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Abstract.  The connection between a column and a beam is of particular importance to ensure the safety of 
civil engineering structures, such as high-rise buildings and bridges. While the connector must bear 
sufficient force for load transmission, increase of its ductility, toughness and damping may greatly enhance 
the overall safety of the structures. In this work, a composite beam-column connector is proposed and 
analyzed with the finite element method, including effects of elasticity, linear viscoelasticity, plasticity, as 
well as geometric nonlinearity. The composite connector consists of three parts: (1) soft steel; (2) polymer; 
and (3) conventional steel to be connected to beam and column. It is found that even in the linear range, the 
energy dissipation capacity of the composite connector is largely enhanced by the polymer material. Since 
the soft steel exhibits low yield stress and high ductility, hence under large deformation the soft steel has the 
plastic deformation to give rise to unique energy dissipation. With suitable geometric design, the connector 
may be tuned to exhibit different strengths and energy dissipation capabilities for real-world applications. 
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1. Introduction 

 
High damping and high stiffness materials are crucial in energy dissipation applications for 

increasing seismic resistance or reducing undesired vibrations (Symans et al. 2008, Lakes 2009). 
Among available energy dissipation systems for seismic applications, Symans et al. (2008) listed 
viscous fluid dampers, viscoelastic dampers, metallic dampers and friction dampers as well as 
widely used passive damping elements. It is noted that the failure of the beam-column connector in 
steel structures is one of important failure modes (Taranath 1988). Hence, the connection between 
a column and a beam is of particular importance to ensure the safety of civil engineering structures, 
such as high-rise buildings and bridges (Higashino and Okamoto 2006, Kappos 2012, Zhang and 
Wang 2012). The role of the connector is to transmit loading from the beam to the column, and 
then through the columns to the foundation of the structure. Conventional methods to connect the 
beam and column use bolts or welding techniques (Calado et al. 2013). These methods may give 
rise to enough rigidity to the connector, and hence it can sustain the large loading. However, at the 
same time, bolts and welds make the connector brittle, and the brittleness reduces the energy 
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dissipation of the connector in the steel structures.  
In the literature, Chen et al. (1996) proposed a cross-section area reduction method to enhance 

the ductility of the beam-column connector. The ductile connectors may localize failure to the 
beams, and protect the columns. While the connector must bear sufficient force for load 
transmission, increase of its ductility, toughness and damping may greatly enhance the overall 
safety of the structure. Yet, current popular designs, such as the cross-section area reduction 
method, may have limited benefits, in terms of ductility and toughness, to the overall behavior of 
the beam-column system. Similar design concepts have been realized in creating energy-absorbing 
devices (Kelly et al. 1972, Whittaker et al. 1991, Tsai et al. 1993). All these ideas and devices do 
not take the advantages of composite materials with a high-damping phase. 

In addition to structure-like damper devices or mass damper devices, several novel dampers 
have been proposed. In the case of using viscous fluids, compound lead extrusion 
magnetorheological (CLEMR) dampers have recently been studied for their high energy 
dissipation properties (Xu et al. 2012, Zhang and Xu 2012). In addition, effective damping can be 
largely enhanced by using negative stiffness elements (Dong and Lakes 2012). Both of the types of 
the dampers require additional design considerations for real-world applications, in terms of 
stability and operational frequency ranges. Furthermore, buckling-restrained systems, as a type of 
metallic dampers, have also been largely adopted into structures to enhance overall damping of the 
structures (Tremblay et al. 2006). 

In this paper, a composite beam-column connector, consisting viscoelastic material and 
low-yield steel, is proposed to behave as an energy dissipation device, and simultaneously allow 
ductile behavior at the beam-column joint. Composites comprising polymers and metallic 
materials are widely used in damping applications. Typically, constrained layer dampers have been 
shown to be an effective method to obtain high damping and sufficient stiffness (Ross et al. 1959, 
Nashif et al. 1985, Ferreira et al. 2013). The basic idea is to combine high loss material as one 
phase with high stiffness material as the other phase. The two phase viscoelastic composites have 
been shown to exhibit desired combination of stiffness and energy dissipation properties.  

