDT (b) 

100 1.6765 1.6766 1.6766 1.6766 

50 1.6765 1.6767 1.6767 1.6767 

25 1.6765 1.6771 1.6770 1.6771 

20 1.6765 1.6774 1.6773 1.6774 

12.5 1.6765 1.6789 1.6786 1.6789 

10 1.6765 1.6802 1.6798 1.6802 

6.25 1.6765 1.6858 1.6848 1.6858 

5 1.6765 1.6910 1.6894 1.6910 
(a) Reddy and Hsu (1980) 
(b) Zenkour (2004) 
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Table 2 Nondimensional center deflections w~  of cross-ply square plates (0°/90°) subjected to combined 
loading (q0 = 100, 0,100 32    TT , α1 = 10−6) 

a / h Exact (a) Present HSDT (b) SSDT (b) 

100 2.4451 2.4481 2.4481 2.4481 

50 2.4597 2.4585 2.4586 2.4584 

25 2.5083 2.4999 2.5006 2.4996 

20 2.5443 2.5309 2.5321 2.5304 

12.5 2.7001 2.6650 2.6679 2.6636 

10 2.8438 2.7885 2.7927 2.7859 

6.25 3.4666 3.3186 3.3273 3.3090 

5 4.0415 3.8013 3.8120 3.7821 
(a) Reddy and Hsu (1980) 
(b) Zenkour (2004) 

 
 
The obtained results are tabulated in Table 2 and are compared to those predicted using various 

theories (Zenkour 2004) and the solution of Reddy and Hsu (1980). It can be seen that the present 
theory with only four unknowns agree extremely well with those obtained in (Zenkour 2004). 

The variation of non-dimensionalized vertical displacement w  versus the ratio a / h for anti- 
symmetric two- and four-layer cross-ply square plates is shown in Figs. 2 and 3, respectively. An 
interesting result deduced from Figs. 2 and 3 is that the vertical displacement w  is independent of 
the side to-thickness ratio for the case of the CPT. On the other hand, with the consideration of the 
shear deformation effect, all responses of the present theory, HSDT, SSDT, and FSDT become 
dependent on the side to-thickness ratio. It is known that the dependency of the responses on the 

 
 

Fig. 2 Effect of thickness on the dimensionless deflection w  of a two-layer, anti-symmetric 
cross-ply (0/90) square plate (t3 = 0) 
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Fig. 3 Effect of thickness on the dimensionless deflection w  of a four-layer, anti-symmetric 

cross-ply (0/90)2 square plate (t3 = 0) 
 
 

side to-thickness ratio for the present theory, HSDT, SSDT, and FSDT is uniquely due to the 
effect of shear deformation. The obtained results are compared with those generated by HSDT, 
SSDT, and FSDT as is shown in Figs. 2 and 3. In addition, it is seen that the vertical displacement 

w  decreases with increasing the side to-thickness ratio for two-layer plates, whereas for four- 
layer plates ones the increase in vertical displacement due to the same theories is shown. 

The effect of the ratio of thermal expansion coefficients (α2 / α1) on the bending response of 
 
 

Fig. 4 Effect of the ratio of thermal expansion coefficients α2 / α1 on the dimensionless deflection 

w  of a four-layer, anti-symmetric cross-ply (0/90)2 square plate (t3 = 0) 
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Fig. 5 Effect of aspect ratio on the dimensionless combined deflection w  of a four-layer, 
anti-symmetric cross-ply (0/90)2 square plate (t3 = 0) 

 
 

Fig. 6 The effect of material anisotropy E1 / E2 on the dimensionless deflection w  of a 
four-layer, anti-symmetric cross-ply (0/90)2 square plate (t3 = 0) 

 
 

anti-symmetric four-layer cross-ply square plate is demonstrated in Fig. 4. It can be seen that the 
vertical displacement is linearly proportional to the α2 / α1 ratio. 

Fig. 5 demonstrates the effects of the aspect ratio (a / b) on the non- dimensionalized vertical 
displacement w  of anti-symmetric four-layer cross-ply square plate subjected to linear 
temperature distribution and/or mechanical loading. It is found that the aspect ratio effect is more 
pronounced on the thermal bending deflection w  (q = 0) of a plate under non-uniform 
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temperature distribution. 
The effect of the modulus ratio (E1 / E2) on the bending response of anti-symmetric four-layer 

cross-ply square plate is shown in Fig. 6. It can be deduced that the bending response of the 
composite plate depends strongly on the material anisotropy of the layer. 

 
 

5. Conclusions 
 
A simple four variable sinusoidal plate theory has been successfully developed for the 

thermo-mechanical of simply supported laminated plates. The theory accounts for the shear 
deformation effects without requiring a shear correction factor. By dividing the transverse 
displacement into bending, shear and stretching components, the number of unknowns and 
governing equations of the present theory is reduced to four and is therefore less than alternate 
theories. The accuracy and efficiency of the present theory has been demonstrated for 
thermo-mechanical bending behavior of antisymmetric cross-ply laminates. 
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