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Abstract.  This paper aims to present an alternative analytical method for transient vibration analysis of 
doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing 
differential equations of laminated shell are derived using the dynamic version of the principle of virtual 
displacements. The governing equations of first order shear deformation laminated shell are obtained by 
Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then 
Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain 
are transformed to the time domain with the help of modified Durbin’s numerical inverse Laplace transform 
method. Verification of the presented method is carried out by comparing the results with those obtained by 
Newmark method and ANSYS finite element software. Also effects of number of laminates, different 
material properties and shell geometries are discussed. The numerical results have proved that the presented 
procedure is a highly accurate and efficient solution method. 
 
Keywords:    doubly-curved laminated shell; transient vibration analysis; inverse laplace transform; 
analytic solution 
 
 
1. Introduction 

 
Laminated composite shells are being increasingly used in all fields of engineering because of 

their many advantageous properties. The most advantageous part of shell structures is their 
load-carrying ability due to combination of laminates and their curvature. Therefore, many papers 
have been published on this subject. Transient vibration analysis of shells made of layers has a 
primary importance engineering design. It is necessary to have a full understanding of the behavior 
of laminated composite shells. Researchers have been attempted to estimate exactly the stress 
distribution and displacement varying with time under various dynamic loading conditions. 

Many investigators have studied the free vibration of laminated shell structures based on first 
order shear deformation theory (FSDT) or higher order (Civalek 2006, Dogan and Arslan 2012, 
Lee et al. 2003, Timarci and Soldatos 2000, Topal 2013). Toh et al. (1995) examined the transient 
stress response of an orthotropic laminated open cylindrical shell. They presented the solution 
analytically which includes both contact deformation and transverse shear. Shim et al. (1996) 
examined analytically the elastic response of glass/epoxy laminated composite shells subjected to 
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low velocity impact. Gong et al. (1995) presented a set of analytical solutions to predict the 
dynamic response of simply supported laminated shells. Wu et al. (1996) formulated an 
asymptotic theory for dynamic analysis of doubly curved laminated shells within the framework of 
three-dimensional elasticity. Chun and Lam (1995) investigated the free and forced vibration of 
laminated curved panels subjected to the triangular, explosive and step loadings. The 
Rayleigh-Ritz method is employed to achieve the natural frequencies of the clamped laminated 
curved panels. The normal mode superposition method is used in the forced vibration analysis. 
Vaziri et al. (1996) showed a series of outcomes for the non-penetrating, low velocity impact 
response of cylindrical shells using super finite element method. For the time integration, the 
Newmark scheme and the Newton-Raphson method are employed. Prusty and Satsangi (2001) 
described the transient response of composite stiffened plates and shells. The governing undamped 
equation of motion are obtained with finite element method and Newmark's method is used for the 
direct time integration. Swaddiwudhipong and Lui (1997) used modified nine-node degenerated 
shell elements to investigate the elastic and elasto-plastic dynamic response of laminated 
composite plate and shell structures. In his study, Newmark’s algorithm is used for the direct time 
integration. Ganapathi et al. (2002) presented finite element procedure for transient response of 
laminated cross-ply cylindrical shells subjected to thermal/mechanical loads based on a 
higher-order shear deformation theory. The shell responses are determined employing finite 
element approach in connection with a direct time integration technique. Krishnamurthy et al. 
(2001) studied the impact response and the resulting damage of laminated composite shell objects 
by a metallic impactor via the finite-element approach. The equations are solved by way of the 
Hughes and Liu predictor–corrector adaptation of the Newmark’s procedure. Krishnamurthy et al. 
(2003) used the finite element methods and the classical Fourier series to obtain impact response 
of a laminated composite cylindrical shell. Equations are solved by means of Newmark’s 
algorithm combined with a predictor–corrector scheme. Her and Liang (2004) studied the 
composite laminate and shell structures subjected to low velocity impact by the ANSYS/LSDYNA 
finite element software. Park et al. (2005) presented static and dynamic analysis of composite 
plates and shells. The transverse shear stiffness was defined by an equilibrium approach. To 
determine the element stiffness matrix, the Quasi-Conforming Technique was used. Newmark-b 
method was used for time integration. Saviz and Muhammadpourfad (2010) presented elasticity 
solution of a cross-ply laminated cylindrical shell with piezoelectric layer subjected to dynamic 
local loading. Galerkin’s finite element method is used in radial direction. The static finite element 
matrix equations are used to obtain the implicit Newmark method. Jung and Han (2014) 
investigated the vibration analysis of functionally graded material and laminated composite 
structures, using a refined 8-node shell element that allows for the effects of transverse shear 
deformation and rotary inertia. For the study, the Newmark-b time integration method was adopted. 
Corriera et al. (2000) presented a numerical method for the structural analysis of laminated 
axisymmetric shells based on the high-order theory. Sofiyev (2003) considered torsional buckling 
of cross-ply laminated orthotropic composite cylindrical thin shells under loads, which is a power 
function of time. The modified Donnell type dynamic stability and compatibility equations were 
obtained first. Then applying Galerkin’s method to the equations are reduced to a time dependent 
differential equation. Fares et al. (2003) used a design control optimization approach to determine 
optimal levels of ply thickness, fiber orientation angle and closed loop control force for composite 
laminated doubly curved shells based on a higher-order shell theory. Li and Hua (2009) solved the 
problem of the transient vibration of an elastic laminated composite cylindrical shell with infinite 
length exposed to an underwater shock wave, approximately. The Sanders thin shell theory was 
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used to obtain governing equations of motion of the shell. The application of the RAVS 
approximation to obtain the transient responses of the composite cylindrical shells exposed to 
underwater shocks was demonstrated by using the finite difference method. 

