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Abstract.  This research deals with the analytical solution of a curved beam with different shapes made of 

functionally graded materials (FGM’s). It was assumed that modulus of elasticity is graded along the 

thickness direction of curved beam based on a power function. The beam was loaded under pure bending. 

Using the linear theory of elasticity, the general relation for radial distribution of radial and circumferential 

stresses of arbitrary cross section was derived. The effect of nonhomogeneity was considered on the radial 

distribution of circumferential stress. This behavior can be investigated for positive and negative values of 

nonhomogeneity index. The novelty of this study is application of the obtained results for different 

combination of material properties and cross sections. Achieved results indicate that employing different 

nonhomogeneity index and selection of various types of cross sections (rectangular, triangular or circular) 

can control the distribution of radial and circumferential stresses as designer want and propose new solutions 

by these options. Increasing the nonhomogeneity index for positive or negative values of nonhomogeneity 

index and for various cross sections presents different behaviors along the thickness direction. In order to 

validate the present research, the results of this research can be compared with previous result for reachable 

cross sections and non homogeneity index. 
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1. Introduction 
 

One of the most applicable structures in the scope of mechanical engineering and analysis of 

the structures are beams. There are two main theories to analyze the beam under specific loads.  

Euler Bernoulli and Timoshenko theories are two mentioned.  Euler-Bernoulli theory considers 

the bending deformation and does not consider shear deformation. Timoshenko beam theory is the 

other theory that can be applied for wide beams and those classes of the beams that shear 

deformation is important in those analyses. The mentioned theories mostly applied for prismatic 

and straight beam with no curvature. A complete review on the analysis of the beam can be 

performed in this stage. 

Dryden (2007) presented stress analysis of a circular beam subjected to pure bending. A slight 

generalization for the form of the elastic stiffness was used by the author. The obtained 
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approximate results have been compared with exact results. Ying et al. (2008) investigated on the 

bending and free vibration of (FGBs) resting on a Winkler-Pasternak elastic foundation. They used 

two-dimensional theory of elasticity for description of deformations. Exponentially function has 

been used for variation of material properties along the thickness direction. 

Hu et al. (2008) developed a nonlinear mathematical model for large deformation analysis of 

beams with discontinuity conditions and initial displacements. The differential quadrature method 

(DQM) was applied to discretize the nonlinear mathematical model. A new beam theory has been 

developed by Sina et al. (2008) in order to analyze free vibration of FGBs. The beam properties 

are assumed to be varied through the thickness following a simple power law distribution in terms 

of volume fraction of material constituents. Hamilton’s principle has been used for derivation of 

governing equations of motion. The effects of boundary conditions, volume fraction and shear 

deformation on natural frequencies and mode shapes were investigated. Xiang and Yang (2008) 

investigated on the free and forced vibration of laminated FGBs of variable thickness under 

thermal load. The beam was made of a homogeneous substrate and two non-homogeneous FG 

layers. A two dimensional analysis has been used and therefore, both the axial and rotary inertia of 

the beam were considered in that analysis. Vibrations of axially moving flexible beams made of 

FGMs was studied by Piovan and Sampaio (2008). The used model was a thin-walled beam with 

annular cross-section. A finite element scheme was employed to obtain numerical approximations 

to the variational equation of the problem. 

Mohammadi and Dryden (2008) developed thermo elastic analysis of a functionally graded 

beam that graded along the radial direction. They used a fairy general from of functionality for 

variation of stiffness. Li (2008) presented a new approach for analyzing the static and dynamic 

behaviors of FGBs with the rotary inertia and shear deformation included. All material properties 

were arbitrary functions along the beam thickness. A single fourth-order governing partial 

differential equation was derived and all physical quantities were expressed in terms of the 

solution of the resulting equation. As a case study, the Euler–Bernoulli and Rayleigh beam 

theories have been derived by reducing the Timoshenko beam theory. Benatta et al. (2008) used 

high-order flexural theories for short FG symmetric beams under three-point bending. The 

governing equations were obtained using the principle of virtual work (PVW). Kadoli et al. (2008) 

presented static behavior of functionally graded metal-ceramic beams under ambient temperature 

by using a higher order shear deformation theory. Using the principle of stationary potential 

energy, the finite element form of static equilibrium equation for FGM beam was presented. The 

effect of power law exponent for various combination of metal-ceramic FGBs on the deflection 

and stresses were investigated. A rectangular and simply supported FGBs with thick thickness 

under transverse loading has been investigated by Ben-Oumrane et al. (2009). First order and 

higher order shear deformation theory have been used as two methods of derivation. They 

assumed that Young’s modulus vary continuously throughout the thickness direction according to 

the volume fraction of constituents. Pradhan and Murmu (2009) presented thermo-mechanical 

vibration analysis of functionally graded beams (FGB’s) and functionally graded sandwich beams 

(FGSW). Both beams have been considered to be resting on two various foundations. 

