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Abstract. This paper addresses theoretically the bending and buckling behaviors of size-dependent
nanobeams made of functionally graded materials (FGMs) including the thickness stretching effect. The
size-dependent FGM nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal
elastic behavior is described by the differential constitutive model of Eringen, which enables the present
model to become effective in the analysis and design of nanostructures. The present model incorporates the
length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore
accounts for both shear deformation and thickness stretching effects by virtue of a sinusoidal variation of all
displacements through the thickness without using shear correction factor. The material properties of FGM
nanobeams are assumed to vary through the thickness according to a power law. The governing equations
and the related boundary conditions are derived using the principal of minimum total potential energy. A
Navier-type solution is developed for simply-supported boundary conditions, and exact expressions are
proposed for the deflections and the buckling load. The effects of nonlocal parameter, aspect ratio and
various material compositions on the static and stability responses of the FGM nanobeam are discussed in
detail. The study is relevant to nanotechnology deployment in for example aircraft structures.

Keywords: nanobeam; nonlocal elasticity theory; bending; buckling; stretching effect; functionally
graded materials; navier solution; aspect ratio

1. Introduction

Structural beams fabricated from nanomaterials (Harik and Salas 2003) and of nanometer
dimensions are referred to as nanobeams (nanowires, nanotubes, nanorods). These nano-structural
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elements are extensively utilized as nanostructure components for nanoelectromechanical (NEMS)
and microelectromechanical systems (MEMS) (Mukherjee and Aluru 2006), which arise
frequently in the aerospace industry. Hence, the understanding of mechanical behavior of
nanobeams is critical for optimizing the performance of such structures. In such applications, the
size effect plays major role which should be addressed to properly quantify the behavior of such
small scale structures. It has now been generally established that classical continuum mechanics
fails to predict the size-dependent response of the structures at micro-and nano-scales since the
classical theory framework does not feature intrinsic length scales. In order to overcome this
problem, many higher order continuum (nonlocal) theories have been proposed. These
formulations contain additional material constants, such as the modified couple stress theory
(Yang et al. 2002), the strain gradient theory (Aifantis 1999), the micropolar theory (Eringen
1967), the nonlocal elasticity theory (Eringen 1972), and the surface elasticity model (Gurtin et al.
1998). Such theories aim to robustly characterize the size effect in micro, nano-scale structures by
introducing an intrinsic length scale in the constitutive relations. Among these theories, the
nonlocal elasticity theory has emerged as a very promising and accurate approach. Introduced by
Eringen (1983), nonlocal elasticity can successfully account for the scale effect in elasticity and
has been shown to effectively simulate many complex phenomena in multi-scale mechanics
including lattice dispersion of elastic waves, wave propagation in composites, dislocation
mechanics, fracture mechanics and surface tension effects in fluids. Peddieson et al. (2003) first
applied the nonlocal Eringen elasticity theory (Eringen 1983) to nanotechnology and derived
expressions for the static deformations of beam structures based on a simplified nonlocal beam
model. Subsequently, based on the nonlocal constitutive relation of Eringen, numerous studies
have appeared which have developed nonlocal beam models for predicting the responses of
nanostructures. These investigations include static analysis (Wang and Liew 2007, Pijaudier-Cabot
and Bazant 1987, Lim and Wang 2007, Reddy and Pang 2008), buckling calculations (Zhang et al.
2004, 2006, Wang et al. 2006, Murmu and Pradhan 2009a, Amara et al. 2010, Narendar and
Gopalakrishnan 2011a, Tounsi et al. 2013a, b, Semmah et al. 2014, Zidour et al. 2014), vibration
modelling (Yoon et al. 2003, Zhang et al. 2005a, b, Benzair et al. 2008, Murmu and Pradhan
2009b, Hemmatnezhad and Ansari 2013, Boumia et al. 2014, Baghdadi et al. 2014), wave
propagation simulations (Lu et al. 2007, Tounsi et al. 2008, Heireche et al. 2008a, b, c, Song et al.
2008, Narendar and Gopalakrishnan 2011b, Besseghier et al. 2011, Naceri et al. 2011, Gafour et al.
2013) and thermo-mechanical (Mustapha and Zhong 2010a, Maachou et al. 2011, Zidour et al.
2012) computations of nanostructures. Recently, Mustapha and Zhong (2010b) investigated the
free vibration of an axially-loaded non-prismatic single-walled carbon nanotube embedded in a
two-parameter elastic medium with a Bubnov-Galerkin method. Roque et al. (2011) used the
nonlocal elasticity theory of Eringen to study bending, buckling and free vibration of Timoshenko
nanobeams with a meshless numerical method. Reddy (2007) implemented a range of different
beam theories including those of Euler-Bernoulli, Timoshenko, Levinson (1981) and Reddy (1984)
to simulate bending, buckling and vibration of nonlocal beams. Benguediab et al. (2014) proposed
a comprehensive nonlocal shear deformation beam theory for bending, buckling and vibration
analysis of homogeneous nanobeams founded on Eringen’s nonlocal elasticity theory.
Developments in the field of materials engineering have stimulated a new class of high-
performance materials with smooth and continuous variation of the material properties, which can
be strategically manipulated for specific applications such as aerospace structures, solar power
collectors, bridges, machine components etc. These materials are designated as functionally graded
materials (FGMs). Yaghoobi and his co-workers (Yaghoobi and Torabi 2013a, b, Yaghoobi and
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Yaghoobi 2013, Yaghoobi and Fereidoon 2014) studied the buckling behavior of FGM structures.
Tounsi and his co-workers (Klouche Djedid et al. 2014, Ait Amar Meziane et al. 2014, Tounsi et
al. 2013c, Zidi et al. 2014, Bouderba et al. 2013, Bachir Bouiadjra et al. 2012, 2013, Bouremana
et al. 2013, Bourada et al. 2012, Fekrar et al. 2012, E1 Meiche et al. 2011, Benachour et al. 2011,
Mahi et al. 2010, Sallai et al. 2009, Benatta et al. 2008) investigated the mechanical response of
FGM structures. They used a through-the-thickness variation of the material properties according
to a power law. Recently, the application of FGMs has expanded to the realm of nano-structures
and typical examples in this regard are nano-electromechanical systems (NEMS), thin films in the
form of shape memory alloys, atomic force microscopes (AFMs), nano-implants in medical
engineering, nanotubes in aircraft wings, nanobeams for spacecraft chassis structures etc. All these
applications achieve high sensitivity and enhanced performance. However, thusfar, relatively
sparse research has been communicated on FGM nanobeam structural mechanics, based on the
nonlocal elasticity theory. Janghorban and Zare (2011) investigated nonlocal free vibration of
axially FGM nanobeams by using the differential quadrature computational method. Eltaher et al.
(2012) studied free vibration of FGM nanobeam based on the nonlocal Euler-Bernoulli beam
theory. The static bending and buckling of FGM nanobeam has also been examined based on the
nonlocal Timoshenko and Euler-Bernoulli beam theory by Simsek and Yurtgu (2013). A recent
review of applications of nonlocal Eringen elasticity in a range of nanobeam problems is provided
by Murmu and Adhikari (2012).

