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Abstract.  In this study, theoretical models and design procedures of the behavior of thin-walled simply 
supported steel beams with an open cross section under a large torsional effect are presented. I-sections were 
chosen as the cross section types. Firstly, the widely used differential equations for the lateral buckling for 
the pure bending moment effect in a beam element were adopted for the various moment distributions along 
the span of the beam. This solution was obtained for both mono-symmetric and bisymmetric sections. The 
buckling loads were then obtained by using the energy method. When using the energy method to solve the 
problem, it is possible to locate the load not only on the shear center but also at several points of the section 
depth. Buckling loads were obtained for six different load types. Results obtained for different load and 
cross section types were checked with ABAQUS software and compared with several standard rules. 
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1. Introduction 

 
Steel beams are usually bent in the plane of greater rigidity, so the flexural rigidity on the major 

principal axis of the beam is many times larger than that on the minor axis. One of the failure 
modes in a compact steel beam subjected to a bending moment with respect to its major principal 
axis is lateral torsional buckling in which the beam is bent in the bending plane, buckled in a plane 
perpendicular to the bending plane and twisted. The lateral torsional buckling will gain in 
importance when the beam is not laterally constrained. The geometric properties of the section, 
load types and the point at which the load is applied are the basic parameters affecting the critical 
lateral buckling load. 

Differential equations which are obtained for the critical lateral buckling load of a beam 
subjected to pure bending about its major principal axis can be solved analytically by considering 
the end conditions of the beam. But if the moment varies along the beam, then the analytical 
solution is more complex. In addition, it must be assumed that the loads which produce moments 
are applied through the shear center of the beam, otherwise second-order torsion effects can be 
formed on the beam but their effects cannot be considered theoretically. Steel beams can be loaded 
on various locations of the beam cross section depth like the center of gravity, top or bottom flange. 
The applicability of the method is restricted, because the effects of these different loading cases 
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cannot be considered. 
Another method is to use energy equations. In this method, related equations can be obtained 

by considering second-order effects. But an assumption must be also made about the displacement 
function that satisfies the end conditions. Related results are acceptable if the displacement 
function is in accordance with the real displacement values. The displacement function is generally 
chosen to be symmetrical about the beam center. The compatibility of the function must be 
checked for non-symmetric loading cases. 

In the present study, firstly, the differential equations for a mono- and bisymmetric I-section 
simply supported steel beam subjected to pure bending are solved. The solution is then extended to 
six different load types along the beam span. While these extensions were made, it is accepted that 
the beam is divided into finite segments and the bending moment for each segment is assumed to 
be constant. For a simply supported beam and a certain external load value a set of homogenous 
linear equations will be obtained. The critical buckling load case can be obtained for the external 
load value at which the determinant of the coefficient matrix of these linear homogenous equations 
vanishes. 

Analyses are also made by using the energy method for the same load types. Numerical 
solutions of certain integral expressions which occur in calculating for the work done by the 
external load during lateral buckling were determined by Simpson integration rule (Atkinson 
1989). A closed form solution of these integral expressions is very difficult for each load type. 
Therefore, a numerical solution should be more advantageous. 

Comparisons were made for the results obtained from ABAQUS (2008) software and analytical 
calculations for various load and cross section types. 

The first known studies on the topic of lateral buckling of beams were the Ph.D. thesis by 
Prandtl and the study by Michell (Torkamani and Roberts 2009), in which they considered only 
the buckling of beams with narrow rectangular cross sections. Both of these studies were 
published in 1899. Their work was further enhanced by that of Timoshenko and Gere (1961), 
Bleich (1952) and Trahair (1977). This research was then extended to include wide flange sections, 
and it was published in textbooks. Specifications for considering lateral buckling in design was 
first released in 1976 (CRC 1976). Buckling problems can also be solved by applying techniques 
in the standard calculus of variations. In these techniques, Vlassov’s (Vlassov 1961) classical 
hypothesis of the thin-walled beam theory was used (Trahair 1993). Nethercot (1983) and Trahair 
and Bradford (1998) investigated the solution of the differential equation of a beam for certain 
support conditions by accepting a half-sine wave as the displacement function. The finite integral 
method was developed by Brown and Trahair (1968) for the solution of the differential equation 
and was applied successfully to a number of buckling problems. Elastic and inelastic buckling 
problems solved by applying the finite integral method have been the subject of many articles in 
the literature. In the studies of I-beams conducted by Kitipornchai and Richter (1978), 
Kitipornchai and Trahair (1975) and Kitipornchai et al. (1984, 1986), various load types, support 
conditions and stress cases were examined. 

