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Abstract.  In this scientific work, constructing of a novel shear deformation beam model including the 
stretching effect is of concern for flexural and free vibration responses of functionally graded beams. The 
particularity of this model is that, in addition to considering the transverse shear deformation and the 
stretching effect, the zero transverse shear stress condition on the beam surface is assured without 
introducing the shear correction parameter. By employing the Hamilton’s principle together with the concept 
of the neutral axe's position for such beams, the equations of motion are obtained. Some examples are 
performed to demonstrate the effects of changing gradients, thickness stretching, and thickness to length 
ratios on the bending and vibration of functionally graded beams. 
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1. Introduction 

 
Functionally graded materials (FGMs) are generally metal–matrix composites (MMCs) in 

which material properties change in thickness direction from one surface to the other. The ceramic 
constituent provides high-temperature resistance due to its low thermal conductivity. The ductile 
metal constituent on the other hand, prevents fracture caused by stresses due to high temperature 
gradient in a very short span of time. FGMs are considered for the first time in Japanese (Koizumi 
1993, 1997), and are applied as thermal barrier materials in space planes, space structures and 
nuclear reactors. Consequently, the mechanical response of structural components with FGMs is of 
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highly importance in both research and industrial fields (Talha and Singh 2010, Benachour et al. 
2011, El Meiche et al. 2011, Chakraverty and Pradhan 2014, Ait Amar Meziane et al. 2014). 

It can be outlined that functionally graded materials, a great advance has been carried out for 
developing elasticity theory as well as the plates and shells models. However, studies on 
functionally graded (FG) beams are very limited in the scientific literature. Benatta et al. (2009) 
and Sallai et al. (2009) studied the bending response of simply supported FG hybrid beams 
subjected to uniformly distributed transverse loads by employing a higher-order shear deformation 
theory. The finite element method and the third-order shear deformation theory (TSDT) are used 
by Kadoli et al. (2008) to investigate the bending of FG beams by considering different boundary 
conditions (BCs) at the edges. Sankar (2001) developed a beam model to analyse the bending 
problem of a simply supported beam. Li (2008) considered the bending and transverse vibrations 
problem of FG Timoshenko beams. Ke et al. (2009a, b) as well as Yang and Chen (2008) 
investigated free vibrations, buckling and post-buckling of an exponential FG Timoshenko beams 
with the presence of open cracks. In most shear deformation theories, FG beams have been 
analysed ignoring the thickness stretching (εz).This effect, has been considered by Carrera et al. 
(2011) in FG plates by employing the finite elements method. Neves et al. (2011, 2012a, b) 
proposed an interesting hyperbolic sine shear deformation theory to study the bending and free 
vibration behaviours of FG plates. Houari et al. (2013) developed a new higher-order shear and 
normal deformation theory for the thermo-elastic bending investigation of FG sandwich plates. 
The same approach was employed by Bessaim et al. (2013) for the static and vibration analysis of 
FG sandwich plates. Saidi et al. (2013) used the new hyperbolic shear deformation theory in which 
the stretching effect is included to investigate the thermo-mechanical bending response of FG 
sandwich plates. Hebali et al. (2014) proposed a new quasi-three-dimensional (3D) hyperbolic 
shear deformation theory for the bending and free vibration analysis of FG plate. Belabed et al. 
(2014) developed an efficient and simple higher order shear and normal deformation theory for FG 
plates. Larbi Chaht et al. (2014) studied bending and buckling behaviors of size-dependent 
nanobeams made of functionally graded materials including the thickness stretching effect. 
Bourada et al. (2014) presented a new simple and refined trigonometric higher-order beam theory 
for bending and vibration of FG beams with including the thickness stretching effect. 

Since, the mechanical properties of functionally graded beam can be change continuously and 
gradually along the thickness direction, the neutral surface of such beam may not confused with its 
geometric median axis. Therefore, stretching and bending deformations of FG beam are coupled. 
Some researchers (Morimoto et al. 2006, Ould Larbi et al. 2013, Bouremana et al. 2013, Bousahla 
et al. 2014, Fekrar et al. 2014) have shown that when the reference axis is properly chosen, the 
stretching-bending coupling will be avoided in constitutive equations. Based on neutral surface 
position, Ould Larbi et al. (2013) studied the static and dynamic behavior of FG beams. 

