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Abstract.  In this study, two common types of laterally supported castellated beams are considered as 
design problems: beams with hexagonal openings and beams with circular openings. The main goal of 
manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater 
strength and rigidity. These types of open-web beams have found widespread use, primarily in buildings, 
because of great savings in materials and construction costs. Hence, the minimum cost is taken as the design 
objective function and the Colliding Bodies Optimization (CBO) method is utilized for obtaining the 
solution of the design problem. The design methods used in this study are consistent with BS5950 Part 1 and 
Part 3, and Euro Code 3. A number of design examples are considered to optimize by CBO algorithm. 
Comparison of the optimal solution of the CBO algorithm with those of the Enhanced Charged System 
Search (ECSS) method demonstrate the capability of CBO in solving the present type of design problem. It 
is also observed that optimization results obtained by the CBO algorithm for three design examples have less 
cost in comparison to the results of the ECSS algorithm. From the results obtained in this paper, it can be 
concluded that the use of beam with hexagonal opening requires smaller amount of steel material and it is 
superior to the cellular beam from the cost point of view. 
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1. Introduction 

 
The production of structural beams with higher strength and lower cost has been studied by 

engineers since 1940. Due to the limitations on maximum allowable deflections, and the high 
strength properties of steel, it cannot always be utilized to the best advantage. As a result, several 
new methods have been developed for increasing the stiffness of beams without necessity to 
increase the weight of the required steel. Hence, castellated and cellular beams have been utilized 
extensively in recent years (Konstantinos and D’Mello 2012). 

In design of steel structures, beams with web-opening are widely used to pass the under floor 
services ducts such as water pipes and air ducts. Castellated beams are varieties of girders that are 
manufactured by using an unaltered wide flange steel beam and cutting a certain pattern through 
its web, often in half-circle or half-hexagon patterns. The split halves are then offset and welded 
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back together to form a deeper beam with full circular or hexagonal shaped web openings. 
Web-openings have been used for many years in structural steel beams in a great variety of 
applications because of the necessity and economic advantages. The main advantage of the steel 
castellated beam is that a designer can increase the depth of a beam to raise its strength without 
additional steel. The resulting castellated beam is approximately 50% deeper and much stronger 
than the original unaltered beam (Soltani et al. 2012, Zaarour and Redwood 1996, Redwood and 
Demirdjian 1998, Sweedan 2011). In recent years, a great deal of progress has been made in the 
design of steel beams with web-openings and a cellular beam is one of them. A cellular beam is 
the modern version of the traditional castellated beam, but with a far wider range of applications 
for floor beams. Cellular beams are steel sections with circular openings that are made by cutting a 
rolled beam web in a half circular pattern along its centerline and re–welding the two halves of hot 
rolled steel sections as shown in Fig. 1. This opening increases the overall beam depth, moment of 
inertia, and section modulus, without increasing the overall weight of the beam (Konstantinos and 
D’Mello 2011). 

Recently, a new optimization method, so-called Colliding Bodies Optimization (CBO), is 
developed by Kaveh and Mahdavi (2014a, b) that utilizes simple formulation and it requires no 
parameter tuning. The main objective of this paper is to investigate the differences in cost 
associated with the castellated beams with hexagonal opening and cellular beams. Here, the CBO 
algorithm is utilized for optimization and cost of the beam is considered as the objective function. 

In the first part of this paper, the design of castellated beam is introduced. In Section 2, 
optimum design of these beams is formulated based on The Steel Construction Institute 
Publication Number 100 and Euro Code 3. In Section 3, the CBO algorithm is briefly introduced, 

 
 

(a) (b) 

Fig. 1 (a) A castellated beam with hexagonal opening; (b) a castellated beam with circular 
opening or cellular beam 
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and in Section 4, the cost of castellated beam as the design objective function is minimized. 
Design examples are provided in Section 5, and finally Section 6 concludes the paper. 
 
