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Abstract.  A finite element model is presented for the analysis of composite steel-concrete beams based on 
a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions 
at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The 
global displacement components, described by polynomial or combinations of polynomial and exponential 
expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The 
present finite model does not need the incorporating any shear correction factor. Moreover, in the present 
C1-continuous finite element model, the number of unknowns is independent of the number of layers. The 
proposed finite element model is validated by comparing the present results with those obtained from the 
three-dimensional (3D) finite element analysis.  In addition to correctly predicting the distribution of all 
stress components of the composite steel-concrete beams, the proposed finite element model is 
computationally economic. 
 
Keywords:   finite element; composite steel-concrete beams; refined high-order theory; transverse 
shear; normal stresses 
 
 
1. Introduction 

 
Due to the economic and structural advantages, composite steel-concrete structures are widely 

used throughout the world for the construction of buildings and bridges. Composite steel-concrete 
beams are the most common applications of the composite structures which are typically made of 
concrete slabs cast on steel members. Taking the advantage of the concrete in compression and 
steel in tension, composite steel-concrete beams have enhanced stiffness and strength 
performances in comparison to each components considered in isolation. 

Various models have been presented in the literature to date for the analysis of composite 
steel-concrete beams (Spacone and El-Tawil 2004). Most of these earlier studies are based on 
Euler–Bernoulli’s beam theory. As an example, Li et al. (2014) introduced an exact dynamic 
stiffness method for investigating the free vibration characteristics of the composite steel-concrete 
beams. They employed the Euler–Bernoulli beam theory to define the dynamic behaviors of the 
composite beams. Although the Euler–Bernoulli hypothesis is very successful in the prediction of 
global responses (e.g., deflection, fundamental natural frequency or buckling load) of slender 
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homogeneous beams, it fails in the prediction of local behavior (e.g., through the thickness 
distribution of transverse shear and normal stresses, high natural frequencies) due to the neglecting 
of the transverse shear stress. Moreover, the transverse shear stress affects on the global response 
of beams having small length to thickness ratio, low shear rigidity or continuous spans (Ranzi and 
Zona 2007a). In order to incorporate the effect of shear stress in the analysis, some researchers 
(Berczynski and Wroblewski 2005, Xu and Wu 2007a, Schnabl et al. 2007) used Timoshenko’s 
beam theory for the analysis of composite steel-concrete beams. Ranzi and colleagues (Ranzi and 
Zona 2007b, Ranzi 2008, Ranzi et al. 2010, Zona and Ranzi 2011) used a combination of 
Euler-Bernoulli’s beam theory and Timoshenko’s beam theory to analyze composite steel-concrete 
beams. They used Euler–Bernoulli’s beam theory to model the concrete slab while the steel girders 
were modeled using Timoshenko’s beam theory. 

Although Timoshenko’s beam theory leads to more accurate results in comparison to 
Euler-Bernoulli’s beam theory, it gives a uniform shear stress distribution over the beam thickness 
whereas the actual variation of shear stress is parabolic. In order to remove this drawback of 
Timoshenko’s beam theory, some researchers modified the shear stiffness of the beams by 
employing a shear correction factor. This factor which is dependent on the cross-sectional area of 
the beam, has a different value depending on the geometry and material properties of the beam. 
Under the action of static loads, Whitney (1973) evaluated shear correction factors of multilayered 
rectangular composite laminated beams. However, an accurate estimation of the shear correction 
factor is a complex procedure. Moreover, an analysis based on Timoshenko’s beam theory cannot 
accurately predict the local responses of composite beams especially the distribution of the 
transverse shear and normal stresses. In order to overcome these limitations, several high-order 
beam theories have been presented in the literature to date. These high-order theories contain the 
third-order shear deformation theory (Reddy 2004), layer-wise or discrete-layer theories (Reddy 
1987, Reddy et al. 1989, Barbero et al. 1990, Robbins and Reddy 1993), zig-zag theories (Ren 
1986, Ren and Owen 1989, Whitney 1969, Icardi 1998, 2001a, b), global-local theories (Li and 
Liu 1997, Lezgy-Nazargah et al. 2011a, b) and mixed theories (Carrera 2000, 2001). 