This article tries to present a novel shear deformation beam theory for FG beams by including 
the so-called “stretching effect”. By superposing the deflection into bending, shear and stretching 
parts, the motion equations of the functionally graded beams are obtained based on the exact 
position of neutral axis together with Hamilton’s principle. Numerical examples are proposed to 
demonstrate the effects of varying gradients, thickness stretching, and thickness to length ratios on 
the bending and free vibration of functionally graded beams. 
 
 

2. Theoretical formulations 
 

2.1 Physical neutral surface 
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Consider a straight FG beam of area A, height h, and length L. The reference system, (x, z), 
with the origin at the left end of the beam is employed in this investigation. The x axis coincides 
with the median axis of the beam, and the z axis is considered to be perpendicular to this axis. Due 
to asymmetry of material properties of FG beams with respect to middle plane, the stretching and 
bending relations are coupled. But, if the origin of the coordinate system is properly chosen along 
the thickness direction of the FG beam so as to be the neutral axis, the properties of the FG beam 
being symmetric with respect to it. To specify the position of neutral axis of FG beams, two 
different axis are selected for the measurement of z, namely, zms and zns measured from the median 
axis and the neutral axis of the beam, respectively, as depicted in Fig. 1. 

The volume-concentration of ceramic VC is written in terms of coordinates zms and zns as 
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where k (k ≥ 0) is the volume fraction exponent and C is the distance of neutral axis from the 
centroidal axis. In this work, material properties are considered to vary in accordance with the rule 
of mixture (Suresh and Mortensen 1998, Tounsi et al. 2013a, Bouderba et al. 2013, Bachir 
Bouiadjra et al. 2013, Kettaf et al. 2013, Klouche Djedid et al. 2014, Zidi et al. 2014). Hence, by 
considering Eq. (1), the mechanical properties of FG beam (P), in term of thickness coordinate are 
expressed as 
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Here, PM and PC denote the values of the material properties of the metal and ceramic 
constituents of the FG beam respectively. In this investigation, the the modulus of elasticity E and 
the mass density ρ are expressed according to Eq. (2), while Poisson’s ratio v, is assumed to be 
constant (Sallai et al. 2009). Based on the physical neutral surface concept put forward by Ould 
Larbi et al. (2013), the physical neutral axis of an FG beam is expressed as 
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Fig. 1 The position of middle surface and neutral surface for a functionally graded beam 
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It can be noted that distance (C) becomes zero for homogeneous beams. 
 
2.2 Basic hypotheses 
 
The main hypotheses of this investigation are as follows: 
 
(i) The origin of the Cartesian Coordinate System is considered at the neutral axis of the FG 

beam. 
(ii) The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 
(iii) The transverse displacement w includes three components of bending wb, shear ws, and 

stretching effect wst. The two first components are functions of coordinate x only and the 
third one is function of x and zns. 

 
),,(),(),(),,( tzxwtxwtxwtzxw nsstsbns                      (4) 

 
(iv) The displacement u along x-direction is composed of three parts namely: extension, 

bending, and shear components. 
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The bending component ub is considered to be analogue to the displacement used in the 
classical beam theory. Thus, ub becomes 
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The shear component us gives rise, together with ws, to the sinusoidal distributions of shear 

strain γxz and thus to shear stress τxz within the thickness of the beam in such a way that shear stress 
τxz becomes zero at the top and bottom faces of the beam. Therefore, the relation for us can be 
expressed by 
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The component due to the stretching effect wst can be given as 

 
),( )(),,( txzgtzxw nsnsst                            (9) 

 
The additional displacement φ, accounts for the stretching effect and g(zns) is written as follows 
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2.3 Kinematics and constitutive equations 
 