In this paper, a nonlocal beam theory is proposed for bending and buckling of FGM nanobeams.
Contrary to the other theories elaborated in (Roque et al. 2011, Reddy 2007, Benguediab et al.
2014, Simsek and Yurtgu 2013, Berrabah et al. 2013), where the stretching effect is neglected, in
the current investigation this so-called ‘‘stretching effect’” is taken into consideration. The
displacement field of the proposed theory is chosen based on the following assumptions (Bousahla
et al. 2014, Fekrar et al. 2014, Belabed et al. 2014, Hebali et al. 2014, Houari et al. 2013, Bessaim
et al. 2013, Saidi et al. 2013): (1) The transverse displacement is partitioned into bending, shear
and stretching components; (2) the axial displacement consists of extension, bending and shear
components; (3) the bending component of axial displacement is similar to that given by the
Euler-Bernoulli beam theory; and (4) the shear component of axial displacement gives rise to the
sinusoidal variation of shear strain and hence to shear stress through the thickness of the beam in
such a way that shear stress vanishes on the top and bottom surfaces. The material properties of the
FGM nanobeam are assumed to vary in the thickness direction. Based on the nonlocal constitutive
relations of Eringen (1983), the governing equations are derived using the principal of minimum
total potential energy. To illustrate the accuracy of the present theory, the obtained results are
compared with those predicted by the Euler-Bernoulli beam theory and Timoshenko beam theory.
Finally, the influences of nonlocal parameter, power law index, and aspect ratio on the bending,
buckling and vibration responses of FGM nanobeam are discussed.