 
2. Design of castellated beams 

 
Beams must be sufficiently strong to sustain the bending moments and shear forces produced 

by the applied loads. The performance of a beam dependents on the physical dimensions as well as 
the cross-section geometry and shape. Due to the presence of holes in the web, the structural 
behavior of castellated steel beam is different from that of the solid web beams. At present, there is 
no general accepted design method due to the complexity of the behavior of castellated beams and 
their associated modes of failure (Soltani et al. 2012). The strength of a beam with various web 
opening is determined by considering the interaction of the flexure and shear at the openings. 
There are many failure modes to be considered in the design of a beam with web opening 
consisting of Vierendeel mechanism, flexural mechanism, rupture of welded joints, and web post 
buckling. Lateral torsional buckling may also occur in an unrestrained beam. A beam is considered 
to be unrestrained when its compression flange is free to displace laterally and rotate. In this paper, 
it is assumed that the compression flange of the castellated beam is restrained by the floor system 
(the same as Saka (2009)). Therefore, the overall buckling strength of the castellated beam is 
omitted from the design consideration. The above mentioned modes are closely associated with 
beam geometry, shape parameters, type of loading, and provision of lateral supports. In the design 
of castellated beams, these cases should be considered (EN 1993-1-1 2005, Ward 1990, Erdal et al. 
2011, Saka 2009, Raftoyiannis and Ioannidis 2006, British Standards 2000, LRFD-AISC 1986). 

 
2.1 Overall beam flexural capacity 
 
This mode of failure can occur when a section is subjected to pure bending. The span subjected 

to pure bending moment, the tee-sections above and below the holes yields in a manner similar to 
that of a plain webbed beam. Therefore, the maximum moment under applied external loading MU 
should not exceed the plastic moment capacity MP of the castellated beam (Ward 1990, Erdal et al. 
2011). 

UYLTPU HPAMM                              (1) 
 
where ALT  is the area of lower tee, PY is the design strength of steel, and HU is distance between 
center of gravities of upper and lower tees. 

 
2.2 Beam shear capacity 
 
In the design of castellated beams, it is necessary to control two modes of shear failures. The 

first one is the vertical shear capacity. The sum of the shear capacity of the upper and lower tees 
forms the shear capacity of the section and is checked using the following equations (Soltani et al. 
2012, Erdal et al. 2011) 

 

  opening hexagonalFor 
3

3

openingcircular For 9.06.0

WULYVY

WULYVY

APP

APP





                  (2) 
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The second one is the horizontal shear capacity. It is developed in the web post due to the 
change in axial forces in the tee-section as shown in Fig. 2. Web post with too short mid-depth 
welded joints may fail prematurely when horizontal shear exceed the yield strength. The horizontal 
shear capacity is checked using the following equations (Soltani et al. 2012, Erdal et al. 2011). 
 

 

  opening hexagonalFor 
3

3

openingcircular For 9.06.0

WPYVH

WPYVH

APP

APP





                  (3) 

 
where AWUL is the total area of the webs of the tees and AWP is the minimum area of web post. 
 

2.3 Flexural and buckling strength of web post 
 
It is assumed that the compression flange of the castellated beam are restrained by the floor 

system. Thus the overall buckling of the castellated beam is omitted from the design consideration. 
The web post flexural and buckling of capacity in castellated beam is given by (Soltani et al. 2012, 
Erdal et al. 2011) 
 

]..[ 3
2

21 CCC
M

M

E

MAX  
                       

 (4) 

 
where MMAX is the maximum allowable web post moment, and ME is the web post capacity at  
critical section A-A shown in Fig. 2. C1, C2 and C3 are constants obtained by following 
expressions 
 

   21 00174.01464.0097.5  C                      (5) 
 

   22 000683.00625.0441.1  C                      (6) 
 

   23 00108.00853.0645.3  C                      (7) 

 
 

(a) (b) 

Fig. 2 Horizontal shear in the web post of castellated beams: (a) hexagonal opening; (b) circular opening 
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where 
d

S

2
  for hexagonal openings, and 

0D

S
 for circular openings, also 

wt

d2
  for 

hexagonal openings, and 
wt

D0  for circular openings, S is the spacing between the centers of 

holes, d is the cutting depth of hexagonal opening, D0 is the holes diameter and tw is the web 
thickness. 

 
2.4 Vierendeel bending of upper and lower tees 
 
Vierendeel mechanism is always critical in steel beams with web openings, where global shear 

force is transferred across the opening length, and the Vierendeel moment is resisted by the local 
moment resistances of the tee-sections above and below the web openings. A complete description 
of these mechanisms can be found in (Soltani et al. (2012) or Erdal et al. (2011)). 