By considering the above hypotheses, the displacement field can be expressed by employing 

Eqs. (4)-(10) as 
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The non-zero linear strains derived from Eq. (11) are 
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By using the Hooke’s law, the stresses in the beam are expressed as follows 
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2.4 Equations of motion 
 
Here, the governing equations are obtained by employing Hamilton’s principle as (Reddy 2002, 

Draiche et al. 2014, Nedri et al. 2014) 
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where t is the time; t1 and t2 are the initial and end time, respectively; δU is the virtual variation of 
the strain energy; δV is the variation of work carried out by the applied forces; and δK is the virtual 
variation of the kinetic energy. The variation of the strain energy of the beam can be expressed as 
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Where N, Mb, Ms, Nz and Q are the stress resultants defined as 
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The variation of work carried out by externally transverse loads q can be expressed as 
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The variation of the kinetic energy can be expressed as 
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where dot-superscript convention denotes the differentiation with respect to the time variable t; 
and (Ii, Ji, Ki) are mass inertias expressed by 
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   






C
h

C
h

nsns dzzfgKK
2

2

22
20 )(,,                        (19c) 

 
Substituting the relations for δU, δV, and δK from Eqs. (15), (17), and (18) into Eq. (14) and 

integrating by parts, and collecting the coefficients of δu0, δwb, δws and δφ, the following equations 
of motion of the FG beam are found 
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Eq. (20) can be written as functions of displacements (u0, wb, ws and φ) by employing Eqs. (11), 

(12), (13) and (16) as follows 
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where A11, D11, etc., are the beam stiffness, expressed by 
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3. Analytical solution 
 

The equations of motion admit the Navier solutions for simply supported beams. The variables 
u0, wb, ws and φ can be expressed by considering the following variations 
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where Um, Wbm, Wsm and Φstm are arbitrary coefficients to be found, ω is the frequency associated 
with mth eigenmode, and λ = mπ / L. The transverse load q is also expanded in Fourier series as 
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Substituting Eqs. (23) and (24) into Eq. (21), the analytical solutions can be determined by 
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4. Results and discussion 
 
In this paper, bending and free vibration analysis of simply supported FG beams by the current 

shear and normal deformation beam model is considered for study. 
For all numerical results reported here, the following values of mechanical properties were 

used: 
 
Ceramic (PC: Alumina, Al2O3): Ec = 380 GPa; v = 0.3; ρc = 3960 kg/m3. 
Metal (PM: Aluminium, Al): Em = 70 GPa; v = 0.3; ρm = 2707 kg/m3. 
Non-dimensional parameters of FG beam may be expressed as 
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4.1 Bending analysis 
 
Table 1 contains nondimensional displacements and stresses of FG beams subjected to uniform 

load q0. Different values of the volume fraction exponent k and span-to-depth ratio L / h are 
considered. The computed results are compared with those of Li et al. (2010) and Ould Larbi et al. 
(2013). It should be noted that the current solution are derived based on a trigonometric 
distribution of both axial and transverse displacements within the thickness, while the higher shear 
deformation theories (HSDT) of Ould Larbi et al. (2013) and Li et al. (2010) are obtained based 
on a hyperbolic and a cubic distribution of axial displacements and a constant deflection within the 
thickness (i.e., εz = 0). Since the effect of normal strain is neglected (εz = 0) in beam theories (Ould 
Larbi et al. 2013, Li et al. 2010), they lead to identical solutions, and their results are also in good 
agreement with the present theory which considers the thickness stretching effect (i.e., εz ≠ 0). The 
difference between the results of the present beam theory and the other theories (Ould Larbi et al. 
2013, Li et al. 2010) is due to the normal strain effect which is omitted in these latter ones. 