Along this line of research, Ibrahim et al. (2007) proposed a visco-plastic device, as an add-on 
device consisting of steel plates and viscoelastic material, to increase the energy dissipation 
capacity of structures. Similarly, Kim et al. (2006) studied the effects of viscoelastic dampers for 
their seismic performance evaluation on structures. Recently, usage of viscoelastic material in a 
multi-dimensional earthquake isolation device for reticulated structures have been conducted, and 
the efficacy of viscoelastic material in energy dissipation is evaluated (Xu et al. 2013). Moreover, 
Zou et al. (2013) studied the vibration isolation capability of viscoelastic material under a 
prestressed state. In order to better quantify viscoelastic materials, some detailed parameter 
identification for viscoelastic dampers have been studied in Chang and Signh (2009). A more 
complete numerical model to include large deformation effects in viscoelastic material can be 
found in Hasanpour et al. (2009). 

Specifically, in this work, the composite connector is composed of three parts, (1) soft steel, (2) 
polymer material, such as rubber, and (3) conventional steel frame, and analyzed with finite 
element analysis. The soft steel is defined as the steel with low yield strength and high ductility. 
The connector, then, is bolted or welded to the column and beam. Various designs for the 
composite beam-column connector are conducted and compared. In the finite element analysis, 
effects of geometric nonlinearity, plasticity and linear viscoelasticity are included to demonstrate 
the energy dissipation capability of the composite connector. 
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2. Continuum analysis and constitutive models 
 
In this section, we first introduce the elasticity analysis in Section 2.1, and then the 

viscoelasticity analysis in Section 2.2. In Section 2.3, the plasticity analysis is discussed. The 
continuum analysis and constitutive models serve as the theoretical foundation for later finite 
element numerical analysis to study the mechanical behavior of the composite beam-column 
connector. 

 
2.1 Elasticity analysis 
 
Force balance equation used in elasticity is shown in Eq. (1), where density is denoted by ρ, 

time t, displacement fields u, stress tensor σ and specific body force F. The symbol ∂ indicates 
partial derivative. Tensorial notations are not adopted for clearly presentation of the equations. 
 

,
2

2

F
t

u  



                             (1) 

 
Constitutive relationships are shown in Eq. (2) with total strain denoted by ε and inelastic strain 

by εinel. The colon symbol: denotes the tensorial contraction operation between fourth-order elastic 
constant tensor C and second-order strain tensor. 
 

),(: inelC                                 (2) 
 

The strain tensor follows the following geometrical relationship with the displacement fields. 
The gradient operator is denoted by an upper side down triangle. A superscript T indicates a tensor 
transpose operation. 

 ,)(
2

1
uu T                               (3) 

 
Combination of the all the above equations with suitable and initial boundary conditions results 

in the well-defined mathematical system for the elasticity problems. 
 
2.2 Viscoelasticity analysis 
 
When materials are viscoelastic, the force balance still obeys Eq. (1), but the constitutive 

relationships must be modified to reflect the nature of time dependence. The standard linear solid 
model is adopted, as follows 
 

  ,2
3

1
2))(( 0 GqITrGIKTr inel 






                   (4) 

 
Here the bulk modulus is K, shear modulus G. The symbol Tr denotes the tensorial trace 

operator to sum up the diagonal terms, and second order identity tensor is denoted as I. The time 
dependence is embedded in the internal variable q in the above equation, and its evolution is 
governed by 
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The relaxation time constant τ is a material parameter. The standard linear solid requires three 

parameters, bulk modulus K, shear modulus G and the time constant τ. For rubbery materials, their 
loss tangent, i.e., tan δ, is about 0.2 (Lakes 2009). It is known that the standard linear solid model 
predicts the following frequency dependence for tangent delta when the other relaxation time 
constant is τ/2. 