2. Theoretical formulations
2.1 Material properties
A functionally graded material, simply-supported nanobeam, of length L, width b, and

thickness 4, is shown in Fig. 1. It is assumed that material properties of the FGM nanobeam, such
as Young’s modulus (E), Poisson’s ratio (v), and the shear modulus (G), vary continuously
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Fig. 1 Gradation of material properties through the thickness of the FG beam

through the nanobeam thickness according to a power-law form (Eltaher et al. 2012, Simsek and
Yurtcu 2013), which can be described by

k
P@=(B-R) 23] +n M

where P, and P, are the corresponding material property at the top and bottom surfaces of the
nanobeam, k is a non-negative number that dictates the material variation profile through the
thickness of the nanobeam.

2.2 Kinematics

Based on the assumptions made above, the displacement field of the present theory can be
obtained as

u(x,z,t) =uy(x,t)— z% -f(2 ow, (2a)
ox ox
w(x,z,t) =w, (x,8) + w,(x,1) + w, (x,2,¢) (2b)

where u, is the axial displacement along the midplane of the nanobeam; w,, w, and wy, are the
bending, shear and stretching components of transverse displacement along the midplane of the
beam. Furthermore

f(z)= (z - ﬁsmﬂj (2¢)
V4 h

The component due to the stretching effect w,, can be given as
WS.I(X,Z,Z‘)Zg(Z) o(x,1) (2d)

The additional displacement ¢ accounts for the effect of normal stress is included and g (z) is
given as follows

g(2)=1-1'(2) (2e)

The nonzero strains of the proposed beam theory are
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eo=& +zkl+f(Dk}, 7.=g() 7y, and & =g'(z)&] (3)
where
du o*w o*w ow, Op
802 O’ kb:_ b’ kS:_ s’ 0: 5 4 , gO: 4
T ox * ox’ * ox’ Ve ox Ox : =9 @

2.3 Nonlocal theory and constitutive relations

Response of materials at the nanoscale is different from those of their bulk counterparts. In the
theory of nonlocal elasticity Eringen (1983), the stress at a reference point x is considered to be a
functional of the strain field at every point in the body. For example, in the non - local elasticity,
the uniaxial constitutive law is expressed as (Eringen 1983)

d’c
O, —H Zx = Ql 1€x t Ql3gz (Sa)
dx
dzrxz
sz —H dxz = Q557/xz (Sb)
d’c
O-z - ,U 22 = Ql38x + Q3382 (SC)
dx

The Q; expressions in terms of engineering constants are

Q11(2)=Q33(Z)=1E(—Z)2, 04(2)=v 0,(2), Oss(z)=—2) (5d)
-v 2(1+0)

And z1=(epa)’ is a nonlocal parameter revealing the nanoscale effect on the response of nanobeams,
ey is a constant appropriate to each material and « is an internal characteristic length.

2.4 The governing equations based on the nonlocal elasticity theory

The governing equations will be derived by using principal of the minimum total potential
energy as follows

M =6(Uyy =W,,1)=0 (6)
where I1 is the total potential energy. dU,y, is the virtual variation of the strain energy; and oWy, is

the variation of work done by external forces. The first variation of the strain energy is given as

h
L2
oU,, =J. J-(axé' e, +o0,08, +1,.07,, )dzdx )
0

0
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T

L 2 2 7
J‘ d5u0 Nz5(0—M,,d52Wb—Msd52WS+Q d5WS+d5(0 i (7
7 dx dx dx dx

where N, M, M,, N, and Q are the stress resultants defined as

h h

7.8(2)dz ®)

e LA

(NMb,M)_I(lzf(z))adz N, = jazg(z)dz and Q=

2 2

N =

The first variation of the work done by the axial compressive force is given by

dow

dx

oV = J-q5wdx+jN dw dx 9

where g and NV, are the transverse and axial loads, respectively.

Substituting the expressions for dUi,, and v from Egs. (7) and (9) into Eq. (6) and integrating
by parts, and collecting the coefficients of duo, dw,, ow, and dg, the following governing equations
of the FGM nanobeam are obtained

sy = (10a)