As noted above, numerical solutions of doubly-curved laminated shells are generally achieved 
using Newmark method. The literature for the transient analysis of doubly curved laminated shells 
in the Laplace domain is very limited. Nevertheless, to the best of present authors’ knowledge the 
transient vibration of doubly-curved orthotropic laminated shells using the Navier procedure in 
connection with the Laplace transforms has not been published yet. In this study, the application of 
a simple and an efficient method to the transient vibration analysis of doubly-curved laminated 
shells base on FSDT will be introduced. 

In the present paper, the dynamic analysis of doubly curved laminated shells is examined 
theoretically with the Laplace transform. The governing differential equations of laminated shell 
are derived using the dynamic version of the principle of virtual displacements. The laminated 
shell formulations are based on FSDT. Closed-form expressions of the system of differential 
equations of dynamic equilibrium are obtained with the Navier solution procedure. After 
considering initial condition and applying Laplace transform on the governing equations of motion 
the linear algebraic equations are obtained. Equations in the Laplace domain are solved 
numerically by Gauss elimination method for a sequence of values of Laplace parameter. Use of 
Laplace transform has the advantage that the dynamic system is efficiently reduced to a static one. 
Dynamic forces or displacements of any time variation can be determined without any adversity 
by employing a direct numerical Laplace transform. Then, the solutions obtained in the Laplace 
domain are transformed to the real time with the help of the modified Durbin’s inverse Laplace 
transform method (Durbin 1974, Narayanan 1979, Sahan 2012, Temel 2003, Temel and Şahan 
2013a, b). To verify the numerical results obtained with presented procedure are compared with 
those obtained with semi-analytical method and ANSYS finite element software. In the 
semi-analytical method closed-form expressions of the governing equation of dynamic equilibrium 
were achieved using the Navier approach and the Newmark method was operated for time 
integration. Dynamic results are presented for doubly curved laminated shells with simply  

 
 

 
Fig. 1 Coordinate and Geometry of a doubly-curved shell 
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supported boundary conditions. Also effects of number of laminates, different material properties 
and shell geometries on the transient response of shells are discussed. The results obtained with the 
suggested method are found to be in excellent agreement with those in the literature. 