Vierendeel bending results in the formation of four plastic hinges above and below the web 
opening. The overall Vierendeel bending resistance depends on the local bending resistance of the 
web-flange sections. This mode of failure is associated with high shear forces acting on the beam. 
The Vierendeel bending stresses in the circular opening are obtained by using the Olander’s 
approach, Fig. 3. The interaction between Vierendeel bending moment and axial force for the 
critical section in the tee should be checked as follows (Erdal et al. 2011) 
 

0.10 
PU M

M

P

P

                              
 (8) 

 
where P0 and M are the force and the bending moment on the section, respectively. PU is equal to 
the area of critical section × PY, MP is calculated as the plastic modulus of critical section × PY in 
plastic section or elastic section modulus of critical section × PY for other sections. 

The plastic moment capacity of the tee-sections in castellated beams with hexagonal opening 
are calculated independently. The total of the plastic moment is equal to the sum of the Vierendeel 
resistances of the above and below tee-sections. The interaction between Vierendeel moment and 
shear forces should be checked by the following expression 
 
 

 

Fig. 3 Olander’s curved beam approach 

309



 
 
 
 
 
 

A. Kaveh and F. Shokohi 

04.  TPOMAX MeV                            (9) 
 
where VOMAX and MTP are the maximum shear force and the moment capacity of tee-section, 
respectively. 

 
2.5 Deflection of castellated beam 
 
Serviceability checks are of high importance in the design, especially in beams with web 

opening where the deflection due to shear forces is significant. The deflection of a castellated 
beam under applied load combinations should not exceed span/360. In castellated beams with 
circular opening, the deflection at each point is calculated by following expression 
 

SWPSTATWPMTTOT YYYYYY                       (10) 
 
where YMT, YWP, YAT, YST and YSWP are deflection due to bending moment in tee, deflection due to 
bending moment in web post of beam, deflection due to axial force in tee, deflection due to shear 
in tee and deflection due to shear in web post, respectively. These equations are provided in (Erdal 
et al. 2011). 

For a castellated beam with hexagonal opening and length L subjected to transverse loading, 
the total deflection is composed by two terms: the first term corresponds to pure moment action fb, 
and the second one corresponds to shear action fs. Thus, the total deflection can be calculated by 
the following expression 

LcLcfff sb 2
3

1                             (11) 
 

c1 and c2 are determined by means of a curve fitting technique (Raftoyiannis and Ioannidis 
2006). 

 
 

3. Optimum design problem of castellated beams 
 

The main goal of producing and using castellated beams is to suppress the cost of the material 
by applying more efficient cross sectional shapes made from standard profiles in combination with 
aesthetic and architectural design considerations. Also, the web holes can be utilized for cross 
passing utility systems in building floors. There are many factors that require special 
considerations when estimating the cost of castellated steel beams, such as man-hours of 
fabrication, weight, price of web cutting and welding process. In this study, it is assumed that the 
costs associated with man-hours of fabrication for hexagonal and circular opening are identical. 
Thus, the objective function includes three parts: The beam weight, price of the cutting and price 
of the welding. The objective function can be expressed as 
 

3210initailcost ..).( PLPLPLAF weldcut                        (12) 
 
where P1, P2 and P3 are the price of the weight of the beam per unit weight, length of cutting and 
welding for per unit length, L0 is the initial length of the beam before castellation process, ρ is the 
density of steel, Ainitail is the area of the selected universal beam section, Lcut and Lweld are the 
cutting length and welding length, respectively. The length of cutting is different for hexagonal 
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and circular web-openings. The dimension of the cutting length is described by the following 
equations. 

For circular opening 

e
D

NHeNHDLcut 
2

)1(2. 0
0


                       (13) 

For hexagonal opening 

)sin(
2

)sin(
2


d

e
d

eNHLcut 







                       (14) 

 
where NH is the total number of holes, e is the length of horizontal cutting of web, D0 is the 
diameter of holes, d is the cutting depth, and θ is the cutting angle. 

Also, the welding length for both of circular and hexagonal openings is determined by Eq. (15). 
 

)1(  NHeLweld                              (15) 
 

As an example, in Fig. 1(a), the number of holes is equal to 3. Therefore, the total length of 
cutting can be expressed by the following equation 
 











)sin(
78


d

eLcut                             (16) 

 
Similarly, for cellular beams, the same equations can be obtained. Lcut for both circular and 

hexagonal openings are shown in Fig. 1. 
 