Although high-order theories are able to predict the local responses of composite beams 
accurately, they are often used for the analysis of multilayered laminated composite structure with 
rectangular cross-section. To the author’s knowledge, none of these high-order theories has been 
applied for the analysis of composite steel-concrete beams. To fill this gap, in the present study, a 
refined high-order theory is employed for the analysis of composite steel-concrete beams. This 
theory which is based on global-local assumptions has been introduced first time by 
Lezgy-Nazargah et al. (2011b) for the analysis of laminated composite beams. The original 
high-order global-local theory then successfully extended to smart laminated composites by 
Lezgy-Nazargah and colleagues (Beheshti-Aval and Lezgy-Nazargah 2012, 2013, Beheshti-Aval 
et al. 2013). In this refined high-order theory, the global in-plane displacement component is 
described by combinations of polynomial and exponential expressions whereas the global 
transverse displacement component is adopted as a fourth-order polynomial. To improve the 
results, local terms have been added to the global expressions employing the discrete layer 
concepts. The employed high-order global-local theory considers effects of the transverse normal 
stress and transverse flexibility in the analysis. Majority of the available high-order theories either 
do not consider the transverse flexibility or do not impose the continuity condition of the 
transverse normal stress at the layer interfaces. However, the transverse normal stresses and strains 
and the transverse flexibility which are the cause of many failure modes, have important roles in 
the analysis of the laminated composite structures. In the employed high-order theory, the 
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boundary conditions of shear and normal tractions are also satisfied on the upper and lower 
surfaces of the beam. Besides, continuity conditions of the displacement components, transverse 
shear and normal stresses at the layer interfaces are satisfied. In comparison with the other 
available similar theories (layer-wise or 3D models available in the commercial softwares), the 
employed high-order theory is computationally significantly economic and has finally, only four 
independent generalized unknown parameters (three displacement and one rotation parameters). In 
this framework, the present study is focused on the extension of these last works to the analysis of 
composite steel-concrete beams. 

Based on the high-order global-local theory, a three node beam element with C0-continuity for 
the in-plane displacements and C1-continuity for in-plane variations of the lateral deflection is 
employed. Various composite concrete-steel beams are treated using a written computer code 
whose algorithm is based on the present model. The obtained numerical results exhibit a good 
agreement with the 3D finite element (ABAQUS) results. 
 
 
2. Theoretical formulation 

 
2.1 The geometric parameters and the coordinate system 
 
Fig. 1(a) shows the cross-section of a prismatic composite steel-concrete beam made of a 

concrete slab and a steel member. The geometric parameters of the composite beam and the 
chosen Cartesian coordinate system (x, y, z) are also shown in Fig. 1(b). As it may be noted from 
Fig. 1, the x, y and z axes are respectively along the length, width and thickness of the composite 
steel-concrete beam. In the present study it is assumed that the interface between the concrete slab 
and steel member is perfectly bonded. The study of the interlayer slip (partial interaction) between 
the steel and concrete slab is out of the scope of this work. 

The original cross-section of Fig. 1(a) can be converted into the equivalent laminate section of 
Fig. 1(b). To this end, the original elastic moduli of each portion of the composite steel-concrete 
beam is replaced with the equivalent one of k

kk bEE )()(   (k denotes the layer number of the 
beam). The height of each portion of steel-concrete beam is retained without any change in the 
equivalent laminate section. Following these changes, the composite beams with the cross-section 
of Fig. 1(a) and ones with the cross-section of Fig. 1(b) will have an identical axial and flexural 
stiffness. Thus, the two sections shown in Fig. 1 are equivalent in the one-dimensional beam 

 
 

 

 (a)  (b)  

Fig. 1 (a) Typical cross-section of the composite beam; (b) Equivalent laminated cross-section of 
the composite beam 
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theory. To obtain the stress components at a point located in the original cross section of the 
composite beam, one must multiply by kb/1  the stress computed at the corresponding point of the 
transformed section. The above described procedure for converting a composite steel-concrete 
beam section into an equivalent laminated one was also employed by Xu and Wu (2007b) for the 
two-dimensional analysis of simply supported composite steel-concrete beams. It is worthy to note 
that the described conversion of cross-section may be inadequate for problems with significant 
shear lag (e.g., for beams with wide flanges). Study of shear lag is not considered in this work. 

 
2.2 The constitutive equations 
 
In a laminated beam with small width, the 3D linear constitutive equations of the kth layer can 

be reduced to 
 

)()()( kkk  εCσ                                 (1) 
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and k denotes the layer number and 

)(k
ijc  are the elastic coefficients. 