Obtaining the equation of doubly curved laminated shells first in the time domain by Navier 
approach then applying Laplace transform to the governing equations and finally transforming 
results to the time domain via inverse Laplace method has proved to be a highly accurate and 
effective approach when compared to other numerical techniques in the literature. 
 
 
2. Theory and formulation of laminated shell 

 
Suppose that the shell is composed of N orthotropic layers of uniform thickness. Co-ordinate 

system of doubly curved laminated shell is shown in Fig. 1. Here, an orthogonal curvilinear 
coordinate system is composed from ξ1, ξ2, ζ coordinates. ξ1 and ξ2 curves are lines of curvature on 
the mid-surface of the shell. 

 
2.1 Kinematics of the shell 
 
The displacement field based on FSDT of thick shells is defined as (Reddy 2004) 
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where (u1, u2, u3) are the displacements of a point (ξ1, ξ2, ζ) in the laminated plate, (u0, v0, w0) are 
the displacements of a point (ξ1, ξ2, 0) on the mid-surface of the shell. (1, 2) are the rotations of 
the reference surface, ζ = 0, about the ξ2- and ξ1- coordinate axes, respectively. By substitution of 
the displacement relations given by Eq. (1) into the linear strain displacement equations of the 
theory of elasticity, the following relations are obtained (Reddy 1984). 
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2.2 Constitutive equations 
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Composite shell layers stacked on each other with the principal material 1 axis of the kth layer 
is oriented at an angle  (k) from the shell x1 coordinate in the counterclockwise sense and .)(

3 kx  
The stress-strain relations of the kth orthotropic lamina in the shell coordinate system are given as 
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where ijQ  are the transformed stiffnesses, and 

)(k
ijQ  are the lamina stiffnesses refered to the 

principal material coordinates of the kth laminad 
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where 

)(k
iE  denotes Young’s modulus of the kth lamina in the i-th material direction of elasticity, 

)(k
ijv  Poisson’s ratio for transverse strain of the kth lamina in the j-th direction when stressed in the 

i-th direction and 
)(k

ijG are shear modulus of the kth lamina in the i-j planes. 
Based on the FSDT shell, in-plane force resultants (N11, N22, N12), moment resultants (M11, M22, 

M12) and transverse force resultants (Q1, Q2) are defined as 
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where the parameter Ks is the shear correction factor. Here, Ks is taken as 5/6. ζk and ζk+1 are the 
coordinates of the upper and lower surfaces of the kth layer. 

Substituting Eq. (4) into Eq. (7) and integrating through the thickness of the shell, the force and 
moment resultants are given in a compact form as 
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where [A], [B], [D] and [As] are defined by 
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2.3 Equations of motions 
 
The governing equations of motion of the first-order theory are derived using the dynamic 

version of the principle of virtual displacements (Reddy 2004) 
 

0)(
0


T

dtKVU                            (11) 
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where T is the time limits, K is the virtual kinetic energy of the system, U is the virtual strain 
energy, V is the virtual potential energy due to applied loads. The kinetic energy can be 
calculated by 
 

 dVuuuuuuK
V

 ))(())(())(( 332211                     (12) 

 
where  is the mass density of the material. 

The virtual strain energy of the shell can be written as 
 

dVU
V

ijij                                 (13) 

 
Similarly, the virtual potential energy due to applied external loads is given by 

 

dAwqV
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 0                               (14) 

 
where q is the load applied at the top surface of the shell. 