3.1 Design of castellated beam with circular opening 
 
Design process of a cellular beam consists of three phases: The selection of a rolled beam, the 

selection of a suitable circular hole diameter, and the spacing between the center of holes or total 
number of holes in the beam as shown in Fig. 1, (Erdal et al. 2011, Saka 2009). Hence, the 
sequence number of the rolled beam section in the standard steel sections tables, the circular holes 
diameter and the total number of holes are taken as design variables in the optimum design 
problem. The optimum design problem formulated by considering the constraints explained in the 
previous sections can be expressed as the following: 

Find an integer design vector     ,,, 321
TxxxX   where x1 is the sequence number of the rolled 

steel profile in the standard steel section list, x2 is the sequence number for the hole diameter 
which contains various diameter values, and x3 is the total number of holes for the cellular beam 
(Erdal et al. 2011). Hence the design problem can be expressed as: 

Minimize Eq. (12) 
Subjected to 

008.1 01  SDg                           (17) 
 

060.1 02  DSg                           (18) 
 

025.1 03  SHDg                          (19) 
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075.1 04  DHg S                          (20) 
 

05  PU MMg                            (21) 
 

06  VMAXSUP PVg                          (22) 
 

07  VYOMAX PVg                           (23) 
 

08  VHHMAX PVg                           (24) 
 

09   WMAXAMAXA MMg                        (25) 
 

050.010  VYTEE PVg                         (26) 
 

00.10
11 

PU M

M

P

P
g

                       
 (27) 

 

036012  LYg MAX                         
 (28) 

 
where tW is the web thickness, HS and L are the overall depth and the span of the cellular beam, and 
S is the distance between centers of holes. MU is the maximum moment under the applied loading, 
MP is the plastic moment capacity of the cellular beam, VMAXSAP is the maximum shear at support, 
VOMAX is the maximum shear at the opening, VHMAX is the maximum horizontal shear, MA‒AMAX is 
the maximum moment at A-A section shown in Fig. 2. MWMAX is the maximum allowable web post 
moment, VTEE represents the vertical shear on the tee at θ = 0 of web opening, P0 and M are the 
internal forces on the web section as shown in Fig. 3, and YMAX denotes the maximum deflection of 
the cellular beam (Erdal et al. 2011, LRFD-AISC 1986). 

 
3.2 Design of castellated beam with hexagonal opening 
 
In the design of castellated beams with hexagonal openings, the design vector includes four 

design variables: The selection of a rolled beam, the selection of a cutting depth, the spacing 
between the center of holes or total number of holes in the beam, and the cutting angle as shown in 
Fig. 2. Hence the optimum design problem formulated by the following expression: 

Find an integer design vector    TxxxxX 4321 ,,,  where x1 is the sequence number of the 
rolled steel profile in the standard steel section list, x2 is the sequence number for the cutting depth 
which contains various values, x3 is the total number of holes for the castellated beam and x4 is the 
cutting angle. Thus, the design problem turns out to be as follows: 

Minimize Eq. (12) 
Subjected to 

0)2.(
8

3
1  fS tHdg

                       
 (29) 

 

0)(10)2(2  fTfS tdtHg
                    

 (30) 
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0cot..
3

2
3  edg 

                        
 (31) 

 
0cot.24  deg                           (32) 

 
02cot.25  dedg                          (33) 

 

0456  g                             (34) 
 

0647  g                             (35) 
 

08  PU MMg                           (36) 
 

09  VMAXSUP PVg                          (37) 
 

010  VYOMAX PVg                           (38) 
 

011  VHHMAX PVg                          (39) 
 

012   WMAXAMAXA MMg                        (40) 
 

050.013  VYTEE PVg                         (41) 
 

04.14  TPOMAX MeVg                         (42) 
 

036015  LYg MAX                         
 (43) 

 
where tf is the flange thickness, dT is the depth of the tee-section, MP is the plastic moment 
capacity of the castellated beam, MA‒AMAX is the maximum moment at A-A section shown in Fig. 2, 
MWMAX is the maximum allowable web post moment, VTEE represents the vertical shear on the tee, 
MTP is the moment capacity of tee-section, and YMAX denotes the maximum deflection of the 
castellated beam with hexagonal opening (Soltani et al. 2012). 

