

Steel and Composite Structures, Vol. 18, No. 2 (2015) 289-303
DOI: http://dx.doi.org/10.12989/scs.2015.18.2.289 289

Copyright © 2015 Techno-Press, Ltd.
http://www.techno-press.org/?journal=scs&subpage=8 ISSN: 1229-9367 (Print), 1598-6233 (Online)

Subspace search mechanism and cuckoo search algorithm
for size optimization of space trusses

A. Kaveh and T. Bakhshpoori

Centre of Excellence for Fundamental Studies in Structural Engineering, School of Civil Engineering,
Iran University of Science and Technology, Narmak, Tehran-16, Iran

(Received May 03, 2014, Revised June 09, 2014, Accepted June 14, 2014)

Abstract. This study presents a strategy so-called Subspace Search Mechanism (SSM) for reducing the
computational time for convergence of population based metaheusristic algorithms. The selected
metaheuristic for this study is the Cuckoo Search algorithm (CS) dealing with size optimization of trusses.
The complexity of structural optimization problems can be partially due to the presence of high-dimensional
design variables. SSM approach aims to reduce dimension of the problem. Design variables are categorized
to predefined groups (subspaces). SSM focuses on the multiple use of the metaheuristic at hand for each
subspace. Optimizer updates the design variables for each subspace independently. Updating rules require
candidate designs evaluation. Each candidate design is the assemblage of responsible set of design variables
that define the subspace of interest. SSM is incorporated to the Cuckoo Search algorithm for size optimizing
of three small, moderate and large space trusses. Optimization results indicate that SSM enables the CS to
work with less number of population (42%), as a result reducing the time of convergence, in exchange for
some accuracy (1.5%). It is shown that the loss of accuracy can be lessened with increasing the order of
complexity. This suggests its applicability to other algorithms and other complex finite element-based
engineering design problems.

Keywords: subspace search mechanism; structural optimization; population based meta-heuristic
algorithms; cuckoo search; truss size optimization

1. Introduction

Since the 1960s, due to the significant development in numerical methods and computing, the

finite element analysis has become a frequent tool to solve engineering problems (Reddy 1993).
Parallel to the developments in FEM, optimization methods contributed to the discipline of
structural optimization. The aim of structural optimization is to generate automated procedures for
finding the best possible structure with respect to at least one criterion (the objective), satisfying a
set of constraints (Davarynejad et al. 2012). Two major elements must be included in any
structural optimization problem: one is the analysis or evaluation of the candidate design
considered for structure, and the other is the optimization solver. For the second part, efficient and
fast stochastic optimization algorithms (metaheuristic algorithms) are developed to overcome

Corresponding author, Professor, E-mail: alikaveh@iust.ac.ir

A. Kaveh and T. Bakhshpoori

disadvantages of traditional optimization solvers (Gradient-based optimization algorithms) and
gained increasing popularity because of their ability to deliver satisfactory solutions in a
reasonable time. Performance assessment of a meta-heuristic may be used by solution quality,
computational effort, and robustness (Talbi 2009), directly affected by its two contradictory
criteria: exploration of the search space (diversification) and exploitation of the best solutions
found (intensification). To alleviate these two features over the last three decades various kinds of
population based metaheuristic algorithms have been invented and modified, and applied
successfully in structural optimization. Examples of these are: Genetic Algorithms (GAs) (Tang et
al. 2005), Simulated Annealing (SA) (Lamberti 2008), Ant Colony Optimization (ACO) (Camp
and Bichon 2004), Particle Swarm Optimization (PSO) (Talatahari et al. 2013), Harmony Search
algorithm (HS) (Degertekin 2012), Big Bang-Big Crunch algorithm (BB-BC) (Camp 2007),
Artificial Bee Colony algorithm (ABC) (Sonmez 2011), Charged System Search method (CSS)
(Kaveh and Talatahari 2010a), Imperialist Competitive Algorithm (ICA) (Kaveh and Talatahari
2010b), Cuckoo Search Algorithm (CS) (Kaveh and Bakhshpoori 2013a), Teaching Learning
Based Optimization algorithm (TLBO) (Degertekin 2013), and Colliding Bodies Optimization
(CBO) (Kaveh and Mahdavi 2014) among many others (Hasançebi et al. 2009, Saka and Geem
2013). Further improvement of metaheuristics can be achieved by different strategies such as the
following among many others: Hybridization approaches (Hybrid metaheuristics or combining
with exact methods) (Adeli and Cheng 1994, Kaveh and Talatahari 2009), Parallel Design of
metaheuristics (Sarma and Adeli 2001), approaches to modify the updating rules such as tuning
the control parameters so as to maintain the balance between local search and global search (Liu et
al. 2005), and strategies related to the search space such as search space reduction (Cheng and Yap
2008). The majority of the works are focused on improving the performance of the algorithms in
terms of the fitness function considered, whereas the computational cost and time consumption of
the algorithms have been considered as a secondary issue.