Using Hamilton’s principle, system of equations of motion of FSDT shell in the Cartesian 
coordinate system (x1, x2, x3 = ζ) (note that N12 = N12 = N6 and M12 = M12 = M6) are obtained as 
(Reddy 2004) 
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where I0, I1 and I2 are mass moment inertia defined as 
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2.4 Navier solution procedure 
 
The simply supported boundary conditions (SS-1) for the first-order shear deformation shell 

theory are 
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The simply supported boundary conditions in Eq. (17) are satisfied by the following expansions 

of generalized displacement field 
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where α = m / a, β = n / b. 
The mechanical loads are also expanded in double Fourier sine series 
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Analytical solution of the Eq. (15) can be obtained to simply supported cross-ply laminated 

shells (Reddy 1984). Towards using Navier type solution, first five partial differential equations 
are obtained in terms of mid-plane surface displacement (u0, v0, w0, 1, 2) by substituting the 
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force and moment resultants from Eqs. (8)-(9) into the system equations of motion (15). 
Substituting the expansions (18) and (19) into the five partially differential equations yields the 
equations 
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where Mij and Kij 
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After simplification Eq. (21) can be written as follows 
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1515551555 }{}{][}{][   mnmnmnmnmn FKM                   (24) 

 
2.5 Laplace transforms of the governing equations 
 
Application of Laplace transform with respect to time onto Eq. (24) yields 

 
}{}{}]{[ 0FFD mnmnmn                           (25) 

 
where, }{ mn  and }{ mnF  are the transformed displacement vector and the transformed external 
force vector, respectively. ][ mnD  is the transformed dynamic stiffness matrix and }{ 0F  is the 
initial condition force vector. ][ mnD  and }{ 0F  are given as 
 

][][][ 2
mnmnmn MzKD                            (26) 

 
)}0(]{[)}0(]{[}{ 0  

mnmn MMzF                      (27) 

 
where z is the Laplace transform parameter. )}0({  is absolute initial displacement vector and 

)}0({  is absolute initial velocity vector. Here, initial conditions are taken to be zero. 
 
 

3. Numerical results and discussion 
 

In this section, numerical analysis of simply supported (SS-1) cross-ply laminated composite 
shells based on FSDT subjected to suddenly-applied uniformly-distributed step load is presented. 
The numerical results are obtained with the suggested model and by using Navier approach 
combined with Newmark method. Verification of the presented procedure is performed by 
comparing with those obtained by finite element method (FEM) in conjunction with direct time 
integration technique. FEM in conjunction with direct time integration method results are 
calculated via ANSYS software. ANSYS software results of the laminated shells are obtained 
using (8 × 8) mesh scheme. The mid-point deflection and the normal stress at the center of shell 
results are obtained and illustrated in figures. In all the examples, the deflection and normal stress 
(ζ = −h / 2) at the mid-point of the laminated shell are showed in graphic forms. The normal 
stresses are calculated at the bottom surface (ζ = −h / 2) of the shells. 

In the example, the following layer properties are used. 
Geometrical properties: a = b = 1 m, h = 0.1 m, R1 = R2 = R = 10 m. (a / b = 1, a / h = 10). 
Material properties: E1 = 25 × 109 N/m2, E2 = 1 × 109 N/m2, G12 = G13 = 0.5 × 109 N/m2, G23 = 

0.2 × 109 N/m2,  = 0.25 and  = 2,000 kg/m3. 
In the first case an anti-symmetric (0°/90°) laminated shell subjected to step load is considered. 

First a distributed load with the amplitude q0 = 1000 N/m2 is applied suddenly on the laminated 
shell. Shell with (0°/90°) layers is first analyzed to confirm the present method. To achieve effect 
of the time increment, several Laplace transform parameters (N) and time increment values (dt) 
have been used. The mid-point deflection (w) and the normal stress (σy) for (0°/90°) laminates are 
presented in Fig. 2-3, respectively. Fig. 2 shows that the time-varying values of mid-point 
deflection achieved by the suggested method for different dt (0.00008, 0.00016, 0.00032, 0.00064) 
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Fig. 2 Vertical displacement versus time for (0°/90°) laminates 

 

 

Fig. 3 Central stress versus time for (0°/90°) laminates 

 

 

Fig. 4 Vertical displacement versus time for (0°/90°) laminates 
 
 

and N (64, 128, 256, 512) are identical. Similarly, numerical results (σy) at the bottom surface of 
the shell that are obtained with various time increments are identical (Fig. 3). 