Functionalities have been considered along the thickness direction. The effect of different 

parameters such as temperature distribution, power-law index and parameters of foundation has 

been considered on the vibration characteristics of the beam. The out-of-plane free vibration 

analysis of thin and thick FG circular curved beams on two-parameter elastic foundation was 

presented by Malekzadeh et al. (2010). They used first-order shear deformation theory (FSDT) in 

order to account the effects of shear deformation and rotary inertia due to both torsional and 
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flexural vibrations. The material properties were assumed to be graded in the radial direction of the 

beam curvature. Filipich and Piovan (2010) presented a technical theory for dynamic analysis of 

thick curved beams made of functionally graded materials. The concept of material neutral-axis 

shifting was employed in the deduction procedure in order to reduce the algebraic handling and 

complexity of the motion equations. Filipich et al. (2011) developed a general model for transient 

dynamic analysis of FGM thick arch/ring. Timoshenko and other first-order shear deformation 

theories have been employed for analysis of the beam structure. The material properties such as 

Young’s modulus, shear modulus, density were considered arbitrarily along the generally-shaped 

cross-section. 

The free vibration analysis of FG curved beams was presented by Yousefi and Rastgoo (2011). 

Natural frequencies have been derived using first-order shear deformation theory (FSDT) and Ritz 

method. Wang and Liu (2013) presented elasticity solution for curved beams with n orthotropic 

FG layers by means of the Airy stress function method. The beams subjected to a uniform load on 

the outer surface. 

Yaghoobi and Torabi (2013) presented non-linear vibration and post-buckling analysis of 

beams made of FGMs rest on a non-linear elastic foundation subjected to an axial force. Based on 

Euler-Bernoulli beam theory and von-Karman geometric non-linearity, the partial differential 

equation of motion is derived. Arefi and Rahimi (2013) presented nonlinear analysis of a FG beam. 

The beam has been subjected to uniform loading. Functionality has been considered along the 

longitudinal direction. Shyma and Rajendran (2014) developed a mathematical model for 

evaluation of deflection of beam made of FGM. They used the principle of minimum potential 

energy. Functionality has been considered along the thickness direction. Lee et al. (2014) 

presented vibration analysis of a horizontally curved beam. The cross section of each beam was 

considered a solid regular polygon whose depth is varied in a functional fashion. Three shapes of 

beam were considered. Arefi (2014) developed nonlinear analysis of a FG beam resting on a 

nonlinear foundation. 

A comprehensive investigation on the literature indicates that most recent studies focused on 

different analysis of straight FGBs. The effect of curvature of the beam and various cross sections 

has been ignored in those analyses. The present paper considers the effect of both curvature and 

various cross sections on the stress analysis of a FGB under applied loads. This study tries to 

propose the various distributions of stress in the beam in terms of variation of non homogeneous 

index and employing the different cross sections. 

 

 

2. Formulation 
 

This section presents the fundamental equations based on the linear theory of elasticity for a 

curved beam made of FGM. The polar coordinate is used for derivation of equations. As 

mentioned previously, the beam is loaded under pure bending. Under this loading, the distribution 

of circumferential and radial stress must be derived. Due to symmetry, it is assumed that all 

components such as radial and circumferential stress are only radially distributed. 

Fig. 1 shows a curved beam under bending loadings. By considering an element in the radial 

coordinate system and applying the equilibrium equations for that, we have resultant of force and 

moment as follows 
 

  dArRMdAN   )(,                        (1) 
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where, R is the curvature radius of mid-plane of beam and r is the radial location of element dA. In 

order to evaluate two integrals in Eq. (1), the functional relation between circumferential stress and 

radial component must be derived using linear theory of elasticity. 

For evaluation of the stress distribution, deformation of assumed element before and after 

loading must be considered. Shown in Fig. 1 is original and deformed shapes of mentioned 

element. The deformed configuration indicates that the center of rotation has been changed. Due to 

curvature of beam, the beam after deformation rotates through a new line that locates with Rn. 

Using this figure and notation, we can determine the increasing or decreasing the length of a line 

located at location r. If rotation of line is defined with Δ(dθ), the value of increasing length of 

element (deθθ) at location r is 

)()(  drRde n                            (2) 
 

where, dθ is initial angle of used element. As depicted in Fig. 1, the value of strain is equal to ratio 

of circumferential change of an element with respect to initial length of that element as follows 
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Fig. 1 The schematic figure of a curved beam consists of necessary dimensions and notations 
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Elastic solution of a curved beam made of functionally graded materials 

distribution is not linear. This nonlinear distribution indicates the fundamental difference between 

analysis of straight and curved beam where the strain distribution for straight beam was linear. 