 
2.3 The displacement field description 
 
In the present study, the following refined high-order global-local displacement field is 

employed (k = 1, 2,..., Nl) (Lezgy-Nazargah et al. 2011b) 
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 (2) 

 
where the functions u(x, y, z, t) and w(x, y, z, t) represent the in-plane and transverse displacement 
components, respectively. u0(x, t) and w0(x, t) are global displacement parameters at the reference 
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plane. t is the time and θ(x, t) denotes the shear-bending rotation around the y axis. ),(1
1 txu  is the 

local in-plane displacement parameter of the first layer of the laminated beam. ),( txX 
 and 

),( txX 
 are the prescribed shear tractions of the bottom and top surfaces of the beam, 

respectively. ),( txZ 
 and ),( txZ 

 denote the distributed lateral loads acting on the bottom and 
top surfaces of the beam, respectively. In the context of coupled refined high-order global-local 
theory we have also 
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In the above equations, H denotes Heaviside’s function. , , , 321
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kkk
321  , ,   are coefficients which appear from fulfillment of the inter-laminar continuity conditions 

of the transverse shear stress on the interfaces between the layers, and its boundary conditions on 
the upper and lower surfaces of the beam. The coefficients , , , , , , , , 87654321
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l8  (l = 1, 2, 3, 4) can be 
obtained by imposing the continuity conditions of the transverse normal stress and transverse 
normal stress gradient at Nl − 1 interfaces, and their boundary conditions on the upper and lower 
faces of the beam. It is worthy to note that these coefficients are only dependent on the material 
properties and the global coordinates of the layers. These coefficients can be easily calculated 
using a symbolic calculator software based on the procedure hinted in reference (Lezgy-Nazargah 
et al. 2011b). It is seen from Eq. (2) that the employed theory represent the in-plane and transverse 
displacement of the laminated beam with respect to four unknowns parameters u0, w0, θ and 1

1u . 
Indeed, the employed high-order theory has only one generalized unknown parameter more than 
Timoshenko’s beam theory. 

Using Cauchy’s definition of the strain tensor, the in-plane, transverse shear and normal strain 
components may be calculated based on the employed coupled global-local description of the 
displacement field as 
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2.4 Finite element formulation 
 
A three nodded beam element is developed based on the employed refined high-order 

global-local theory. As the highest derivative of w0 in the expression of the strain energy is of 
second-order, this variable interpolated using C1-continuous Hermite cubic shape functions. 
Although the rotation θ can be C0-continuous, it is interpolated by quadratic Lagrangian shape 
functions to ensure obtaining more accurate results. Finally, u0, ,1

1u  X+, X−, Z+ and Z− are 
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interpolated using Lagrangian quadratic shape functions. Based on Eqs. (2) and (4), the 
displacement and strain components may be expressed in the following matrix form 
 

uuuu uLεuAu  ,                            (5) 
 
where    T

u
T ZZXXuθwuu wuu  1

100 , and   .T
xzzzxx γεεε   The 

displacement vector of the reference layer uu may be expressed in terms of the nodal variables 
vector e

uu  as follows 
e
uuu uNu                                   (6) 

where 
 

 3
1
133011111

1
11011010 )()()()()()()()()()( uθuZZXXuwθwuu ,x

e
u

                   

Tx ZZXXuwwuZXX 33222
1
12,022020333 )(   )(   )(   )(   )(   )(      )(   )(   )(   )(   )(    

 
For the sake of brevity, the expression for Au, Lu and Nu are not presented here. The interested 

readers can refer to reference (Lezgy-Nazargah et al. 2011b) for more details. Using Eq. (6), the 
displacements and the strain vectors may be expressed as follows 
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The principle of virtual displacement is employed to extract the governing equations of the 

composite beam element. According to this principle, for a mechanical medium with volume   
and regular boundary surfaces Γ, one may write 
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TTT dΩuρδufδudΩfδudSFδudΩσδεδWδUδΠ 

     
 (9) 

 

Where δu, F, f, and fc are the admissible virtual displacement, traction, body force, and 
concentrated force vectors, respectively. U, W, and ρ are the strain energy, work of the externally 
applied loads, and mass density, respectively. 