The mid-point deflection and the normal stress obtained with the aid of Navier solution 
combined with Newmark method are presented in Fig. 4-5, respectively. The vertical 
displacements and the normal stress obtained with the aid of finite element software ANSYS are 
presented in Fig. 6-7, respectively. Figs. 6 and 7 show that the time increments of 0.00008 and 
finer had to be considered for consistent results. An exact match is obtained by using a coarse time 
increment of 0.00064 in the present model as opposed to much finer increment of 0.00008 in the 
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Navier solution in conjunction with Newmark method and FEM in conjunction with the Newmark 
method (Fig. 4-7). Generally, the present method gives more accurate results when compared to 
other two methods aforementioned here. 

 
 

 

Fig. 5 Central stress versus time for (0°/90°) laminates 

 

 

Fig. 6 Vertical displacement versus time for (0°/90°) laminates 

 

 

Fig. 7 Central stress versus time for (0°/90°) laminates 
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Second the triangular and rectangular impulsive loads are considered for (0°/90°) laminated 
shell. A distributed load with the amplitude q0 = 1000 N/m2 is applied on the laminated plate (See 
Fig. 8). In the impulsive load c is 0.02048 sec. The vertical displacement and central stress are 
shown in Figs. 9-10, respectively. It is seen that numerical results of vertical displacement and 
central stress obtained for various loads are convergent. 

Having established reliabilities of the results obtained by the present method, numerical results 
of transient vibration analysis of orthotropic laminated shell are presented in the following figures. 

The mid-point deflections obtained by various aspect ratios (a / h = 5, 10, 15, 20) are presented 
 
 

 

(a) (b) 

Fig. 8 Dynamic load: (a) rectangular impulse load (R); (b) triangular impulsive load (T) 

 

 

Fig. 9 Vertical displacement versus time for (0°/90°) laminates subjected rectangular impulse 
load (R), and triangular impulsive load (T) 

 

 

Fig. 10 Central stress versus time for (0°/90°) laminates subjected rectangular impulse load (R), 
and triangular impulsive load (T) 
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in Fig. 11. It shows that at a fixed value of curvature the change in the aspect ratio (with various h) 
has a remarkable effect in the deflection for the thick cross-ply (0°/90°) laminated shell. It can now 
be observed from Fig. 11 that by increasing the aspect ratio of cross-ply (0°/90°) laminated shells, 
mid-point deflection amplitudes and periods are increased. 

The mid-point virtual deflection for the various E1 / E2 ratio (E1 / E2 = 1, 5, 10, 25, 50, 100) are 
 
 

 

Fig. 11 Effect of aspect ratio for (0°/90°) laminates 

 

 

Fig. 12 Effect of E1 / E2 for (0°/90°) laminates 

 

 

Fig. 13 Effect of geometric form for (0°/90°) laminates 
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illustrated in Fig. 12. It is seen that at a fixed value of aspect ratio and curvature, the change in the 
E1 / E2 ratio (with various E2) has a considerable effect on the deflection of the thick cross-ply 
(0°/90°) laminated shell. It can be clearly seen that by increasing the E1 / E2 ratio of laminated 
shells, mid-point deflection amplitudes and periods are decreased. 

Fig. 13 presents the deflection according to geometric form which changes the curvature to 
length (R/a) ratios. It shows that at a fixed value of thickness, the change in the curvature has a 
remarkable effect in the deflection for the thick cross-ply (0°/90°) laminated shell when the 
curvature to length ratio has a small value. In other words, as the laminated shell becomes 
shallower the effect of changing R/a on changing the shell deflection becomes less important. 