If we prefer energy methods for achieving stability analyses, the Rayleigh-Ritz (Timoshenko 
and Gere 1961) and Galerkin methods (Mohri et al. 2003) are two successful methods for 
computing analytical solutions for buckling loads. Studies by Torkamani and Roberts (2009), 
Mohri et al. (2003, 2008a, b, 2010), Andrade et al. (2007), Larue et al. (2007) and Lim et al. (2003) 
are important studies concerning the energy methods. In these studies the obtained results by the 
energy method are also compared with results from the use of the finite element method, the finite 
difference method and code specifications. 
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By using computer technology, successful analytical analyses can be made for solving buckling 
problems. Some research was carried out by using the finite element, the finite difference or the 
finite strip method by Park et al. (2004), Suryoatmono and Ho (2002), Aktas (2005), Serna et al. 
(2006), Zirakian (2008, 2010), Taras and Greiner (2008) and Bui (2009). Some software 
applicable to the finite element method was used by Lim et al. (2002) and Aydin and Dogan (2007) 
especially for solving buckling problems. ABAQUS (2008) software, developed for computing 
general structural analysis problems, also can be used for solving buckling problems. Design rules 
are given in the codes, e.g., EC3 (2005a), AISC Specification (2005a) and BS5950-1 (2000). 
Similar rules are also given in the SSRC guide (Galambos 1998). 
 
 
2. Lateral buckling of simply supported beams subjected to pure bending about the 

major principal axis 
 
Here, the mono-symmetric or bisymmetric I-section simply supported beam which is subjected 

to pure bending or various load types is considered. 
 
2.1 Mono-symmetric I-section simply supported beam under pure bending 
 
Fig. 1 shows the lateral buckling of a mono-symmetric I-section simply supported beam 

subjected to pure bending. Positive directions are assumed for the axes, bending moment, Mx, 
displacements and twist angle as shown in Fig. 1. Lateral buckling equations for the beam are 
given below (Timoshenko and Gere 1961) 
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Fig. 1 (a) Lateral buckling of mono-symmetric I-beam subjected to pure bending; (b) cross 
section; (c) deformed shape 
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where 
 EIy  =  bending rigidity about the y-axis 
 GJ  =  torsional rigidity 
 ECw  =  warping rigidity 
 ϕ  =  twist angle 

c

Ax
x ydAyxy

I
2)(

1 22                            (3) 

where 
 βx  =  the Wagner coefficient 

 yc  =  the coordinate of the shear center, according to the coordinate system passing 
through the center of gravity, C (see Fig. 1(b)) 

 
By differentiating Eq. (2) twice with respect to z and substituting into Eq. (1) we obtain 
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In this paper, the following function is assumed for the solution of Eq. (4) 

 
DzADzA sincos 21                             (5) 

 
By substituting Eq. (5) into Eq. (4) we obtain 
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2.2 Bisymmetric I-section simply supported beam under pure bending 
 
Equation systems for bisymmetrical cross sections are simpler than Eq. (4). For this case the 

related equation is 
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If we assume the same function for the twist angle, ϕ, which is defined in Eq. (5), we obtain 
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Eqs. (6b) and (8) are the similar type equations. D2 values which satisfy both equations are 
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given below 

  22D                              (9) 
 

where, for the mono-symmetric case 
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for the bisymmetric case 
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As can be seen from these equations, the solutions are similar for the mono-symmetric and 
bisymmetric cases. In the mono-symmetric case torsional rigidity decreases by Mxβx when 
compared with the torsional rigidity of the bisymmetric case [see Eqs. (10a) and (10b)]. But the δ 
values are the same for both cases. 