 
 

4. The colliding bodies optimization method 
 
Nature has always been a major source of inspiration to engineers and natural philosophers and 

many meta-heuristic approaches are inspired by solutions that nature herself seems to have chosen 
for hard problems. The collision is a natural occurrence that happens between objects, bodies, cars, 
etc. The Colliding bodies optimization algorithm is one of the recently developed meta-heuristic 
search methods (Kaveh and Mahdavai 2014a, b). It is a population-based search approach, where 
each agent (CB) is considered as a colliding body with mass m. The idea of the CBO algorithm is 
based on observation of a collision between two objects in one-dimension; in which one object 
collide with other object and they moves toward minimum energy level. 
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(a) (b) 

Fig. 4 The collision between two bodies; (a) before the collision; (b) after the collision 
 
 

4.1 Collision laws 
 
In physics, collisions between bodies are governed by: (i) laws of momentum; and (ii) laws of 

energy. When a collision occurs in an isolated system, Fig. 4, the total momentum and energy of 
the system of object is conserved. 

The conservation of the total momentum requires the total momentum before the collision to be 
the same as the total momentum after the collision, and can be expressed as 
 

22112211 vmvmvmvm                            (44) 
 

Likewise, the conservation of the total kinetic energy is expressed by 
 

Qvmvmvmvm  2
22

2
11

2
22

2
11 2

1

2

1

2

1

2

1
                     (45) 

 
where v1 is the initial velocity of the first object before impact, v2 is the initial velocity of the 
second object before impact, v′1 is the final velocity of the first object after impact, v′2 is the final 
velocity of the second object after impact, m1 is the mass of the first object, m2 is the mass of the 
second object, and Q is the loss of kinetic energy due to impact. 

The velocity after a one-dimensional collision can be obtained as 
 

21

222121
1

)()(

mm

vmmvmm
v





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                        (46) 
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111212
2

)()(

mm

vmmvmm
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





                        (47) 

 
where ε is the coefficient of restitution (COR) of two colliding bodies, defined as the ratio of 
relative velocity of separation to relative velocity of approach 
 

v

v

vv

vv 







12

12                               (48) 

 

According to the coefficient of restitution, two special cases of collision can be considered as 
 

 A perfectly elastic collision is defined as the one in which there is no loss of kinetic energy 
in the collision (Q = 0 & ε = 1). In reality, any macroscopic collision between objects will 
convert some kinetic energy to internal energy and other forms of energy. In this case, 
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after collision the velocity of separation is high. 
 An inelastic collision is the one in which part of the kinetic is changed to some other form 

of energy in the collision. Momentum is conserved in inelastic collisions (as it is for elastic 
collision), but one cannot track the kinetic energy through the collision since some of it is 
converted to other forms of energy. In this case, coefficient of restitution does not equal to 
one (Q ≠ 0 & ε ≤ 1). Here, after collision the velocity of separation is low. 

 
For most of the real objects, ε is between 0 and 1. 
 
4.2 The CBO algorithm 
 
The Colliding Bodies Optimization is one of the recently developed meta-heuristic algorithms 

(Kaveh and Mahdavai 2014a, b). In this method, each solution candidate Xi is considered as a 
colliding body (CB). The massed objects are composed of two main equal groups; i.e., stationary 
and moving objects, where the moving objects move to follow stationary objects and a collision 
occurs between pairs of objects. This is done for two purposes: (i) to improve the positions of 
moving objects; (ii) to push stationary objects towards better positions. After the collision, the new 
positions of the colliding bodies are updated based on the new velocity by using the collision laws 
as discussed in Section 4.1. 

The pseudo-code for the CBO algorithm can be summarized as follows: 
 
Step 1: Initialization. The initial positions of CBs are determined randomly in the search space 

 

nixxrandxxi  ,...,2 ,1   ).( minmaxmin
0                      (49) 

 

where 
0
ix  determines the initial value vector of the ith CB. xmin and xmax are the minimum and the 

maximum allowable values vectors of variables, respectively; rand is a random number in the 
interval [0,1]; and n is the number of CBs. 

 
Step 2: Determination of the body mass for each CB. The magnitude of the body mass for each 

CB is defined as 

nk

ifit

kfit
m

n

i

k  ,...,2 ,1   ,

)(

1

)(

1

1






                        (50) 

 
where fit (i) represents the objective function value of the ith agent and n is the population size. 
Obviously a CB with good values exerts a larger mass than the bad ones. Also, for maximizing the 

objective function, the term 
)(

1

ifit
is replaced by fit (i). 