In Figs. 14-15, effect of number of layers on the transient vibration of laminated shell is 
investigated. Various shell structures are examined by choosing different number for (0°/90°)k as k 
= 1, 2, 3, 4, 5 and 8. From Fig. 14 one can perceive that adding a layer and fixing shell thickness 
reduce the amplitudes and periods of deflection in cases with small number of layers. Also, figure 
clearly shows that adding a layer has not a considerable effect in the deflection for the thick 
anti-symmetric cross-ply (0°/90°)k laminated shell when the number of layers is greater than 4 (k = 
2). As it can be seen increasing number of layers decreases amplitude and periods in a shell with 

 
 

Fig. 14 Effect of ply-orientation for (0o/90o) k laminates 
 

Fig. 15 Effect of ply-orientation for (0°/90°)k laminates 
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Fig. 16 Vertical displacement versus time for (0°/90°/0°) laminates 
 

 

Fig. 17 Central stress versus time for (0°/90°/0°) laminates 
 
 
k = 1 and 2; however, it has minimal effect in deflection with k = 3 et seq. 

Fig. 15 presents the normal stress with various number of layers. Similarly, the figure clearly 
shows that it has important effect with k = 1 and 2, but not so with k = 3 et seq. 

In the second case (0°/90°/0°) laminated shell subjected to a step load is considered. The 
mid-point deflection (w) and the central normal stresses (σx) of the shell obtained with presented 
method are shown in Fig. 16-17, respectively. Similarly, numerical results of (0°/90°/0°) laminated 
shell for various time increments are identical. 

 
 

4. Conclusions 
 
By increasing the aspect ratio of cross-ply laminated shells, mid-point deflection amplitudes 

and periods are increase. By increasing the E1 //E2 ratio of laminated shells, mid-point deflection 
amplitudes and periods are decrease. As the E2 ratio of laminated shells, mid-point deflection 
amplitudes and periods are decrease. As the laminated shell becomes shallower the effect of 
changing R/a on changing the shell deflection becomes less important. Adding layers does not 
have a considerable effect on the deflection for the thick anti-symmetric cross-ply (0°/90°)k 
laminated shell when the number of layers is greater than 4 (k = 2). Application of Laplace 
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transform reduces dynamic problem to a static one, which is solved numerically in the Laplace 
domain. In addition, it should be noted that natural frequencies and mode shapes are not needed in 
the solutions. The accuracy of the results of Newmark method depends on the time increment 
selection. Thus, the choice of the optimum time increment cannot be left to chance. In the method 
examined here, however, even a coarse time increment gives highly accurate results. It is clear that 
the suggested procedure is much more efficient than the conventional step-by-step integration 
methods. The numerical results have proved that the present approach is a highly accurate and 
effective solution method when compared to other direct integration methods. 
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Appendix 
 
The analysis of the differential equations governing the behavior of the system are carried out in 

the Laplace domain and the Modified Durbin’s algorithm based on the Fast Fourier Transform 
(FFT) sub-program (Brigham 1974), is used for the inversion of the results back to time domain. 
This algorithm is developed from Durbin’s numerical inverse Laplace transform method 
(Durbin 1974). Durbin’s algorithm formula are given by 
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where, i is the complex number, T is sampling time interval, N is the total number of equidistant 
sampling points (N = 2m: m being integer), zk = a + ik2π/T is kth Laplace transform parameter, tj 

= j∆t = jT/N, (j = 0,1,2,….N-1). In Eq. (1), the second part of the equality between the brackets 
is 
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calculated by using a Fast Fourier Transform sub-program Eq. (A1) can also be modified 

according to the Narayanan’s suggestion (Narayanan 1979). 
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where, each term of discrete values that is calculated in the Laplace domain is modified by 

multiplying them with Lanczos (Lk)  factor. These factors are given by 
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It should be noted that, the selection of the appropriate values of parameters N, a and T are critical 

in order to achieve the desired accuracy in the inverse transform. In the literature it is indicated 
that setting the value of T and choosing the value of a multiplied by T (aT) in between 5 ≤ aT ≤ 
10 yields the value of a necessary for the required precision (Durbin 1974). For the numerical 
examples showed in this study the value of ‘aT’ is taken as ‘6’. 
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