.
2

tan
22




                               (6) 

 
With the assumption of τ = 0.2 seconds, the loss tangent versus frequency is plotted in Fig. 1. 

As can be seen the chosen time constant produces loss tangent around 0.2 in the low frequency 
range. Hence, throughout our analysis here, we use τ = 0.2 seconds to describe the viscoelastic 
strength of rubbery materials. For bulk modulus, one can calculate it from Young’s modulus, E, 
and shear modulus, G, as follows. 

)3(3 EG

EG
K


                                (7) 

 
The above relationship is only valid for isotropic rubber materials. 
 
2.3 Plasticity analysis 
 
When materials are deformed into their plastic range, the associated flow rule is adopted in the 

present analysis, and the strain rate is determined from the yield function as follows. 
 

,







F

p                                 (8) 

 
where the von Mises type yield function is defined by 
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Fig. 1 Loss tangnet of rubbery materials according to Eq. (6) with the relaxation time constant 0.2 seconds

1164



 
 
 
 
 
 

Energy dissipation of steel-polymer composite beam-column connector 

.ysmisesF                                 (9) 

 
The parameter λ is calculated from the yield function differentiated by stress (Lubliner 1990). 

The yield strength evolves with deformation as follows. 
 

,0 hysys                              (10) 

 
The initial yield strength σys0 = 130 MPa, and the hardening function σh = 200 MPa is assumed 

to be independent of strain, which is commonly used in modeling steel. For standard plasticity 
calculations, the isotropic hardening rule is applied, i.e., for Figs. 5, 6 and 7, as well as Tables 2 
and 3. For comparisons, kinematic hardening, with a tangent modulus of 2 GPa, is considered in 
quasi-static loading cases, as shown in Figs. 8 and 9. In addition, the elastic-perfectly plastic 
model is also adopted to compare the different effects on the plasticity model choice. In our chosen 
plastic model, the strain rate effects are neglected since only low frequency responses are 
considered in the present work. 

 
 

Table 1 Material parameters used in the numerical calculations 

 Young’s modulus GPa Poisson’s ratio Density kg/m3 Other properties 

Rubber 0.1 0.49 1,000 Relaxation time: 0.2 seconds 

Soft steel 200 0.33 7,900 
Yield strength: 130 MPa 

Hardening stress: 200 MPa 
Kinematic tangent modulus: 2 GPa 

Steel 10,000 0.33 100,000 Assumed to be rigid 

 
 

Table 2 Energy dissipation ratios for various designs 

Wd /Ws Steel
Composite 

1 
Composite

2 
Composite

3 
Composite

1-1 
Composite 

1-2 
Composite

1-3 

Shear 0.523 0.713 0.570 0.623 0.556 0.555 0.544 

Com-pression 0.679 0.488 0.526 0.598 0.521 0.550 0.567 

Bending 0.575 0.480 0.443 0.480 0.464 0.466 0.469 

 
 

Table 3 Loss tangent for various designs 

Loss tangent Steel 
Composite 

1 
Composite

2 
Composite

3 
Composite

1-1 
Composite 

1-2 
Composite

1-3 

Shear 0.333 0.454 0.369 0.397 0.354 0.353 0.346 

Compression 0.433 0.311 0.335 0.381 0.332 0.350 0.361 

Bending 0.366 0.305 0.282 0.306 0.296 0.296 0.298 
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3. Finite element details 
 

The schematic of the physical model of the composite connector, as a whole, is shown in Fig. 2. 
The connector without the polymer inclusions is shown in Fig. 2(a), and that with the inclusions in 
Fig. 2(b). In the figures, the orange color indicates the polymer material. The ring-like parts are the 
soft steel which has low yield strength. In order to reduce computation load, the models for the 
finite element analysis are shown in Figs. 3(a)-(b) for loading condition and mesh, respectively. 
The height of the model is about 300 mm, and the figures are drawn to the scale. In the analysis, 
we treat the models as a block of material and applied shear, compressive force and bending 