Using this definition and using Hooke’s law for circumferential stress and strain, we have 

circumferential component of stress as follows 
 




  E
r

RE
E n                          (4) 

 

where, E is modulus of elasticity. The effect of radial stress has been neglected on the 

circumferential stress. For a material that graded along the radial direction, this property is variable 

in terms of radial component. Substitution of circumferential stress from Eq. (4) into Eq. (1) gives 
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where, N, M are resultant of force and moments. For a beam under pure bending, we have N = 0. 

This assumption gives the location of neutral axis as follows 
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Substituting Rn from above equation (Eq. (6)) into second equations of Eq. (5) presents the 

required moment for bending in terms of property and geometry of the structure. 
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Concurrently considering Eqs. (4), (7) and elimination of ω between them yield circumferential 

stress as follows 
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Eq. (8) is the radial distribution of circumferential stress of a curved beam subjected to pure 

bending. Before derivation of this distribution, the location of center of rotation of plane Rn must 

be determined from Eq. (6). 
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The radial distribution of radial stress can be obtained by considering equilibrium of used 

element in Fig. 1. For an element from r = a till r, we can write the equilibrium equation along the 

radial direction. If Γ be summation of circumferential stress form inner surface (r = a) till location 

r, the equilibrium equation along the radial direction gives 
 

tr
trd

d
F rrrrr
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


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where, Γ is summation of circumferential stress from inner surface (r = a) till location r presented 

as follows 
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where, t in Eq. (9) is depth of section at location r. 

In order to evaluate the responses of the system, we have to define functionality of the used 

material. 
n
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where, E is distribution of modulus of elasticity, E0 is modulus of elasticity at inner surface (r = a) 

and n is nonhomogeneity index. 

 

 

3. Results and discussion 
 

This section presents the important results of this research. The obtained results consist of 

distribution of radial and circumferential stresses along the thickness direction for different values 

of nonhomogeneity indexes. Furthermore, the obtained results can be presented for various cross 

sections such as rectangular, triangle and circular. 
 

3.1 Circumferential stress 
 

3.1.1 Rectangular section 

The radial distribution of circumferential stress can be presented for various values of non 

homogeneous index and cross sections. Due to different responses of the system for negative and 

positive nonhomogeneity index, the obtained results are presented separately for positive and 

negative values of nonhomogeneity index. Shown in Fig. 2 is the radial distribution of 

circumferential stress along the thickness direction of a FGB with rectangular cross section for 

positive values of nonhomogeneity index. The same parameter can be presented in Fig.3 for 

negative values of nonhomogeneity index. 

It observed that the value of circumferential stress at inner radius is positive and with 

increasing the radial coordinate, decreases continuously. This monotonically decreasing is reserve 

for different values of nonhomogeneity index lower than n = 5. For nonhomogeneity index greater 

than mentioned n ≥ 5, the location of maximum positive values of circumferential stress moves to 

medium of thickness. Furthermore, it can be concluded for large values of nonhomogeneity index, 
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Fig. 2 The radial distribution of circumferential stress along the thickness direction of a rectangular FG 

beam for positive values of nonhomogeneity index 
 

 

 

Fig. 3 The radial distribution of circumferential stress along the thickness direction of a rectangular FG 

beam for negative values of nonhomogeneity index 
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the maximum negative values of circumferential stress increases considerably at outer surface of 

the curved beam. The reason for these high values of circumferential stress is increasing the 

modulus of elasticity due to increasing the non homogeneity index. 

The same trend can be observed in Fig. 3 for negative values of nonhomogeneity index except 

the location of maximum positive and negative values of circumferential stress. As depicted in 

Fig.3, the maximum value of circumferential stress is located at inner surface of the curved beam. 

This is due to high value of modulus of elasticity at inner surface. 

Figs. 2 and 3 show that for |n| ≤ 5 and both positive and negative values of nonhomogeneity 

index, there are two radii which the value of circumferential stress is identical for all values of 

nonhomogeneity index. 

 
3.1.2 Triangle section 

Shown in Fig. 4 is the radial distribution of circumferential stress along the thickness direction 

of a FG beam with triangular cross section for positive values of nonhomogeneities. The obtained 

results indicate that the maximum value of stress is located at inner surface of the curved beam. 

This maximum value increases with increasing the nonhomogeneity index. Increasing the positive 

values of nonhomogeneous index tends to increasing stiffness and consequently increasing the 

stress at inner surface. 