The contribution of this study is to present a strategy for reducing the time of convergence of
population based metaheusristic algorithms in and inductive manner by Cuckoo Search algorithm
(CS) for size optimization of trusses. CS as one of the population based algorithms, incorporates
some cuckoo species lifestyle and Lévy flight behavior. This algorithm is developed by Yang and
Deb (Yang 2008, Yang and Deb 2009), and has been used successfully in structural optimization
problems (Kaveh et al. 2011, 2012, Saka and Dogan 2012, Shayanfar et al. 2013, Gandomi et al.
2013, Kaveh et al. 2014, 2015). Size optimization of trusses is often taken as benchmark in
constrained global structural optimization because of the presence of many design variables (i.e.,
large search spaces) and nonlinear constraints.

The complexity of structural optimization problems can be partially due to the presence of
high-dimensional design variables (Davarynejad et al. 2012). The strategy that we introduce is a
subspace search strategy (named as Subspace Search Mechanism (SSM)), This strategy reduces
the dimension of the problem and lets the algorithm to work with a smaller number of population.
Design variables are categorized to predefined groups (subspaces). SSM focuses on the multiple
use of the metaheuristic at hand for each subspace. Optimization algorithm updates the design
variables for each subspace independently. Updating rules require candidate designs evaluation.
Each candidate design is the assemblage of responsible set of design variables that define the
subspaces of interest. In order to demonstrate the efficiency and robustness of the proposed
approach, SSM is applied in the context of the CS algorithm to three small, moderate and large
weight minimization problems of truss structures with sizing variables (size optimization of
trusses). Optimization results indicate that SSM enables the CS to work with a smaller number of

290

Subspace search mechanism and cuckoo search algorithm for size optimization

population (42%), as a result reduces the time of the convergence, in exchange for some accuracy
(1.5%). It will be shown that this trade off will be lessen with increasing the order of complexity of
the test problems.

The rest of this paper is organized as follows: The proposed SSM is introduced in Section 2
besides outlining the CS algorithm and statement of truss sizing optimization problem. Results of
truss design problems using SSM are discussed in Section 3. Section 4 summarizes the main
findings of this study along with some remarks for future research.

2. Subspace Search Mechanism (SSM) within the CS for truss sizing problem

In this section we describe the Subspace Search Mechanism. First the Cuckoo Search algorithm

is outlined and in subsequent subsection the weight minimization problem of a truss structure is
stated. At the end the Subspace Search Mechanism is described for the CS algorithm for size
optimization of truss problems.

2.1 Cuckoo Search (CS) algorithm

Cuckoo Search is a meta-heuristic algorithm inspired by some species of a bird family called

Cuckoo because of their special lifestyle and aggressive reproduction strategy (Yang 2008). These
species lay their eggs in the nests of other host birds with amazing abilities like selecting the
recently spawned nests and removing existing eggs that increase hatching probability of their eggs.
The host takes care of the eggs presuming that the eggs are its own. However, some of host birds
are able to combat with this parasites behavior of cuckoos, and throw out the discovered alien eggs
or build their new nests in new locations. The cuckoo breeding analogy is used for developing new
design optimization algorithm. A generation is represented by a set of host nests. Each nest carries
an egg (solution). The quality of the solutions is improved by generating a new solution from an
existing solution and modifying certain characteristics. The number of solutions remains fixed in
each generation. In this study the later version of the CS algorithm is used for optimum design of
frames (Yang and Deb 2009). The pseudo-code of the optimum design algorithm is as it follows
(Kaveh and Bakhshpoori 2013b).

2.1.1 Initialize the cuckoo search algorithm parameters
The CS parameters are set in the first step. These parameters consist of the number of nests (n),

the step size parameter (α), discovering probability (pa) and the maximum number of frame
analyses as the stopping criterion.