 
 

 

(a) (b) 

Fig. 2 Schematics of the connector (a) without polymer; and (b) with polymer (orange color) 

 

(a) (b) 

Fig. 3 (a) The finite element model with indications of loading conditions; and (b) the mesh used 
in the numerical analysis. All loading is distributed on the whole surface of the top block. 
Blue color indicates the soft steel 
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(a) (b) (c) 
 

 

  

(d) (e) (f) 

 

 

 

 (g)  

Fig. 4 Various designs for the arrangement of the polymer: (a) soft steel only (no polymer); (b) composite-1;
(c) composite-2; (d) composite-3; (e) composite-1-1; (f) composite-1-2; (g) composite-1-3 

 
 
moment on the top and bottom plates of the models. Furthermore, in Fig. 4, seven different designs 
are shown, and their difference is the amount of polymer materials used in the connector. The 
labels, “Steel”, “Composite-1”, “Composite-2”, “Composite-3”, “Composite-1-1”, “Composite-1- 
2”, “Composite-1-3” are designated for various geometrical designs in Fig. 4. The “Steel” model 
does not contain any polymer material, “Composite-1” model is fully filled in the plates, 
“Composite-2” contains polymer only in the whole core/hollow region, and “Composite-3” 
contains polymer between the plates only. The “Composite-1-1”, “Composite-1-2”, “Composite-1- 
3” follow the “Composite-1” model, but with three different size of the holes in the central region. 
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Fig. 5 Under cyclic loading (1 Hz), the force-displacement relationship of the connectors (Steel, 
Composite-1, Composite-2 and Composite-3) under (a) shear mode; (b) compression mode; 
and (c) bending mode 
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Fig. 6 Continued 
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Fig. 7 Energy dissipation estimation of all models for (a) shear deformation; (b) compression 
deformation; and (c) bending deformation 
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Fig. 8 Under quasi-static loading condition, the force-displacement relationship of the beam-column 
connector with soft steel only (no polymer) under (a) shear mode; (b) compression mode; and 
(c) bending mode 
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Fig. 9 Under quasi-static loading condition, the force-displacement relationship of the composite 
beam-column connector under (a) shear mode; (b) compression mode; and (c) bending mode 
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Fig. 10 Stress-strain curves of rubbery material under uniaxial deformation with (a) geometric 
linearity; and (b) geometric nonlinearity 

 
 
The three-dimensional mechanical analysis is conducted by using the finite element method 

with the commercial software (COMSOL Inc. 2013). If stress is large, the low-yield steel is 
modeled with a standard plasticity constitution that includes hardening effects, as described in 
Section 2.3. Otherwise, elasticity model is adopted to calculate the linear behavior of the steel. The 
polymer material is modeled as the standard linear solid with a relaxation time constant 0.2 
seconds for its viscoelastic behavior, as described in Section 2.2. In general, rubbery materials 
have a loss tangent of 0.2 in the linear viscoelastic regime (Lakes 2009). The parameters in the 
standard linear solid model used here are so chosen to reconstruct the loss tangent in the low 
frequency regime. Furthermore, the focus of present study is to estimate energy dissipation 
capacity of the connector in the moderate deformation ranges. Hence, nonlinear elasticity 
constitutive models, such as the Neo-Hookean or Mooney-Rivlin models, are not included in the 
current analysis. Geometric nonlinearity is included in our three-dimensional finite element 
analysis, and its effects are discussed along with Fig. 10. Mesh density was sufficiently high to 
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ensure accuracy. In the analysis, linear elements were adopted. Detailed material parameters are 
shown in Table 1. 