Sw, d;i‘fuq—zv()%:o (10b)

ow,: ddg +é—f OCCI;—?/zO (10c)

so: ¥ N Ndzw 0 (10d)
dx dx*

By virtue of Egs. (3), (5), and (8), the force-strain and the moment-strain relations of the
present nonlocal beam theory can be obtained as follows

d*N du d*w, _,d’w
N-pu—5=4,—2-B b_B\—+X 11a
udxz no no 2 n 2 139 (11a)
d’M du d’w L d’ w,
M, —p dxzb: 1 dO_Dn dxzb Dy —=- 0 S+ Y50 (11b)
d*M, . du s d*w s d’w,
Ms_ﬂ72311d_0_D11 dxzb Hy——~ 0 ~+ Y50 (1lc)
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d*0 (dw, de
—U—== /45 S+ 11d
0-p=3 ss[dx de (11d)
d*N. du d*w s d’w,
Nz_/'lWZXl}d_x()_YB?zb_Yl}W_'_ZB(D (11e)
where
h/2
(4.8, D1, B DY HY )= [ 041,225 /(2.2 £(2). £2(2) 2 (12a)
—h/2
and
hi/2 hl2 hi/2
4= [0sle@F e, [ vs)= [Oull r@ )t 2= [Qule @, (12b)
h/2 h/2 h/2

By substituting Eq. (11) into Eq. (10), the nonlocal governing equations can be expressed in
terms of displacements (i, Wy, Wy, @) as

d*u d*w, ., d’w, d
sl a’x20 B dx3b_B“ & + X3 P=0 (13a)
d’u d*w s dhw, d’p d’ d*w
By, dx30 -Dy, dx4b - Dy 7 +1; dx2+ 1‘#? q_NOF =0 (13b)

. d’u cd'w P d4ws P d2ws P N2 o d? d*w
Bll dx30 _Dll dx4b_H11 dx4 +A55 dxz +(A55 +Yl3)?+ 1— E ‘]_No dxz :O (13C)

du d*w s us\Ow, 0% d? d*w
_XISd_xO—"YISKQb'F(ASS+Yl3)K£+A556)6_2_Z33¢_ l_ﬂﬁ No? =0 (13d)

The equations of motion of local beam theory can be retrieved from Eq. (13) by setting the
nonlocal parameter u equal to zero.

2.5 Analytical solution

The equations of motion admit Navier analytical solutions for simply supported beams. The
variables u, wp, W;, and ¢ can be written by assuming the following variations

U, U, cos(Ax)e'”"
wy| i w,, sin(A x)e'“"
s ~\w,sin(1x)e”’

® @, sin(Ax)e”’

(14)
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where U,,, Wy, W, and @y, are arbitrary parameters to be determined, w is the eigenfrequency
associated with mth eigenmode, and 4 = ma/ L. The transverse load ¢ is also expanded in the
Fourier sine series as

4(x) = iQ sinax, Q,= %'([q(x) sin(a x) dx (15)

The Fourier coefficients O, associated with some typical loads are given

0,=4q,, n=1 forsinusoidalload, (16a)
0, = ﬂ, n=135.... for uniform load, (16b)

nrw
0,= %Sm%’ n=123..... forpointload O, at the midspan, (169

Substituting Egs. (14) and (15) into Eq. (13), the analytical solutions can be obtained by

ay, a a3 ayy U, 0
ap Gy —C an—¢ ay—¢|(|W,, | |ag, (17)
a; ayn—¢ ayp—¢ ay—¢ (| W, ay,
Ay Ay —G Ay —¢ ay—¢ [Py, 0
where
_ 2 _ 3 ;s 93 _
ay = A4, ay, =—B, A, ay =—-BL A, ay,=-X;4,
4 s 94 2 2 4
ay, =Dy A, ay; =D\ A, Uy = YAy gy = A A+ H A (18)

Ay = VY5 + AP, a, =NAS5+ 7y, C=aN P, a=1+ul

3. Numerical results and interpretation

In this section, analytical solutions obtained in the previous sections are utilized for numerical
examples. The obtained results are compared with those reported by Simsek and Yurtcu (2013)
based on nonlocal Timoshenko beam theory (TBT) for a wide range of nonlocal parameter (eya),
the material distribution parameter (k) and thickness ratio (L /#4). The FGM nanobeam has the
following prescribed material properties: £, = 0.25 TPa, E, = 1 TPa, v, = v, = 0.3. A conservative
estimate of the nonlocal parameter 0 < epa < 2 nm for single walled carbon nanotubes (SWCNTs)
has been provided by Wang (2005). Therefore, in this study, the nonlocal parameter is taken as ega
=0, 0.5, 1, 1.5, 2 nm to investigate nonlocal effects on the responses of FGM nanobeam. For
convenience, the following dimensionless quantities are defined

_ E I .
w =100w—-—  for uniform load (19a)

qoL
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N=N 7 i.e., critical buckling load parameter (19b)