2.1.2 Generate initial nests or eggs of the host birds
The initial locations of the nests are determined by the set of values randomly assigned to each

decision variable as
).(min,max,min,

)0(
, jjjji xxrandxROUNDnest (1)

where

)0(
, jinest determines the initial value of the jth variable for the ith nest; xj,min and xj,max are the

minimum and the maximum allowable values for the jth variable; rand is a random number in the
interval [0, 1]. The rounding function is introduced due to the discrete nature of the problem.

291

A. Kaveh and T. Bakhshpoori

2.1.3 Generate new Cuckoos by Lévy flights
In this step, all the nests except for the best one are replaced based on their quality by new

cuckoo eggs produced with Lévy flights from their positions as

 rnestnestSnestnest t
best

t
i

t
i

t
i . ..)()()()1((2)

where

t
inest is the ith nest current position, α is the step size parameter; r is a random number from

a standard normal distribution and nestbest is the position of the best nest so far; and S is a random
walk based on the Lévy flights. The Lévy flight essentially provides a random walk while the
random step length is drawn from a Lévy distribution. In fact, Lévy flights have been observed
among foraging patterns of albatrosses, fruit flies and spider monkeys. One of the most efficient
and yet straightforward ways of applying Lévy flights is to use the so-called Mantegna algorithm.
In Mantegnas algorithm, the step length S can be calculated by

/1
v

v
S (3)

where β is a parameter between [1, 2] interval and here it is considered as 1.5; u and v are drawn
from normal distribution as

), ,0(~), ,0(~ 22
vu NvNu (4)

1,
2]2/)1[(

)2/sin()1(
/1

2/)1(

 vu

 (5)

2.1.4 Alien eggs discovery
The alien eggs discovery is performed for each component of each solution in terms of the

probability matrix such as

parandif

parandif
Pij 0

1
 (6)

where rand is a random number in [0, 1] interval, and pa is the discovering probability. Existing
eggs are replaced considering their quality by the newly generated ones from their current
positions through random walks with step size such as

PSnestnest

nrandpermnestsnrandpermnestsrandS
tt *.

:),(2:)),(1(.
1

 (7)

where randperm1 and randperm2 are random permutation functions used for different rows
permutation applied on nests matrix and P is the probability matrix.

2.1.5 Termination criterion
The generating new cuckoos and discovering alien eggs steps are alternatively performed until

a termination criterion is satisfied. The maximum number of analyses is considered as termination

292

Subspace search mechanism and cuckoo search algorithm for size optimization

criterion of the algorithm.

2.2 Statement of the size optimization of truss problem

The weight minimization problem of a truss structure can be stated as follows

 njXg

LxXW

DxxxxX

j

inm

j
jj

ng

i
i

ing

 ,...,2 ,10:Subject to

.minimize To

],,...,,[Find
)(

11

21

 (8)

where {X} is the set of design variables; ng is the number of member groups (i.e., the number of
optimization variables) defined according to structural symmetry; D represents the design space
including the cross-sectional areas of truss elements that can take discrete or continuous values;
W({X}) is the weight of the structure; nm(i) is the number of members included in the ith group; ρj
and Lj are respectively the material density and the length of the jth member included in the ith
group; gj ({X}) denote the n optimization constraints.

In order to handle optimization constraints, a penalty approach is utilized in this study by
introducing the following pseudo-cost function

n

1j
1cos ,0max, .1 2 XgXWXf jt (9)

where υ is the total constraint violation. Constants ε1 and ε2 must be selected considering the
exploration and the exploitation rate of the search space. In this study, ε1 is set equal to one while
ε2 is selected so as to decrease the total penalty yet reducing cross-sectional areas. Thus, ε2
increases from the value of 1.5 set in the first steps of the search process to the value of 3 set
towards the end of the optimization process.

Stress limits on nm truss members are imposed as follows

 nmjXg
u
j

j
j ,...,2 ,1 1

 (10)

Optimization constraints on nn nodal displacements are set as follows

 nnnnmnmnmjXg
u
j

j
j ,...,2 ,1 1

 (11)

where: δi is the displacement of the ith node of the truss, u
i is the corresponding allowable

displacement, and nn is the number of nodes.