 
 

4. Results and discussions 
 
Under sinusoidal displacement loading with a frequency of 1 Hz, the finite element results of 

Fig. 4 are shown in Figs. 5, 6 and 7 for the shear, compression and bending deformation modes. In 
Fig. 5, the force-displacement curves of the four designs, i.e., labeled as the “Steel”, 
“Composite-1”, “Compsoite-2” and “Composite-3” cases, are shown.  The results of the shear, 
compression and bending mode are, respectively shown in Figs. 5(a)-(c). Similarly, in Fig. 6, the 
force-displacement curves of the model “Composite-1”, “Composite-1-1”, “Composite-1-2”, 
“Composite-1-3” and “Composite-3” are plotted. And, Figs. 6(a)-(c), respectively, show the results 
of the shear, compression and bending mode. 

From the three figures, it can be seen that when plasticity is not involved, i.e., in the linear 
regime, the hysteresis curve under sinusoidal loading shows an elliptical shape, which is a typical 
response of the linear viscoelastic materials, and the stress-strain curves are called as the Lissajous 
curves in the viscoelasticity community. The enclosed area of the ellipse is proportional to the 
energy dissipation capability of the material. Since stress and strain distributions in the connector 
are not uniform, we report the load-displacement curves to delineate the overall response of the 
connector. The load and displacement are obtained from the center of the top surface of the top 
plate (Fig. 3(b)), that is made of conventional steel, as oppose to the soft steel used in the ring. 
Since the top steel plate is assumed to be rigid, i.e., with a very large elastic constant, the load and 
displacement everywhere on the top block are roughly the same. As a remark, if the material is 
purely elastic, the force-displacement curves would appear as a straight, inclined line, indicating 
no energy dissipation capabilities. 

It can be seen in Fig. 5(a) that the “Compoiste-1” and “Composite-2” case behave linearly 
under shear mode. However, the “Steel” model exhibits plastic deformation at maximum 
displacement, as the hysteresis becomes non-elliptical. The “Composite-3” case also shows a 
slight plastic deformation. The rationale for the stress redistributions in these cases are due to more 
polymer material to dilute stress in the soft steel. Furthermore, the “Composite-1” model shows 
the largest enclosed area, indicating its energy dissipation capacity is the highest. The increase of 
the energy dissipation is the combination of the deformation mode and the use of polymer. Under 
the compression mode, Fig. 5(a) shows all models are deformed plastically. From Fig. 5, it can be 
seen that, for the shear and bending mode, the more use of polymer, the higher resistant force can 
be obtained (under he same magnitude of deformation). However, for the compression mode, the 
“Composite-3” case shows the lowest resistant force. 

For all the tested deformation modes, it can be seen in Fig. 6 that the “Composite-1-1”, 
“Composite-1-2” and “Composite1-3” cases are bounded by the “Composite-1” and “Composite- 
3” cases. In other words, the later cases serve as the upper and lower bounds. The reduction of the 
resistant force exerted by the connector is proportional to the size of the hole in the center of the 
model. The larger the hole is, more reduction on the resistant force can be obtained. The lower 
limit case is the “Compoiste-3” model, and the upper limit case is the “Composite-1” model. 
These results are physically expected. But, through the finite element calculations, we demonstrate 
that the overall properties of the connector can be tailored to any design requests. 

To summarize the results in Figs. 5 and 6, the energy ratio between dissipated energy Wd and 
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stored energy Ws are calculated and shown in Fig. 7. The shear, compression and bending mode 
are, respectively, shown in Figs. 7(a)-(c). It can be seen that under different deformation mode, 
different design is needed to obtain highest energy dissipation capability. The energy dissipation 
ratio is also shown in Table 2 for detailed numeric comparisons. Since in the composite the stress 
distribution is not uniform, we adopt the energy dissipation ratio as an indicator to describe the 
damping capability of the connector. Use of only low-yield steel without polymer may not provide 
the best energy dissipation capability for some deformation mode. Instead, the Composite-1 model 
shows the highest energy dissipation ratio due to the use of polymer material and the arrangement 
of the geometry. The geometry may alter the stress distributions in the connector, hence increases 
the energy dissipation ratio. 