If the shear center is in compression, the Wagner coefficient given in Eq. (3) has a negative 
value with respect to the coordinate system (see Fig. 1(b)). In other words, the torsional rigidity 
increases in this case. 

 
 

3. Mono-symmetric or bisymmetric I-section simply supported beam, various 
moment distributions along beam span 

 
A simply supported beam loaded parallel to the vertical axis, y, allows us to use Eqs. (4) and 

(7). It is assumed that the beam is divided into finite segments and the bending moment for each 
segment is assumed to be constant. In this case, with respect to Eq. (5), the constant of integration 
is twice the value of the segment number. If we consider the related boundary conditions at the 
nodes of the segments for twist angles which are equal and continuous but zero at the ends of the 
beam, we can obtain a set of linear equations. The elements of these equations include the bending 
moments which are assumed to be constant for each segment. The certain value of an external load 
case that produces the constant assumed flexural moments on each segment which makes the 
determinant of the coefficient matrix of the linear homogenous equations equal to zero is referred 
to as the critical lateral torsional buckling load. Using software developed specifically for this 
study, we obtained solutions for the six different load types shown in Fig. 2. In this study there are 
6 load types presented for a simply supported beam which is not restrained along its length 
laterally except load type 6. Load type 6 represents uniformly distributed load on a beam 
restrained laterally at intermediate (1/3)L points. 

 
 

4. Solution using energy method 
 
Using the strain energy method to solve stability problems is more effective than using the 
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Fig. 2 Load types 
 
 
differential equation solution method. When the beam buckles laterally, the strain energy increases. 
To calculate the increase in the strain energy due to torsion and warping, we can use the following 
expression 
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In Eq. (11), the integrals represent strain energy terms produced by the torsion and warping 

effects, respectively. In the bisymmetric case it is clear that Mxβx = 0. 
The component in the η-axis of the bending moment, Mx of a simply supported beam is defined 

as Mη. 
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Mη will be taken as the external effect that causes lateral buckling 
 

 xMM                                  (12) 
 
and the corresponding work produced by Mη is 
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If the external loads are applied at an out-of-shear center like on the top flange, lowering the 
application point of the loads causes second-degree effects. So, it is apparent that the critical value 
of the load is decreased when the point of application is lowered but it is increased when it is 
raised. The impact of this effect on the critical buckling load can be obtained by using the energy 
method. It is only necessary to consider the additional lowering or rising of the loads during lateral 
buckling due to the rotation of the cross section. If HA is the vertical distance of the point of 
application of the load from the shear center of the cross section, the lowering of the load is (see 
Fig. 3) 
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HA is assumed to be positive when it is above the shear center. Due to Δ, external loads produce 

additional work 
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where qy indicates the uniformly distributed load acting along the z-axis. If the forces are 
concentrated, then we use 
 
 

Fig. 3 Lowering of a point of cross section at distance, HA from shear center during twisting 
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where N indicates the number of forces, and ϕ is the twist angle at the point where the load, P is 
applied. The corresponding work produced by Mη and lowering of the application loads of the 
external forces can be found from the sum of Eqs. 13 and 15(a) and/or 15(b) 
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The system is stable in its non-deflected form if ΔU > ΔW, and unstable if ΔU < ΔW. Thus the 
critical value of the load is found from the following condition 
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To solve Eq. (18b), a function will be chsen which satisfies the end conditions of the beam. 

Assuming that the ends of the beam cannot rotate about the z-axis but are free to warp, we find that 
the conditions at the ends of the beam are 
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The moment value on the top flange is equal to zero at the ends of the beam. Thus, the warping 
will be equal to zero at these points. This is the reason for the second condition in Eq. (19). 