 
Step 3: Arrangement of the CBs. The arrangement of the CBs objective function values is 

performed in ascending order (Fig. 5(a)). The sorted CBs are equally divided into two groups: 
 

 The lower half of CBs (stationary CBs); These CBs are good agents which are stationary 
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and the velocity of these bodies before collision is zero. Thus 
 

2
 ,...,2 ,1   0
n

ivi                              (51) 

 

 The upper half of CBs (moving CBs): These CBs move toward the lower half. Then, 
according to Fig. 5(b), the better and worse CBs, i.e., agents with upper fitness value of 
each group will collide together. The change of the body position represents the velocity 
of these bodies before collision as 

 

n
n

ixxv niii  ..., ,1
2

   
2

                           (52) 

 

where vi and xi are the velocity and position vector of the ith CB in this group, respectively; 
2
nix   

is the ith CB pair position of xi in the previous group. 
 

Step 4: Calculation of the new position of the CBs. After the collision, the velocity of bodies 
in each group is evaluated using Eq. (46), Eq. (47) and the velocities before collision. The velocity 
of each moving CB after the collision is 
 

n
n

i
mm

vmm
v

n

n

ii

iii

i ,...,1
2

     
)(

2

2 








                      (53) 

 

where vi and v′i are the velocity of the ith moving CB before and after the collision, respectively; 
 
 

 

(a) 
 

(b) 

Fig. 5 (a) The sorted CBs in an increasing order; (b) the pairs of objects for the collision 
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mi is the mass of the ith CB; 
2
nim   is mass of the ith CB pair. Also, the velocity of each stationary 

CB after the collision is 
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where 
2
niv   and vi are the velocity of the ith moving CB pair before and the ith stationary CB after 

the collision, respectively; mi is mass of the ith CB; 
2
nim   is mass of the ith moving CB pair. As 

mentioned previously, ε is the coefficient of restitution (COR) and for most of the real objects, its 
value is between 0 and 1. It defined as the ratio of the separation velocity of two agents after 
collision to the approach velocity of two agents before collision. In the CBO algorithm, this index 
is used to control of the exploration and exploitation rate. For this goal, the COR is decreases 
linearly from unit to zero. Thus, ε is defined as 
 

max

1
iter

iter
                                (55) 

 

where iter is the actual iteration number and itermax is the maximum number of iterations, with 
COR being equal to unit and zero representing the global and local search, respectively. 

New positions of CBs are obtained using the generated velocities after the collision in position 
of stationary CBs. 

The new positions of each moving CB is 
 

n
n

ivrandxx ii
new
i n ,...,1

2
     

2
                        (56) 

 

where 
new
ix  and v′i are the new position and the velocity after the collision of the ith moving CB, 

respectively; 
2
nix   is the old position of the ith stationary CB pair. Also, the new positions of 

stationary CBs are obtained by 

2
,...,1     

n
ivrandxx ii

new
i                          (57) 

 

where ,new
ix  xi and v′i are the new position, old position and the velocity after the collision of the 

ith stationary CB, respectively. rand is a random vector uniformly distributed in the range (-1, 1) 
and the sign “◦” denotes an element-by-element multiplication. 

 
Step 5: Termination criterion control. Steps 2-4 are repeated until a termination criterion is 

satisfied. It should be noted that, the status of a body (stationary or moving body) and its 
numbering are changed in two subsequent iterations. 

The flowchart of the CBO algorithm is shown in Fig. 6. 
 
 

5. Design examples 
 
In this section, in order to compare fabrication cost of the castellated beams with circular and 

hexagonal holes, three beams are selected from literature. Here, it is assumed that the compression 
flanges of the castellated beams are restrained by the floor system. Therefore, the overall buckling 
is prevented. 
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Fig. 6 The flowchart of the CBO 
 
 

The CBO algorithm is used for optimizing  these examples to show the efficiency of the new 
optimization algorithm. Among the steel section list of British Standards, 64 Universal Beam (UB) 
sections starting from 254×102×28 UB to 914×419×388 UB are selected to constitute the discrete 
set for steel sections from which the design algorithm selects the sectional designations for the 
castellated beams. In the design pool of diameters, 421 values are arranged which varies between 
180 and 600 mm with an increment of 1 mm. Also, for cutting depth of hexagonal opening, 351 
values are considered which varies between 50 and 400 mm with an increment of 1 mm and 
cutting angle changes from 45 to 64. Another discrete set is arranged for the number of holes 
(Erdal et al. 2011, Saka 2009). Likewise, in all the design problems, the coefficients P1, P2 and P3 
in the objective function are considered 0.85, 0.30 and 1.00, respectively. 