2.3 Subspace search mechanism (SSM)

Solving a ng-dimensional structural optimization problem using SSM involves three inter-

related phases:

293

A. Kaveh and T. Bakhshpoori

(1) Modeling the optimization problem, and specifying the ns subspaces taken through the

original ng-dimensional search space:
A ng-dimensional search space the number of possible subspaces } ,...,1{ ngs is

.12
1

ngd

i i

ng
 The Specified set of 2ng

 ‒ 1 subspaces cannot shares a proportion of

dimensions and should cover the entire original search space. For example the possible
sets of subspaces (Si, i = 1,..., ns) for {1, 2, 3} as a 3-dimensional search space can be
considered as: S1 = (s1 = {1}, s2 = {2}, s3 = {3}); S2 = (s1 = {1, 2}, s2 = {3}); S3 = (s1 = {1,
3}, s2 = {2}); S4 = (s1 = {1}, s2 = {2, 3}); and S5 = (s1 = {1, 2, 3}). Subspaces can be
specified by designer based on some criteria of interest. As an example, in truss sizing
optimization problem type of members or the story levels can be used for sub-spacing.

(2) Implementation of optimization algorithm for each subspace independently:
An initial population (n individuals) is randomly generated (Eq. (1)) and progressively
updated to search the optimum for each subspace independently, until the stopping criteria
(maximum number of iterations) is satisfied. Updating rules (Eqs. (2) and (7)) are based on
individual evaluations with some impression of randomness.

(3) Individual evaluation:
In each iteration of the algorithm, the ith individual (i = 1,…, n) of each subspaces are
combined to form a candidate design. The candidate design evaluation (Eq. (9)) reveals the
value of the corresponding objective function (usually, pseudo-cost function including
penalty terms or fitness) for the ith individuals of each subspaces. In this way the number
of optimization problem evaluations, in each iteration of optimization process, is equal to
the number of population (n) considered for the optimizer. SSM can enable the
optimization algorithm to work with less number of population, as a result reduces the
time for convergence. It is known that the conventional structural analysis of candidate
designs during the search usually consumes 85-95% of the total computing time of an
optimization algorithm (Adeli and Cheng 1994). Extra computational cost for multiple use
of optimization algorithm for subspaces can be negligible.

3. Computational tests and analysis

In this section to investigate the effectiveness of the proposed SSM, three space trusses
consisting of a 72-bar, a 144-bar and a 216-bar, considered as the small, moderate and large test
cases respectively, are optimized. The last two trusses are the scaled structures based on the first
test problem. Three options are considered for the Cuckoo Search algorithm as the optimizer in
this study: (i) standard CS (titled as SCS) with the following recommended parameter values for
an efficient optimum design process of trusses (Kaveh and Bakhshpoori 2013a): n = 7, α = 0.1 and
pa = 0.3; (ii) CS with the subspace search mechanism (titled as CS-SSM) in which CS can works
with less number of population; (iii) standard CS with less number of population titled as reduced
Cuckoo Search (RCS). Our simulation results show that SSM lets CS to reduce the number of
population to 4 (42% saving in computational cost) which are considered in two last options. Two
other parameters for two last options are considered the same as the first one. To investigate the
effect of the initial solution on the final results, each example is solved independently 25 times

294

Subspace search mechanism and cuckoo search algorithm for size optimization

with random initial designs due to the stochastic nature of the algorithm. The optimizer and the
proposed method are coded in MATLAB and structures are analyzed using the direct stiffness
method.

3.1 The 72-bar space truss

Fig. 1 shows the schematic of the benchmark 72-bar space truss with its topology, geometry,

element grouping, nodes and element numbering schemes. The material density is 0.1 lb/in3 and
the modulus of elasticity is 107 psi. The 72 structural members of this spatial truss are categorized
into 16 groups using symmetry: (1) A1–A4; (2) A5–A12; (3) A13–A16; (4) A17–A18; (5) A19–A22; (6)
A23–A30; (7) A31–A34; (8) A35–A36; (9) A37–A40; (10) A41–A48; (11) A49–A52; (12) A53–A54; (13)
A55–A58; (14) A59–A66; (15) A67– A70; and (16) A71–A72. In this example, designs for a multiple
load cases are performed. The values and directions of the two load cases applied to the 72-bar
spatial truss are listed in Table 1. The members are subjected to the stress limits of ± 25 ksi.
Maximum displacement limitations of ± 0.25 in are imposed on every node in every direction. The
minimum value for the cross-sectional areas is 0.1 in2 and the maximum value is limited to 4.0 in2.