The twist angle, ϕ, could be taken in the form of a trigonometric function for load types 1-5 as 
follows 
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z
L

A
 3

sin                              (20b) 

 
Explanations about calculation the integrals of Eq. (18b) will be given for load type 1 and 

applications for the other load types will be shown later in this paper. 
For a concentrated load, P, acting at the middle span (load type 1) 
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The second and third terms of Eq. (18b) are solved numerically by the Simpson method. This is 
done by dividing the beam into N = 24 equal segments: (number of equal segments must be even). 
Numerical value of an integral is obtained on the following form with respect to the Simpson 
method. 
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Here y’s are the numerical values at the segment end points 
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Other integral expressions in Eq. (18b) may be obtained in closed form and they are shown 

below 
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Substituting Eqs. (21a)-(21g) into Eq. (18b) by eliminating A2 terms, we obtain 
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When Eq. (22) is solved for P 
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where 
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  and (for load type 1 k = 1) 

Note: For load type 6, 3π must be substituted into Eq. (23) in lieu of π (see Eq. 20(b)). 
Eq. (23) can also be applied to other load types. The buckling loads must be in units of force. 

For example, it is qL for type 2 or M / L for type 4. 
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Table 1 Coefficients for different loading types [See Eq. (23)] 

*Notes: 
(1) It is assumed that in load type 4, flexural moments are applied on the gravity center of the cross 

section. 
(2) HA is assumed to be positive when it is above the shear center in Eq. (23). 
 
 

The kHA values can be calculated from the integrals of Eqs. (15a) or (15b) and other load types 
should be converted to load type 1. For example, for load type 2: [comparison with the Eq. (21a)] 
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According to Eq. (24), k must be taken as 0.5 when using Eq. (23) for load type 2. 
Table 1 lists the values calculated for the k coefficients for the other load types. 
 
 

5. The ABAQUS model 
 
For finite element modelling, the commercial multipurpose software package ABAQUS (2008) 

was employed in this research. An eight-node, doubly curved shell element with reduced 
integration S8R5 was used to model the flanges and webs. S8R5 is a quadrilateral shell element 
with five degrees of freedom per node (three displacement components and two in-surface rotation 
components). The computational time and accuracy largely depend on the number of elements and 
integration points. Mesh studies have indicated that it would be adequate to use eight elements 
through the depth of the web and four elements across the width of the flange for the I-section. The 
element sizes along the longitudinal direction are 200 mm. The default integration method is based 
on Simpson’s rule, with five integration points through the thickness of the element. All the end 
nodes on the web are restrained against displacements in principal axes x and y and rotation around 
the longitudinal axis z. The loads were applied according the desired loading locations on the top 
flange-web junction, gravity center or bottom flange–web junction of the I-sections. Eigenvalue 

Load type Obtained load D1 D2 k 

1  P 16.749 × 10-3 0.18345 1 

2  qL 6.0915 × 10-3 0.14312 0.50 

3  P 46.2902 × 10-3 0.36080 1.5 

4 (GR = 1) MR / L 0.5 2.46901 - 

4 (GR = 0.5) MR / L 0.28534 1.85055 - 

4 (GR = 0) MR / L 0.14134 1.23370 - 

4 (GR = ‒0.5) MR / L 0.06801 0.61685 - 

4 (GR = ‒1) MR / L 0.06535 0 - 

5 (α = 0.20) P 5.315 × 10-3 0.15422 0.3455 

5 (α = 0.33) P 12.194 × 10-3 0.18040 0.75 

5 (α = 0.40) P 14.991 × 10-3 0.18304 0.9045 

6  qL 4.019 × 10-3 1.78848 0.50 
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Table 2 Critical lateral buckling moments for section A (kN-m) 

Load type 2 Load type 5 (α = 0.2) 

Span 
(mm) 

Load on 
top flange 

Load on 
gravity 
center 

Load on 
bottom 
flange 

Span 
(mm) 