In Figs. 2-4 we present the evolution of the axial displacement u , axial stresses x  and 
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Table 1 Nondimensional deflections and stresses of FG beams under uniform load 

k Method 
L / h = 5 L / h = 20 

w  u  x  xz  w  u  x  xz  

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500

Ould Larbi et al. (2013) 3.1651 0.9406 3.8043 0.7489 2.8962 0.2305 15.0136 0.7625

Present εz ≠ 0 3.1357 0.9261 3.8614 0.7438 2.8906 0.2300 15.2708 0.7656

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676

Ould Larbi et al. (2013) 4.8282 1.6608 4.9956 0.7660 4.4644 0.4087 19.7013 0.7795

Present εz ≠ 0 4.7584 1.6124 5.0789 0.7604 4.4292 0.4010 20.0787 0.7824

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500

Ould Larbi et al. (2013) 6.2590 2.3052 5.8875 0.7489 5.8049 0.5685 23.2063 0.7625

Present εz ≠ 0 6.1271 2.2162 5.9841 0.7438 5.7131 0.5515 23.6405 0.7656

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787

Ould Larbi et al. (2013) 8.0683 3.1146 6.8878 0.6870 7.4421 0.7691 27.1005 0.7005

Present εz ≠ 0 7.8501 2.9703 6.9957 0.6838 7.2688 0.7390 27.5763 0.7044

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790

Ould Larbi et al. (2013) 9.8345 3.7128 8.1187 0.6084 8.8186 0.9134 31.8151 0.6218

Present εz ≠ 0 9.6028 3.5488 8.2440 0.6079 8.6396 0.8798 32.3457 0.6271

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436

Ould Larbi et al. (2013) 10.9413 3.8898 9.7203 0.6640 9.6907 0.9537 38.1408 0.6788

Present εz ≠ 0 10.7561 3.7501 9.8597 0.6625 9.5715 0.9278 38.7327 0.6835

 
 

 

Fig. 2 The variation of the axial displacement u through-the-thickness of a FG beam (L = 2h) 
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Fig. 3 The variation of the axial stress x  through-the-thickness of a FG beam (L = 2h) 

 

 

Fig. 4 The variation of the transverse shear stress xz  through-the-thickness of a FG beam (L = 2h) 

 
 
transverse shear stress xz  within the depth of the FG beam. The case of uniform load is 
considered. A comparison with beam theory developed by Ould Larbi et al. (2013) is also shown 
in these figures using different values of the volume fraction exponent k. A good agreement 
between the present theory and the theory developed by Ould Larbi et al. (2013) is observed. 
Again, the difference between the results is due to the normal strain effect which is omitted in the 
beam theory developed by Ould Larbi et al. (2013). In general, a very good agreement between the 
solutions is observed, except the transverse shear stress xz  where a small difference between the 
results is found (see Fig. 4). This is due to the effect of the normal strain which is important in 
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Table 2 Variation of fundamental frequency   with the power-law index for FG beam 

L / h Theory 
k 

0 0.5 1 2 5 10 

5 
Ould Larbi et al. (2013) 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

Present εz ≠ 0 5.1665 4.4347 4.0271 3.6723 3.4374 3.3048 

20 
Ould Larbi et al. (2013) 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

Present εz ≠ 0 5.4650 4.6690 4.2383 3.8813 3.6858 3.5606 

 
Table 3 First three nondimensional frequencies   of FG beams 

L / h Mode Theory 
k 

0 0.5 1 2 5 10 

5 

1 

CBT 5.3953 4.5931 4.1484 3.7793 3.5949 3.4921

Ould Larbi et al. (2013) 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812

Present εz ≠ 0 5.1665 4.4347 4.0271 3.6723 3.4374 3.3048

2 

CBT 20.6187 17.5415 15.7982 14.3260 13.5876 13.2376

Ould Larbi et al. (2013) 17.8844 15.4613 14.0121 12.6404 11.5349 11.0216

Present εz ≠ 0 17.9979 15.5965 14.1780 12.8232 11.6761 11.1231

3 

CBT 43.3483 36.8308 33.0278 29.7458 28.0850 27.4752

Ould Larbi et al. (2013) 34.2248 29.8496 27.1085 24.3196 21.6987 20.5555

Present εz ≠ 0 34.5558 30.2017 27.4946 24.7075 21.9842 20.7758

20 

1 

CBT 5.4777 4.6641 4.2163 3.8472 3.6628 3.5547

Ould Larbi et al. (2013) 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389