Furthermore, in order to compare with conventional linear viscoelastic materials, the dissipated 
energy ratio can be converted to loss tangent (i.e., tan δ) of the material as follows. 
 

.tan
2




s

d

W

W
                              (11) 

 
The converted loss tangent is shown in Table 3 for all models. Since some models are 

deformed plastically, the conversion represents an overall estimation of the loss tangent as if the 
material were a linear viscoelastic type. In the connector, energy dissipation may be achieved by 
polymer’s viscoelasticity, as well as plastic deformation of the soft steel. 

Under compression, the force-displacement curves of the all cases are shown in Figs. 5(b) and 
6(b). In this loading condition, the low-yield steel only model shows the highest energy dissipation 
ratio, as summarized in Fig. 7(b). Since the significant bent in the force-displacement curves, the 
low-yield steel is largely plastically deformed for the steel only model. Under this loading 
condition, adding polymer materials would reduce the stress in the steel, and hence the energy 
ratio is smaller. However, for shear mode, the “Steel” model shows the lowest energy dissipation. 

When the connector is subjected to bending, the force versus displacement curves are shown in 
Figs. 5(c) and 6(c). The bending is applied by assuming a linear distribution of force on the top 
and bottom plates, and hence the force and displacement are referred to the maximum force in the 
linear distributed load, and corresponding displacement at the node. From Fig. 7(c), it can be seen 
that the “Steel” model also shows the largest energy dissipation ratio. Adding the rubbery material 
may not enhance the damping due to the amount of damping from the polymer is less than the 
damping from plastic deformation. 

The “Steel” model consists of no polymer, but, in some cases, it exhibits larger damping than 
the cases with polymer. The rationale for this observation is because the plastic deformation of soft 
steel may provide high energy dissipation capacity. In order to put the soft steel in large plastic 
deformation, the surrounding rubbery materials need to be removed. However, there are two 
aspects that need to be noted. One is this observation is not for all deformation modes, hence when 
the connector is under complex stress state, its energy dissipation capability may not be superior 
than that of composite connector. The second aspect is that the large energy dissipation of the 
“Steel” model is obtained at the expense of severe plastic deformation. It is known that plastic 
deformation causes strain hardening through increase of dislocation density. Consequently, the 
ductility of plastically deformed steel is largely reduced due to damage accumulation. Therefore, 
even though the “Steel” model may exhibit high energy dissipation capacity, it is put in an 
irreversible process under every loading cycle. Ultimately, the connector may exhibit brittle failure. 
On the contrary, the composite connector exhibits damping from the viscoelastic polymer, and less 
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degrees of plastic deformation in soft steel. Therefore, the composite may exhibit longer life than 
the soft steel only connector. 

All of the abovementioned discussion focus on the geometric nonlinearity and plastic 
deformation in soft steel. However, when the loading is in the linear regime, the damping 
enhancement of the connector is achieved through the viscoelastic polymer. In the linear regime, 
the loss tangent of steel is on the order of 10-6 in terms of loss tangent, but that of the rubbery 
material is on the order of 10-1 (Lakes 2009). The overall loss tangent of the connector is 
dominated by the polymer inclusions and geometry. Therefore, in the linear behavior, the 
connector exhibits larger damping capability than that of pure steel. We remark that damping also 
may arise from the interfaces between the connector and beam or column due to friction in the 
bolted joints or welds. 

In addition to the cyclic loading to evaluate the mechanical properties of the connector, Figs. 8 
and 9 show the quasi-static load-displacement curves of the “Steel” and “Composite-1” connector, 
respectively. In both figures, the shear deformation mode is shown in (a), compression mode in (b) 
and bending mode in (c). It can be seen that the kinematic hardening model predicts similar results 
as the elastic-perfectly plastic model for the shear mode in the small displacement regime. The 
kinematic model is a good candidate for modeling the Bauschinger effects, and in our future work 
the unloading simulations are to be performed to test the Bauschinger effects on the composite 
connector. Furthermore, the overall hardening behavior is significantly improved for the 
composite connector with polymer. In particular, for the “Steel” model, the isotropic hardening 
rule shows no overall hardening effects under the shear mode. In addition, the resistant force of the 
polymer-embedded connector is largely enhanced. 