Load on
top flange

Load on 
gravity 
center 

Load on 
bottom 
flange 

5,000 

PS 221.65 315.18 448.18 

5,000

PS 332.08 431.88 561.72 

ABQ 219.96 311.03 441.08 ABQ 300.90 409.38 536.37 

PS/ABQ 1.01 1.01 1.02 PS/ABQ 1.10 1.05 1.05 

6,000 

PS 172.59 238.62 329.90 

6,000

PS 256.83 326.98 416.28 

ABQ 173.91 240.81 333.86 ABQ 237.73 319.32 411.59 

PS/ABQ 0.99 0.99 0.99 PS/ABQ 1.08 1.02 1.01 

7,000 

PS 141.80 191.04 257.38 

7,000

PS 209.68 261.78 326.83 

ABQ 144.48 195.79 265.45 ABQ 196.66 260.48 330.62 

PS/ABQ 0.98 0.98 0.97 PS/ABQ 1.07 1.00 0.99 

9,000 

PS 105.64 136.19 175.56 

9,000

PS 154.51 186.61 225.38 

ABQ 109.52 142.65 185.79 ABQ 147.51 190.08 234.84 

PS/ABQ 0.96 0.95 0.94 PS/ABQ 1.05 0.98 0.96 

10,000 

PS 94.13 119.12 150.76 

10,000

PS 137.04 163.23 194.44 

ABQ 98.32 125.88 161.12 ABQ 131.77 167.68 204.75 

PS/ABQ 0.96 0.95 0.94 PS/ABQ 1.04 0.97 0.95 

11,000 

PS 85.07 105.92 131.87 

11,000

PS 123.34 145.14 170.78 

ABQ 89.49 112.82 142.17 ABQ 119.41 150.18 181.47 

PS/ABQ 0.95 0.94 0.93 PS/ABQ 1.03 0.97 0.94 

12,000 

PS 77.75 95.40 117.07 12,000 PS 112.31 130.73 152.17 

ABQ 82.34 102.37 127.20 
 

ABQ 109.44 136.16 162.99 

PS/ABQ 0.94 0.93 0.92 PS/ABQ 1.03 0.96 0.93 

PS: Present Study, ABQ: ABAQUS software 
 
 
analyses were conducted to determine buckling loads. This is a linear elastic analysis performed 
using the (*BUCKLE) procedure available in ABAQUS (2008). 

 
 

6. Numerical examples 
 
Numerical examples were solved for two I-section simply supported beams which have a depth 

h = 400 mm. Other dimensions are given below. 
 

For section A: 
 

h = 400 mm, b = b1 = 180 mm, tw = 8.6 mm, and tf = 13.5 mm. 
Mechanical material properties of the section are: Iy = 13.142 × 106 mm4, 
Ix = 218.765 × 106 mm4, E = 210 GPa, Poissons’s ratio ν = 0.30 
J = 377190 mm4 and Cw = 490.049 × 109 mm6. 
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For section B: 
 

b1 = b/2 = 90 mm and other dimensions are the same as for section A.  
Mechanical properties of this section are: Iy = 7.401 × 106 mm4, Ix = 165.327 × 106 mm4, 
J = 303379 mm4, Cw = 108.90 × 109 mm6 and βx = −278.3 mm. 
 
The moment values of the above-mentioned sections having spans in the range L = 

5,000-12,000 mm are calculated for uniformly distributed load, i.e., load type 2 and concentrated 
load type i.e., load type 5 and α = 0.2 for the gravity center, top flange and bottom flange loading 
cases. The results are summarized in Tables 2 and 3. The mean ratios, PS/ABQ, for cross sections 
A and B in Tables 2 and 3 are the same for load type 2 where both cross section types are equal to 
0.96 and their standard deviations are equal to 0.03. The mean ratios and standard deviation values 
for load type 5 and α = 0.2 are 1.0 and 0.04, for cross section type A and 1.01 and 0.03, 
respectively, for cross section type B. 
 
 
Table 3 Critical lateral buckling moments for section B (kN-m) 

Load type 2 Load type 5 (α = 0.2) 

Span 
(mm) 

Load 
on top 
flange 

Load on  
gravity 
center 

Load on
bottom 
flange 

Span 
(mm) 