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

1 2

3
4

5 6 7

8

9 10

11

12

13

14

15

16 17

18

(1) (2)

(5) (6)

(9) (10)

(13) (14)

(17) (18)

X

Z

60 in.

60 in.

60 in.

60 in.

120 in.

120 in.

X

Y

Typical Story
Element and node numbering

Fig. 1 Schematic of the spatial 72-bar truss
Table 1 Multiple loading conditions (kips) for the 72-bar truss

295

A. Kaveh and T. Bakhshpoori

Case Node Fx Fy Fz

1

17 0.0 0.0 −5.0

18 0.0 0.0 −5.0

19 0.0 0.0 −5.0

20 0.0 0.0 −5.0

2 17 5.0 5.0 −5.0

0 500 1000 1500

400

500

600

700

800

Iterations

Pe
na

li
ze

d
w

ei
gh

t (
lb

)

CS-SSM
RCS
SCS

0 500 1000 1500
375

380

385

390

395

400

Iterations

Pe
na

li
ze

d
w

ei
gh

t (
lb

)

CS-SSM
RCS
SCS

Fig. 2 Comparison of convergence curves obtained for the 72-bar truss relative to the average
optimization of 25 independent runs

Table 2 Performance comparison of SCS, RCS and CS-SSM for the 72-bar truss in 25 runs

Option
Weight (lb)

Best Average Worst SD

SCS 379.69 379.85 380.37 0.14

RCS 380.06 (0.10%) 387.42 (1.99%) 450.74 (18.50%) 17.77

CS-SSM 379.85 (0.04%) 382.84 (0.79%) 412.48 (8.44%) 7.79

Sub-spacing is performed for two adjacent stories and each type of members (columns, vertical
braces, beams and horizontal braces). All 16 design variables are sub-spaced as: S = {[1 5] [9 13]
[2 6] [10 14] [3 7] [11 15] [4 8] [12 16]}. The maximum number of truss analyses equal to 14000
is considered as the stopping criteria which results in 1000 and 1750 number of algorithm
iterations for the first option and two for the last options, respectively. The convergence history of
average optimization results achieved for 25 independent runs based on the standard Cuckoo
Search (SCS), Cuckoo Search with Subspace Search Mechanisim (CS-SSM) and Cuckoo Search
with less number of analyses (RCS) are compared in Fig. 2. As it is clear, the CS-SSM diagram is
consistent with the SCS in the global search phase and traces the SCS in the local search phase
with minor loss of accuracy. Table 2 represents the statistical results of 25 independent runs for
three options with 1000 as the number of iterations. It can be seen that the SSM lets CS to work
with less number of individuals. SSM enables the CS for 42% saving in computational cost to
reach to the designs slightly heavier (average 0.79%) than ones obtained by the standard CS
(CS-SSM works with 4 populations instead 7, saving 6 truss analyses for each iteration). Although

296

Subspace search mechanism and cuckoo search algorithm for size optimization

CS with 4 individuals results in practically the same design as those of SCS and CS-SSM.
However, the average performance of the algorithm is not acceptable. Also from Fig. 2 it is clear
that the RCS cannot trace the SCS converging behavior. Table 3 lists the best obtained designs by
three options considering 1000 number of iterations as the stopping criteria. Optimum reported
designs for this test case using other algorithms available at the optimization literature (Kaveh and
Bakhshpoori 2013a), are also included in this table to show the reliability of the coded CS
algorithm.

3.2 The 144-bar space truss

This truss is considered as a moderate test case which is the developed form of the first test

problem with 8 stories. All 144 members are categorized like the first example which results in 32
member grouping. Maximum displacement limitations of ± 0.48 in are imposed on every node in
every direction. The minimum value for the cross-sectional areas is 0.1 in2 (0.6452 cm2) and the
maximum value is limited to 10.0 in2. The same load conditions are applied to the same nodes of
as those of the first problem in the last story. Remaining details are identical to the first example.