Present εz ≠ 0 5.4650 4.6690 4.2383 3.8813 3.6858 3.5606

2 

CBT 21.8438 18.5987 16.8100 15.3334 14.5959 14.1676

Ould Larbi et al. (2013) 21.5734 18.3964 16.6345 15.1617 14.3732 13.9257

Present εz ≠ 0 21.6003 18.4736 16.7706 15.3434 14.5227 14.0144

3 

CBT 48.8999 41.6328 37.6173 34.2954 32.6357 31.6883

Ould Larbi et al. (2013) 47.5940 40.6534 36.7686 33.4681 31.5719 30.5342

Present εz ≠ 0 47.6822 40.8457 37.0853 33.8792 31.9080 30.7403

 
 
assessing the stress components in the transverse direction. 

In Fig. 5 we present the evolution of the transverse normal stress z  across the depth of the FG 
beam for various values of the volume fraction exponent k. As can be shown in Fig. 5, the normal 
stress z  cannot be omitted for the present problem. 

 
4.2 Free vibration 
 
To check the accuracy of the method used in this investigation, the nondimensional 

fundamental frequencies   computed by the present method are compared with those given by  
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Fig. 5 The variation of the transverse normal stress z  through-the-thickness of a FG beam (L = 2h) 

 

 
Fig. 6 Variation of the nondimensional fundamental frequency   of FG beam with power law 

index k and span-to-depth ratio L / h 
 
 
Ould Larbi et al. (2013) of FG beams for different values of power law index k and span-to-depth 
ratio L / h and the results are presented in Table 2. In general, a good correlation between the 
results is observed. However, the HSDT solutions (Ould Larbi et al. 2013) slightly underestimate 
frequency due to omitting the thickness stretching effect. 

The first three nondimensional frequencies   of FG beams predicted by the present method, 
the beam theory developed by Ould Larbi et al. (2013) and the classical beam theory (CBT) are 
presented in Table 3 for different values of power law index k and span-to-depth ratio L / h. It can 
be observed that the two shear deformation beam theories predict almost identical frequencies, 
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whereas the CBT overestimates them. Again, it can be observed that the HSDT solutions (Ould 
Larbi et al. 2013) which ignores the thickness stretching effect, slightly underestimate frequency. 

Fig. 6 shows the non-dimensional fundamental natural frequency   versus the volume 
fraction exponent k for different values of span-to-depth ratio L / h using both the present theory 
and Ould Larbi et al. (2013). A good correlation between the results is showed from Fig. 6. The 
small difference is due to the thickness stretching effect. The full ceramic beams (k = 0) lead to a 
highest frequency. However, the lowest frequency values are predicted for full metal beams (k → 
∞). This is due to the fact that an increase in the value of the volume fraction exponent results in a 
decrease in the value of the modulus of elasticity. 
 
 

5. Conclusions 
 
A novel higher-order shear and normal deformation beam theory based on the physical concept 

of neutral axis is proposed for bending and dynamic responses of FG beams. This method 
considers both the shear deformation and thickness stretching effects by a trigonometric 
distribution of all displacements through the thickness and without introducing a shear correction 
parameter. Based on the present method and the physical concept of neutral axis, the equations of 
motion are obtained from Hamilton’s principle. Results show that the beam becomes stiffer when 
the thickness stretching effect is incorporated, and consequently, leads to a reduction of deflection 
and an increase of frequency. The formulation lends itself particularly well in analysing 
nanostructures (Heireche et al. 2008a, b, c, Tounsi et al. 2008, Benzair et al. 2008, Amara et al. 
2010, Tounsi et al. 2010, Tounsi et al. 2013b, c, Berrabah et al. 2013, Gafour et al. 2013, 
Benguediab et al. 2014, Semmah et al. 2014) which will be considered in the near future. 
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