Load 
on top 
flange 

Load on 
gravity 
center 

Load on 
bottom 
flange 

5,000 

PS 201.11 272.47 392.31 

5,000

PS 295.91 369.66 488.52 

ABQ 198.19 269.19 392.01 ABQ 269.66 354.78 464.93 

PS/ABQ 1.01 1.01 1.00 PS/ABQ 1.10 1.04 1.05 

6,000 

PS 156.21 204.28 284.78 

6,000

PS 227.82 277.44 357.21 

ABQ 156.24 205.92 292.30 ABQ 212.59 274.04 352.33 

PS/ABQ 1.00 0.99 0.97 PS/ABQ 1.07 1.01 1.01 

7,000 

PS 127.40 161.83 219.17 

7,000

PS 184.49 219.98 276.78 

ABQ 128.93 165.64 229.32 ABQ 174.93 221.38 280.16 

PS/ABQ 0.99 0.98 0.96 PS/ABQ 1.05 0.99 0.99 

9,000 

PS 92.91 112.91 145.79 

9,000

PS 133.13 153.70 186.28 

ABQ 96.03 118.45 157.17 ABQ 129.36 158.63 195.90 

PS/ABQ 0.97 0.95 0.93 PS/ABQ 1.03 0.97 0.95 

10,000 

PS 81.82 97.76 123.79 

10,000

PS 116.77 133.15 158.96 

ABQ 85.39 103.67 135.01 ABQ 114.64 138.79 169.57 

PS/ABQ 0.96 0.94 0.92 PS/ABQ 1.02 0.96 0.94 

11,000 

PS 73.10 86.09 107.16 

11,000

PS 103.97 117.31 138.22 

ABQ 77.00 92.22 118.12 ABQ 103.08 123.38 149.29 

PS/ABQ 0.95 0.93 0.91 PS/ABQ 1.01 0.95 0.93 

12,000 

PS 66.06 76.84 94.23 

12,000

PS 93.69 104.75 122.01 

ABQ 70.23 83.12 104.89 ABQ 93.77 111.10 133.25 

PS/ABQ 0.94 0.92 0.90 PS/ABQ 1.00 0.94 0.92 

PS: Present Study, ABQ: ABAQUS software 
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Table 4 Critical lateral buckling moments (kN-m) for section A and section B with a constant span of L = 
7,000 mm Load on gravity center 

Section A Section B 

Load type 
Differential 

equation solution 
Energy method 

solution 
Load type 

Differential 
equation solution 

Energy method 
solution 

1  230.43 234.98 1  191.84 207.37 

2  191.04 192.45 2  161.83 169.57 

3  184.81 186.68 3  155.81 164.55 

4 (GR = 0) 317.28 315.48 4 (GR = 0) 272.41 279.17 

5 (α = 0.2) 261.78 263.93 5 (α = 0.2) 219.98 231.85 

 
 

At the second phase, L = 7,000 mm is taken as a constant value and critical buckling moments 
are calculated using both the differential equation solution and energy methods. The results are 
summarized in Table 4. From the numerical values given in Table 4 it can be seen that the values 
of the energy method solution are larger than the values of the differential equation solution except 
in one instance. But the difference is approximately 1% and 5% on cross section types A and B, 
respectively. 

 
 

7. Comparison of the presented procedural results with some code specifications 
 
The procedural results obtained from the energy equation solution can be interpreted by 

comparison with the existing EC3 (2005a) and AISC Specification (2005a) design rules. 
 
7.1 EC3 specifications 
 
The elastic critical moment for lateral torsional buckling of a beam of uniform symmetrical 

cross section with equal flanges loaded through the shear center and subject to pure bending is 
given by Eq. (25) 


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The standard conditions of restraint at each end of the beam are: (1) restraint against lateral 

movement; (2) restraint against rotation about the longitudinal axis; and (3) free to rotate on plan. 
For uniform, doubly symmetric cross sections, loaded through the shear center at the level of the 
centroidal axis, and with the standard conditions of restraint described above, Mcr can be 
calculated through Eq. (26) 
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where C1 is the value for transverse or moment gradient loading, which can be determined from 
given tables. The C1 values given in the designers’ guide to EC3 (2005b) for end moment loading 

615



 
 
 
 
 
 

R. Aydin, A. Gunaydin and N. Kirac 

can be approximated by Eq. (27), though other approximations also exist 
 

70.252.040.188.1 2
1  GRGRC                      (27) 