Table 1 shows the non-dimensional maximum deflections w of a simply supported FGM
nanobeam subjected to uniform load. The calculated values are obtained using 100 terms in series
in Egs. (14) and (15) with Maple software. It should be noted that the case, epa = 0 corresponds to
local beam theory. The obtained results (Models 1 and 2) are compared with those predicted by
TBT (Simsek and Yurt¢u 2013). Since the effect of thickness stretching is neglected in Model 1 (e,
= (), it leads to the solutions close to TBT (Simsek and Yurtgu 2013) for all values of thickness
ratio, L/ h, material distribution parameter £ and nonlocal parameter ea. The slight difference
between the results obtained by Model 1 (e, = 0) and TBT is due to the use of a constant shear
correction factor for any values of the material distribution parameter £ (Menaa et al. 2012). In
addition, the results of Model 2 (&, # 0) are also provided to show the importance of including the
thickness stretching effect. Indeed, it is evident from inspection of Table 1 that the inclusion of the
thickness stretching effect leads to a reduction in the magnitudes of deflection of FGM nanobeams.
In other words, with the thickness stretching effect incorporated, FGM nanobeams exhibit greater
stiffness, and this characteristic is particularly important in applications.

Table 2 documents the values for the computed non-dimensional critical buckling loads. The
present computations are benchmarked with the earlier results of Simsek and Yurtgu (2013) and
good correlation is observed with Model 1 (e, = 0). The results obtained using Model 2 (e, # 0)
show that the inclusion of the thickness stretching effect manifests in an enhancement in the
critical buckling loads. According to this table, buckling loads decrease with increasing nonlocal
parameter (epa). However, the increase of power law index k leads to an increase of critical
buckling loads.

Fig. 2 shows the variation of the non-dimensional deflection and the buckling load of the FGM
nanobeam with geometrical aspect ratio. The local and nonlocal results are given for epa = 0 and
epa = 1 nm, respectively. The material distribution parameter is assumed to be constant i.e., k£ = 1.
In this example, the aspect ratio varies from L/h = 10 to L/h = 50. It is apparent that deflections
predicted by the nonlocal theory exceed in magnitude those computed with the local (classical)
continuum theory. On the other hand, the nonlocal solution of the buckling load is lower in
magnitude than the local buckling load due to the small scale effects. Also, it can be observed that
the inclusion of the thickness stretching effect leads to a marked reduction in nanobeam deflection
and an increase in buckling load values for FGM nanobeams. These results effectively
demonstrate that the inclusion of small scale parameter softens the nanobeam (reduces stiffness),
whereas the inclusion of thickness stretching effect makes it stiffer. As such both small scale and
thickness stretching effects exert a significant influence on nanobeam structural performance.

Fig. 3 shows the effect of the nonlocal parameter on dimensionless deflections and critical
buckling loads. The results in this figure are obtained by using the present nonlocal shear
deformation beam theory including the thickness stretching effect (Model 2). The material
distribution parameter is assumed to be constant (i.e., k = 1). These figures show that the responses
vary in a nonlinear fashion with the nonlocal parameter. It can be seen that the effect of nonlocal
parameter epa on deflections and critical buckling loads of FGM nanobeams is significant,
especially at relatively higher aspect ratios. Therefore, it can be concluded that FGM nanobeam
responses are aspect ratio-dependent based on nonlocal elasticity.
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4. Conclusions

The bending and buckling analyses of FGM size-dependent nanoscale beams has been
investigated on the basis of a nonlocal thickness-stretching sinusoidal shear deformation beam
theory. The present model is capable of capturing small scale, shear deformation and thickness
stretching effects of nanobeams, and additionally satisfies the zero traction boundary conditions on
the top and bottom surfaces of the nanobeam without requiring a shear correction factor. Based on
the nonlocal differential constitutive relation of Eringen, the nonlocal governing equations are
derived using the principal of minimum total potential energy. The computations demonstrate that
the inclusion of both small scale and thickness stretching effects elevates nanobeam stiffness, and
hence, leads to a reduction of deflections and a corresponding increase of buckling loads.
Therefore, the small scale and thickness stretching effects should be considered in the analysis of
mechanical behavior of nanostructures. Further, it is found that, the material-distribution profile
may be manipulated to select a specific design deflection and buckling load. The present
computations also provide a solid benchmark for verification of finite element and other numerical
simulations of FGM nanobeam mechanics.
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