Substituting Eqs. (1) and (8) into Eq. (9), and assembling the element matrices, the following 
general equations of motion are obtained for the entire composite steel-concrete beam 
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3. Numerical results and discussions 
 

In order to evaluate the performance of the proposed finite element model, the static analysis of 
some composite steel-concrete beams is considered in this section. A computer code is developed 
in MATLAB to implement the proposed model which is used to generate results. A composite 
steel-concrete beam with various boundary conditions has been analyzed using the proposed 
model. As there is no result based on high-order beam theory available in the literature for the 
present problem, the present results are compared with the finite elements results obtained based 
on the 3D theory of elasticity. The 3D finite element analysis is performed using the 20-node solid 
element (C3D20RE) available in ABAQUS software with a very refined mesh. 

 
3.1 Example 1 
 
In the current example, a simply supported (S-S) composite steel-concrete beam with the length 

L = 6 m is analyzed using the proposed finite element formulation. The geometric parameters of 
the composite beam are shown in Fig. 2. A distributed uniform pressure with the magnitude Z+ = 
10 kN/m2 is applied on the top of the composite beam. The elastic moduli and Poisson’s ratios are 
Ec = 8.5 GPa, vc = 0.2, Es = 210 GPa and vs = 0.3 for concrete and steel, respectively. The mesh 
convergence study shows that a mesh with 20 elements (329 dof) of equal lengths is adequate to 
model the composite steel-concrete beam. Since no exact 3D solution is available for the 
considered example, a 3D finite element analysis was performed in ABAQUS/CAE Version 6.8-3. 
ABAQUS/CAE provides a graphical environment that allows for easy modeling of complex 
geometry. It was assumed that the concrete slab and steel member can be modeled as a quadratic 
20-node brick element (solid element). The mesh with 10980 elements (about 52000 dofs) shown 
in Fig. 3 yields converged results for both global and local responses. They will be considered as a 
reference. Boundary and loading conditions can be also easily assigned to the generated geometry 
in ABAQUS/CAE. At the two ends of the composite beam, the transverse deflection of the 
concrete slab and steel member along z-axis is restrained (w = Uz = 0). A uniform pressure was 
also applied on the top of the composite beam (along z-axis) in the ABAQUS model. 

Through-the-thickness variations of the displacement and stress components are shown in Fig. 
4. It may be readily seen from Fig. 4 that the proposed finite element model predicts the in-plane 
stress very accurately. The transverse shear stress distribution obtained from the present model is 
in good agreement with the ABAQUS results. Both models give similar results except at the 
region near to the interface of the layers. As it was expected, the presented model predicts the 
transverse normal deflection of the composite beam with sufficient accuracy (the maximum error 

 
 

Fig. 2 Cross section of the composite steel-concrete beam of example 1 
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Fig. 3 Composite steel-concrete beam; mesh with 10980 elements (ABAQUS) 
 
 

is about 5.7%). The obtained results also show that the presented model predicts the in-plane 
displacement of the composite beam with an error that is less than 6%. The transverse normal 
stress calculated based on the present model is compared well with the 3D finite element results 
with a relative error of 8.3%. Fig. 4 shows that the values of transverse normal stress are relatively 
noticeable and should be considered in the design of composite steel-concrete beams. The 
maximal value of the transverse normal stress occurs at the interface of the top flange and the web 
of the steel member. 

 
 

 

(a) Transverse deflection at (L/2, z) 
 

 

(b) In-plane displacement at (0, z) 

Fig. 4 Through-the-thickness distribution of w (m), u (m), σxx (N/m2), τxz (N/m2) and σzz (N/m2) 
for the simply supported composite steel-concrete beam 
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(c) In-plane stress at (L/2, z) 
 

 

(d) Transverse shear stress at (0, z) 
 

 

(e) Transverse normal stress at (L/2, z) 

Fig. 4 Continued 
 
 
It can be deduced from these results that the proposed model is able to predict the local 

responses of the composite steel-concrete beams with sufficient accuracy. However, the converged 
mesh of the 3D finite element model (ABAQUS) has about 52000 degrees of freedom while the 
proposed finite element formulation needs only 329 degrees of freedom. 
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3.2 Example 2 
 
In this section, the capability of the present finite element model for the analysis of the 

composite steel-concrete beams with different boundary conditions is evaluated. To this end, the 
composite beams with clamped-simply supported (C-S) and clamped-clamped (C-C) end 
conditions are analyzed using the present finite element. The geometric parameters, loading 
conditions and the material properties of the considered beams of the present example are the same 
as those of the previous example. The accuracy of the present results is assessed in comparison 
with the results obtained from ABAQUS. It is worthy to note that in the ABAQUS model, all the 
three displacement degrees of freedom of the concrete slab and steel member were restrained (u = 
Ux = 0, v = Uy = 0, w = Uz = 0) at each clamped end. 