 
7.2 AISC specifications 
 
Based on the AISC specification provisions of Chapter F, for mono- and bisymmetric I-section 

members when the web satisfies the noncompact limit 
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The elastic critical lateral torsional buckling moment is calculated by 
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Sx  =  elastic section modulus taken about major principal axis 
h0  =  distance between flange centroids 
Cb  =  lateral torsional buckling modification factor, calculated by 
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where 
Mmax, MA, MB, MC are absolute values of maximum moment; moments are at quarter, centerline 

and three-quarter points, respectively. 
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hc  =  twice the distance from the centroid to the inside face of the compression flange 
d  =  clear distance between flanges less the corner radius 
 

AISC specification recommends taking the square root term in Eq. (30) equal to 1 if the load is 
applied on the top flange (AISC 2005b). On the other hand, White (2004) gives the following 
alternative equation in lieu of Eq. (29) 
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7.3 Comparisons with standards 
 
In this section the critical buckling moment is calculated for cross sections A and B in 

accordance both with the presented procedure (energy method) and standards; then their results are 
compared. For this reason a beam of span L = 7,000 mm with material properties E = 200 GPa, ν = 
0.30 is considered for load type 4 (moment gradient loading). Obtained results for sections A and B 
are shown in Tables 5(a) and (b). 

As can be seen in Table 5(a), the obtained critical lateral buckling moments for section A by 
considering Eq. (29) of this study are generally conservative than the results obtained from the 
AISC code. The other results obtained are very close to each other. However, the obtained critical 
lateral buckling moments for section B by considering Eq. (29) and Eq. (34) are generally in the 
unconservative region. The ratio of PS/AISC reaches a value of 28% for GR = ‒1. The results 
given in Tables 5(a) and (b) for sections A and B of moment gradient loading are the same as those 
obtained from the results of equations in references Kitipornchai et al. (1986) and Lim et al. 
(2003). 

Additionally, for uniformly distributed and concentrated loading types, the critical buckling 
moments are calculated in accordance with the presented procedure and standard rules for sections 
A and B, and then the results are compared. The obtained results for both sections are shown in 
Table 6. 
 
 
Table 5(a) Obtained critical buckling moments for section A in accordance with the presented procedure and 

standard rules for load type 4. L = 7,000 mm; E = 200 GPa 

GR 1.0 0.5 0 ‒0.5 ‒1.0 

PS 160.66 212.67 302.18 435.62 444.39 

EC3* 160.66 212.66 302.01 434.46 442.20 

PS/EC3* 1.00 1.00 1.00 1.00 1.00 

AISC** 166.00 207.48 276.65 360.84 377.24 

PS/AISC** 0.97 1.03 1.09 1.21 1.18 

EC3*** 160.66 210.47 302.04 433.78 433.78 

PS/EC3*** 1.00 1.01 1.00 1.00 1.02 

PS :Present Study; * EC3: [Eq. (26) of PS] & Table 6.11 (EC3, 2005b); 
** AISC: [Eq. (29) of PS]; *** EC3: [Eqs. (26-27) of PS] 

 
Table 5(b) Obtained critical buckling moments for section B in accordance with the presented procedure and 

standard rules for load type 4. L = 7,000 mm; E = 200 GPa 

GR 1.0 0.5 0 -0.5 -1.0 

PS 141.41 186.62 259.24 333.12 250.24 

AISC* 152.54 190.68 254.23 331.61 346.68 

PS/AISC* 0.93 0.98 1.02 1.00 0.72 

AISC** 141.44 176.80 235.73 307.48 321.45 

PS/AISC** 1.00 1.06 1.10 1.08 0.78 

PS: Present Study; * AISC: [Eq. (29) of PS]; ** AISC: [Eq. (34) of PS] 
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8. Numerical examples for load type 6 and comparisons 
 
Load type 6 belongs to a uniformly distributed load for a simply supported beam, which is 

constrained laterally and cannot rotate about the longitudinal axis, z, at intermediate (1/3) L points 
of the span. The function for the twist angle, ϕ, given in Eq. (20b), was determined for this case. It 
was also pointed out to take the value 3π instead of π when applying Eq. (23). Because of the 
above mentioned properties of load type 6, some solved numerical examples were checked with 
ABAQUS (2008), and their results compared. If a beam is fully laterally restrained at several 
intermediate points of the span, then the segments between the laterally restrained points should 
usually be considered as a simply supported beam under the effect of a moment gradient (EC3 
2005b). In this section, some solutions are obtained with acceptance of a simply supported beam 
under the effect of both a moment gradient and a uniformly distributed load, with recommendations 
 