It is known that the area underneath the quasi-static stress-strain curve is called uniaxial 
toughness of the material, a combinatory measure of the strength and ductility of the material. 
Since, in the current computer simulations, the fracture of the connectors cannot be modeled, the 
end points of the force-displacement curves cannot be determined by calculations. However, Figs. 
8 and 9 serve a purpose to delineate the plastic behavior of the connector with three plasticity 
models, i.e., the isotropic hardening model, kinematic hardening model and elastic-perfectly 
plastic model. It is emphasized that the isotropic hardening model is adopted in the analysis for 
Figs. 5, 6 and 7. 

In order to clearly demonstrate the effects of geometric nonlinearity, Figs. 10(a)-(b) show the 
viscoelastic rubbery material under uniaxial deformation with the geometric linear and nonlinear 
assumption, respectively. In the finite element analysis, solid elements and other types can be 
treated with geometric nonlinearity such that the equilibrium equations are satisfied in the 
deformed geometry; not the undeformed geometry as the geometric linearity assumed (COMSOL 
Inc. 2013). As can be seen from the figure, the geometric linearity always produce inclined straight 
stress-strain curves. Under large deformation, the specimen changes shape, and geometric 
nonlinearity ensures the equilibrium equations are satisfied with the consideration of shape 
changes. Hence, stress-strain curves are nonlinear under geometric nonlinear assumption. However, 
this nonlinear effects cannot completely capture the constitutive relationships in the nonlinear 
elasticity models, such as the hyperelastic models, for rubbery materials. In modeling the behavior 
of rubbery materials, the Neo-Hookean or Mooney-Rivlin constitutive relationships are typically 
adopted (Belytschko et al. 2000). The hyperelastic models not only consider the effect of changes 
in geometry, but also include changes in material properties. In this work, geometric nonlinearity 
is included with viscoelastic effects, and the damping capability of the novel connector, modeled 
by the generalized Maxwell-Voigt model, is demonstrated. It is currently under study to combine 
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viscoelastic and hyperelastic material models to more realistically model the behavior of the 
beam-column connector. However, it is noted that hyperelastic models are adopted for modeling 
deformation of rubbery materials up to 500% elongation or more. In the beam-column geometry, it 
is unlikely that the polymer phase can be deformed up to that level of strain. However, the 
inclusion of hyperelastic model in the future work may still provide more realistic modeling 
results. 

 
 

5. Conclusions 
 
The mechanical behavior of the composite beam-column connector is studied as a material 

block under shear, compression and bending. Its energy dissipation capability is largely enhanced 
due to the following several mechanisms. In the linear regime, the viscoelastic properties of 
polymer material increases the overall dissipation energy ratio of the composite connector about 
three orders of magnitudes, when compared to purely elastic properties of the steel. In the 
plastically deformed regime, the soft steel provides energy dissipation through plastic deformation 
in the expense of permanent deformation. The amount of energy dissipation depends on 
deformation modes, such as in the bending and compression mode, polymer materials do not 
enhance overall damping properties of the composite beam-column connect. However, in the shear 
mode, suitable choice of rubber material in its geometry may increase the energy dissipation more 
than having the soft steel only. In the quasi-static loading condition, the soft steel only model does 
not show strong overall plastic hardening with the isotropic hardening rule, while the composite 
connector exhibits distinctive overall hardening behavior. Finally, in reality, additional energy 
dissipation mechanisms may arise from friction damping due to the bolt or weld connections 
between the connector and its neighbors, which are currently under intensive study. 
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