 
5.1 Castellated beam with 4-m span 
 
As the first design example, a simply supported beam with 4m span is selected as shown in Fig. 

7. The beam is subjected to 5 kN/m dead load including its own weight. A concentrated live load 
of 50 KN also acts at mid-span of the beam, and the allowable displacement of the beam is limited 
to 12 mm. The modulus of elasticity is taken as 205 kN/mm2, and Grade 50 is selected for the steel 
of the beam which has the design strength of 355 MPa. The number of CBs is taken as 50 and the 
maximum number of iterations is considered as 200. 

Table 1 represents the design variables and the cost of the castellated beam with 4m span 
obtained by two meta-heuristic methods. The optimum result for castellated beam with hexagonal 
hole is equal in two ways, but it is apparent from Table 1 that the CBO algorithm gives better 
results than ECSS (Kaveh and Talatahari 2010, Kaveh and Talatahari 2011a, b, Kaveh and 
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Table 1 Optimum designs of the castellated beams with 4m span 

Method 
Optimum UB 

section 

Hole diameter
or cutting 

depth (mm) 

Total 
number 
of holes

Cutting 
angle 

Minimum  
cost ($) 

Type of
the hole

CBO algorithm UB 305×102×25 125 14 57 89.78 

HexagonalECSS algorithm 
(Kaveh and 

Shokohi 2014) 
UB 305×102×25 125 14 57 89.78 

CBO algorithm UB 305×102×25 244 14 _ 91.14 

CircularECSS algorithm 
(Kaveh and 

Shokohi 2014) 
UB 305×102×25 248 14 _ 96.32 

 
 
Table 2 Optimum designs of the castellated beams with 8m span 

Method 
Optimum UB 

section 

Hole diameter
or cutting  

depth (mm) 

Total 
number 
of holes 

Cutting 
angle 

Minimum  
cost ($) 

Type of
the hole

CBO algorithm UB 610×229×101 243 14 59 718.93 

HexagonalECSS algorithm  
(Kaveh and 

Shokohi 2014) 
UB 610×229×101 246 14 59 719.47 

CBO algorithm UB 610×229×101 487 14 _ 721.55 
Circular

ECSS algorithm UB 610×229×101 487 14 _ 721.55 

 
 
Shokohi 2014) for cellular beams. Also, it is observed that the castellated beam with hexagonal 
opening have less cost in comparing with the cellular beam. In this problem, the dimension of the 
span is short, hence shear capacity is very important in optimum design of this beam and it is the 
most effective factor in the design of this example. 

Fig. 8 shows the convergence of CBO algorithm for design of castellated beams with different 
openings. 

 
 

 

Fig. 7 Simply supported beam with 4m span 
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Fig. 8 Variation of minimum cost versus the number of iterations for 4m span castellated beam. (a) 
Castellated beam with hexagonal opening; (b) castellated beam with circular opening 

 
 

5.2 Castellated beam with 8 m span 
 
In the second problem the CBO algorithm is used to design a simply supported castellated 

beam with a span of 8 m. The beam carries a uniform dead load of 0.40 kN/m, which includes its 
own weight. The beam is also subjected to two concentrated loads consisting of a dead load of 70 
kN and a live load of 70 kN, as shown in Fig. 9. The allowable displacement of the beam is limited 
to 23 mm. The modulus of elasticity is taken as 205 kN/mm2 and Grade 50 is selected for the steel 
of the beam which has the design strength of 355 MPa. The number of CBs is taken as 50. The 
maximum number of iterations is considered 200. 
 