 
Table 6 For sections A and B obtained critical buckling moments in accordance with the presented procedure 

and standard rules for the load types 1 and 2. L = 7,000 mm; E = 200 GPa 

Load type 1 1 2 2 

Section type A B A B 

Location 
Gravity  
center 

Top 
flange 

Gravity 
center 

Top 
flange 

Gravity 
center 

Top 
flange 

Gravity 
center 

Top 
flange 

PS 219.45 153.54 182.75 136.56 181.94 135.05 154.12 121.34 

AISC* 218.40 140.88 200.71 136.38 182.61 121.67 173.34 118.05 

PS/ AISC* 1.00 1.09 0.91 1.00 1.00 1.11 0.89 1.03 

AISC** 211.44 - 186.10 - 182.61 - 160.73 - 

PS/ AISC** 1.04 - 0.98 - 1.00 - 0.96 - 

EC3*** 219.30 - - - 181.87 - - - 

PS/ EC3*** 1.00 - - - 1.00 - - - 

PS :Present Study; * AISC: [Eq. (29) of PS]; ** AISC: [Eq. (34) of PS]; 
*** EC3: [Eq. (26) of PS]  Table 6.12 (EC3, 2005b) 

 
Table 7 Obtained critical uniform distributed load values, qcr, for a simply supported beam with spans L = 

9,000 mm and 12,000 mm and E = 200 GPa under the effect of load type 6 using ABAQUS 
software, present study and also under the acceptance of the effect of moment gradient between the 
restrained points 

Section type A A B B 

Span length (mm) 9,000 12,000 9,000 12,000 

ABQ 80.58 27.89 74.84 25.56 

PS 86.37 29.50 77.81 26.35 

ABQ/PS 0.93 0.95 0.96 0.97 

SSB 1/3L 62.85 21.47 58.15 19.64 

ABQ/SSB (1/3)L 1.28 1.30 1.29 1.30 

PS: Present Study; ABQ: ABAQUS software; SSB (1/3)L: Simply supported beam restrained at intermediate 
(1/3)L points of the span under the effect of moment gradient between the restrained points 
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recommendations made about the results. The section types and their properties are identical with 
previously adopted sections A and B. The obtained critical buckling load values qcr are tabulated in 
Table 7 for beam spans L = 9,000 and 12,000 mm, with E = 200 GPa. 

As can be seen from Table 7, the results of the present study are about 5% unconservative with 
respect to ABAQUS software. But the results for the acceptance of the effect of moment gradient 
between the restrained points are about 30% conservative with respect to ABAQUS software. 

 
 

9. Conclusions 
 
In the case of a varying moment along the beam, the results obtained by using the assumptions 

made in this study are reasonable when compared with the results obtained by the energy method 
and by using ABAQUS software. When using the energy method, a displacement function must be 
chosen, which is usually symmetric about the beam axis. To understand the effect of a 
non-symmetric case, an extreme load type (load type 5 and α = 0.2) is chosen, and it is seen that 
the results are substantially correct. We compared the results obtained for the numerical examples 
that were solved by using the presented methods and by using ABAQUS software. The differences 
between the results obtained for the mono- and bisymmetric cross sections are not significant. In 
the study, both the differential equation and the energy method solutions are approximate 
calculation procedures, because they have different initial assumptions. Thus, using the procedures 
mentioned above, we cannot obtain identical results. As can be seen from Table 4, which consists 
of the numerical example results, the results obtained from both methods are very close. The 
energy method solutions are usually larger than the differential equation solutions, however. 

Load type 6 acts on a beam that has different restraining properties with respect to the other 
load types. For this load type, the acceptance of a simply supported beam, with its span equal to 
the distance between the lateral restraint points, and under the effect of a moment gradient loading, 
give more conservative results. Additionally, as presented in this study, being able to consider 
loadings out of the shear center of the cross section constitutes an advantage in the design for load 
type 6. 
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