The same results can be presented for negative values of nonhomogeneities of a FG triangular 

curved beam in Fig. 5. It is observed that for large values of nonhomogeneity index, the maximum 

negative value of circumferential stress is located at outer surface of the cylinder. 

 
 

 

Fig. 4 The radial distribution of circumferential stress along the thickness direction of a triangular FG 

beam for positive values of nonhomogeneity index 
 

666



 

 

 

 

 

 

Elastic solution of a curved beam made of functionally graded materials 

 

Fig. 5 The radial distribution of circumferential stress along the thickness direction of a triangular FG 

beam for negative values of nonhomogeneity index 

 

 

Two identical values of circumferential stress for both positive and negative values of 

nonhomogeneity index can be observed in Figs. 4 and 5 as presented in Figs. 2 and 3. 

 

3.1.3 Circular section 

The radial distribution of circumferential stress can be investigated for a curved beam with 

circular section in terms of different positive and negative values of nonhomogeneity index. 

Shown in Fig. 6 is the radial distribution of circumferential stress along the thickness direction of a 

circular FG beam for positive values of nonhomogeneity index. The same observed trend in Fig. 2 

can be observed in this figure. The obtained results indicate that with increasing the 

nonhomogeneity index, the maximum circumferential stress at inner surface decreases 

monotonically. Conversely, the maximum negative value of circumferential stress at outer surface 

increases considerably with increasing the nonhomogeneity index. 

Fig. 7 shows the radial distribution of circumferential stress along the thickness direction of a 

circular FG beam for negative values of nonhomogeneity index. Increasing the maximum values 

of circumferential stress at inner surface with increasing the nonhomogeneity index is as results of 

this figure. 

 

3.1.3.1 Comparison between present and previous results 
The results of this research can be compared with related reference. For this goal, radial 

distribution of circumferential stress is selected. The comparison between present and previous 

results can be shown in Fig. 8. Dimensionless parameters have been considered compatible with 
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Fig. 6 The radial distribution of circumferential stress along the thickness direction of a circular FG 

beam for positive values of nonhomogeneity index 

 

 

Fig. 7 The radial distribution of circumferential stress along the thickness direction of a circular FG 

beam for negative values of nonhomogeneity index 
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Elastic solution of a curved beam made of functionally graded materials 

 

Fig. 8 Comparison between present and previous distribution of circumferential stress along the 

thickness direction of a circular FG beam 

 

 

Fig. 9 The radial distribution of radial stress along the thickness direction of a rectangular FG beam for 

positive values of nonhomogeneity index 
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Fig. 10 The radial distribution of radial stress along the thickness direction of a rectangular FG beam 

for negative values of nonhomogeneity index 

 

 

literature (Dryden 2007). These dimensionless parameters are  
M

a2

  and .
a

r
  

Using derived equation for radial distribution of radial stress (Eq. (10)), this distribution can be 

presented. Figs. 9 and 10 show the radial distribution of radial stress for a FG curved beam with 

rectangular cross section in terms of positive and negative nonhomogeneity index. 

Investigation on the Fig. 9 indicates that with increasing the positive nonhomogeneity index, 

the location of maximum radial stress moves to outer surface. For better understanding this 

moving, the results of radial stress have been presented for two large values of nonhomogeneity 

index (n = 10, 20). These results show that for very large values of nonhomogeneity index, the 

maximum radial stress is located near the outer surface. The location of maximum radial stress is 

depending on the values non homogeneous index. Large positive values of non homogeneous 

index guide this location to outer surface while large negative values guide to inner surface. 

Conversely, investigation on the Fig. 10 indicates that with increasing the negative 

nonhomogeneity index, the location of maximum radial stress moves to inner surface. 

 

 

4. Conclusions 

 

Elastic solution of a curved beam made of functionally graded material was developed in this 

paper. Functionality has been considered along the radial direction based on a power function. 
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Stress distribution along the radial direction was evaluated analytically in integral form in terms of 

distribution of stiffness of material. The results were evaluated for various types of cross sections 

and different values of non-homogeneity index. The obtained numerical results indicate that the 

distribution of stress can be controlled by selection of the various nonhomogeneity indexes. Some 

important conclusions can be stated as follows: 
 

(1) Investigation on the radial distribution of circumferential stress for various types of section 

indicates that two identical values of circumferential stress for both positive and negative 

values of nonhomogeneity index can be observed. 

(2) Investigation on the varying the nonhomogeneous index indicates that the maximum value 

of stress is located at inner surface of the curved beam. This maximum value increases 

with increasing the nonhomogeneity index. 

(3) Investigation on the radial stress indicates that with increasing the values of 

nonhomogeneity index from negative to positive values, the location of maximum radial 

stress moves from inner surface to outer surface. 
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