Through-the-thickness distributions of the stress and displacement components along the 
thickness direction are shown in Figs. 5 and 6. Similar to the previous example, the results 
obtained from the present finite element are in good agreement with ABAQUS results. The present 

 
 

 

(a) Transverse deflection at (L/4, z) 

 

 

(b) In-plane displacement at(L, z) 

Fig. 5 Through-the-thickness distribution of w (m), u (m), σxx (N/m2), τxz (N/m2) and σzz (N/m2) 
for the composite steel-concrete beam with C-S end conditions 
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(c) In-plane stress at (L/4, z) 
 

 
(d) Transverse shear stress at (L, z) 

 

 
(e) Transverse normal stress at (L/4, z) 

Fig. 5 Continued 
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(a) Transverse deflection at (L/2, z) 
 

 

(b) In-plane displacement at (L/4, z) 
 

 

(c) In-plane stress at (L/2, z) 

Fig. 6 Through-the-thickness distribution of w (m), u (m), σxx (N/m2), τxz (N/m2) and σzz (N/m2)  
for the composite steel-concrete beam with C-C end conditions 
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(d) Transverse shear stress at (L/4, z) 
 

 

(e) Transverse normal stress at (L/2, z) 

Fig. 6 Continued 
 
 

finite element predicts the in-plane stress of the composite beams with C-S and C-C end 
conditions very accurately. Concerning the transverse shear stress, the present model gives results 
with the error less than 5%. The proposed finite element model predicts the transverse normal 
stress of the composite beam with C-S end conditions within a 6.7 % error. In case of C-C end 
conditions, this value is 7.8%. Obtained numerical results show that the error corresponding to the 
present finite element model is higher for C-S beam than for S-S beam, and higher for C-C beam 
than for S-C. Nevertheless, the error rate in the prediction of stress components of the composite 
beam is less than 8% regardless of the mechanical boundary conditions. 

It can be observed from Figs. 5 and 6 that the predicted distribution of in-plane and transverse 
displacement obtained from the present model is similar to ABAQUS computations. Although the 
differences are mainly due to using different solution procedures, the present high order 
global-local approximation of the displacement components has improved the prediction of the 
in-plane and transverse displacement of the composite beam, considerably. Moreover, the present 
finite element is computationally very low cost in comparison to the 3D finite element model. 

These obtained numerical results demonstrate the efficiency of the proposed finite element in 
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the prediction of local behaviors of composite steel-concrete beams with different boundary 
conditions. 

 
 

4. Conclusions 
 
An efficient finite element is presented for the analysis of composite steel-concrete beams. The 

kinematics is based on a refined high-order beam theory which satisfies all the kinematic and 
stress boundary conditions at the layers interfaces. In contrast to the most of available theories, the 
employed high-order theory takes into account the effects of the transverse normal stress and the 
transverse flexibility of the beam. In the proposed finite element formulation, the number of the 
unknown parameters is very small and is independent of the number of the layers. Moreover, the 
proposed model does not need any shear correction factor. 

In order to assess the accuracy of the proposed finite element for the static analysis of 
composite steel-concrete beams, comparisons have been made with the results obtained from the 
3D finite element analysis. To this purpose, composite beams with various boundary conditions 
are analyzed using the proposed finite element. The comparisons show that the presented finite 
element formulation is sufficiently accurate in the prediction of global and local behaviors of 
composite steel-concrete beams. However, the proposed model has only one generalized unknown 
parameter more than Timoshenko’s beam theory. Compared to 3D elements available in the 
commercial softwares, only few degrees of freedom are needed to obtain good results with the 
present finite element. This approach seems to be a good compromise between computational cost 
and accuracy for the composite steel-concrete beams problem. More advanced problems are now 
investigated using this new finite element model, and special attention is pointed towards the 
shear-lag and interlayer slips effects. 
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