 

Fig. 9 A simply supported beam with 8m span 
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Fig. 10 Variation of minimum cost versus the number of iterations for a hexagonal beam with 
8 m span: (a) ECSS algorithm; (b) CBO algorithm 

 
 

The beam with 8 m span is separately designed by colliding bodies optimization method and 
ECSS algorithm. The maximum number of iteration is considered the same for both methods. In 
design of the beam with hexagonal hole, the corresponding cost obtained by the ECSS is equal to 
719.47$ while this value is equal to 718.93$ for the CBO algorithm. As a result the performance of 
the CBO method is better than the ECSS algorithm in this design example. The cellular beam 
designed by both algorithms has the minimum cost of 721.55$. These results show that the beam 
with hexagonal opening has less cost than cellular beam and it is a more appropriate option in this 
case. The maximum value of the strength ratio is equal to 0.99 for both hexagonal and circular 
beams, and it is show that these constraints are dominant in the design. 

Fig. 10 shows the convergence of the ECSS and CBO algorithms for design of a hexagonal 
beam with 8-m span. 

 
5.3 Castellated beam with 9 m span 
 
The beam with 9 m span is considered as the third example of this study in order to compare 

the minimum cost of the castellated beams with hexagonal and circular openings. The beam caries 
a uniform load of 40 kN/m including its own weight and two concentrated loads of 50 kN as 
shown in Fig. 11. The allowable displacement of the beam is limited to 25 mm. The modulus of 
elasticity is taken as 205 kN/mm2, and grade 50 is selected for the steel of the beam which has the 
design strength of 355 MPa. Similar to the two previous examples, the number of CBs is taken as 
50 and the maximum number of iterations is considered 200. 

Table 3 compares the results obtained by the CBO with those of the ECSS algorithm. In the 
optimum design of castellated beam with hexagonal hole, ECSS algorithm selects 684×254×125 
UB profile, 13 holes, and 277 mm for the cutting depth and 56 for the cutting angle. The minimum 
cost of design is equal to 995.97$. Also, in the optimum design of cellular beam, the ECSS 
algorithm selects 684×254×125 UB profile, 14 holes and 539 mm for the holes diameter. It is 
observed from Table 3 that the optimal design has the minimum cost of 993.79$ for beam with 
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Fig. 11 Simply supported beam with 9m span 
 
 

Fig. 12 Optimum profiles of the castellated beams with cellular and hexagonal openings obtaind 
by the CBO method 

 
 
Table 3 Optimum designs of the castellated beams with 9 m span 

Method 
Optimum UB 

section 

Hole diameter
or cutting 

depth (mm) 

Total  
number 
of holes

Cutting
angle 

Minimum  
cost ($) 

Type of 
the hole

CBO algorithm UB 684×254×125 233 15 64 993.79 

HexagonalECSS algorithm 
(Kaveh and 

Shokohi 2014) 
UB 684×254×125 277 13 56 995.97 

CBO algorithm UB 684×254×125 538 14 _ 997.57 

CircularECSS algorithm 
(Kaveh and 

Shokohi 2014) 
UB 684×254×125 539 14 _ 998.94 
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hexagonal holes and it is obtained by the CBO algorithm. In cellular beam, the maximum value of 
deflection of the beam is smaller than its upper bound. This show that the strength criteria are 
dominant in the design of this beam and it is related to the Vierendeel mechanism. Similar to the 
cellular beam, in castellated beam with hexagonal opening, the strength constraints are dominant 
in the design process. The maximum ratio of these criteria is equal to 0.99 for the Vierendeel 
mechanism. 

The optimum shapes of the hexagonal and circular openings are illustrated separately in Fig. 
12. 

 
 

6. Conclusions 
 
In this paper, the CBO algorithm is utilized for optimum design of three castellated beams 

selected from literature. Beams with hexagonal and circular openings are considered as 
web-opening of castellated beams. The cost of the beam is considered as the objective function. A 
comparison of the optimal solution is performed between the CBO algorithm and ECSS method. 

It is observed that the optimization results obtained from CBO algorithm for most of the design 
examples have less cost in comparison to the results of the ECSS algorithm. Also, from the results 
obtained in this paper, it can be concluded that the use of beam with hexagonal opening can lead to 
the use of less steel material and it is better than cellular beam from the cost point of view. It 
should be noted that performance of any meta-heurastic algorithm depends on the selection of 
appropriate values for its parameters. The recently developed algorithm, CBO, utilizes simple 
formulation and its application requires no parameter selection. This algorithm does not have 
internal parameter beside the COR. This feature of CBO is a definite strength of this algorithm. 
The results indicate the high capability of the CBO algorithm in finding the optimum solution. 
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