Sub-spacing for 32 design variables are considered the same as that of the 72-bar truss (for each
type of members in two adjacent stories). This leads to a set of subspaces for use of SSM as: S =
{[1 5] [9 13] [17 21] [25 29] [2 6] [10 14] [18 22] [26 30] [3 7] [11 15] [19 23] [27 31] [4 8] [12

Table 3 Optimum design by different methods for the 72-bar spatial truss

Element group

Optimal cross-sectional areas (in2)

 Present work

GA ACO PSO BB–BC HBB–BC SCS RCS CS-SSM

1 A1–A4 1.755 1.948 1.7427 1.8577 1.9042 1.8687 1.8642 1.9049

2 A5–A12 0.505 0.508 0.5185 0.5059 0.5162 0.5219 0.5429 0.5201

3 A13–A16 0.105 0.101 0.1000 0.1000 0.1000 0.1002 0.1000 0.1000

4 A17–A18 0.155 0.102 0.1000 0.1000 0.1000 0.1001 0.1000 0.1000

5 A19–A22 1.155 1.303 1.3079 1.2476 1.2582 1.2815 1.2806 1.2384

6 A23–A30 0.585 0.511 0.5193 0.5269 0.5035 0.5158 0.5011 0.5145

7 A31–A34 0.100 0.101 0.1000 0.1000 0.1000 0.1000 0.1000 0.1009

8 A35–A36 0.100 0.100 0.1000 0.1012 0.1000 0.1000 0.1000 0.1005

9 A37–A40 0.460 0.561 0.5142 0.5209 0.5178 0.5230 0.5055 0.5417

10 A41–A48 0.530 0.492 0.5464 0.5172 0.5214 0.5113 0.5092 0.5089

11 A49–A52 0.120 0.100 0.1000 0.1004 0.1000 0.1001 0.1000 0.1011

12 A53–A54 0.165 0.107 0.1095 0.1005 0.1007 0.1001 0.1000 0.1000

13 A55–A58 0.155 0.156 0.1615 0.1565 0.1566 0.1569 0.1610 0.1566

14 A59–A66 0.535 0.550 0.5092 0.5507 0.5421 0.5371 0.5689 0.5493

15 A67–A70 0.480 0.390 0.4967 0.3922 0.4132 0.4150 0.3816 0.4006

16 A71–A72 0.520 0.592 0.5619 0.5922 0.5756 0.5698 0.5444 0.5632

Weight (lb) 385.76 380.24 381.91 379.85 379.66 379.69 380.06 379.85

297

A. Kaveh and T. Bakhshpoori

0 500 1000 1500 2000 2500
0

2000

4000

6000

8000

Iterations

Pe
na

li
ze

d
w

ei
gh

t (
Ip

)

CS-SSM
RCS
SCS

0 500 1000 1500 2000 2500
1300

1400

1500

1600

1700

1800

Iterations

Pe
na

li
ze

d
w

ei
gh

t (
Ip

)

CS-SSM
RCS
SCS

Fig. 3 Comparison of the convergence curves obtained for the 144-bar truss relative to the
average optimization of 25 independent runs

Table 4 Performance comparison of the SCS, RCS and CS-SSM for the 144-bar truss in 25 runs

Option
Weight (lb)

Best Average Worst SD

SCS 1320.43 1323.68 1370.79 9.89

RCS 1322.76 (0.18%) 1435.60 (8.46%) 1899.43 (38.57%) 152.88

CS-SSM 1321.65 (0.09%) 1339.28 (1.18%) 1446.27 (5.51%) 29.16

16] [20 24] [28 32]}. The maximum number of truss analyses equal to 20000 is considered as the
stopping criteria that results in 1429 and 2500 number of iterations for the first option and for the
two last options, respectively. The convergence history of average optimization results achieved
for 25 independent runs based on the SCS, CS-SSM and RCS are compared in Fig. 3. Again the
CS-SSM diagram is consistent with that of the SCS in the global search phase and traces the SCS
in the local search phase with minor loss of accuracy. Table 4 represents the statistical results of 25
independent runs for three options with 1429 number of iterations. As it is clear the SSM lets CS
to work with less number of individuals. SSM enables CS to reach the designs averagely of 1.18%
heavier than ones obtained via the standard CS with 42% saving in computational cost (CS-SSM
works with 4 number of population instead 7, which means the saving of 6 truss analyses for each
iteration). Although CS with 4 individuals yields practically the same design to SCS and CS-SSM
but the average performance of the algorithm is not acceptable (is heavier more than 8%).
Comparing to first test case as the small one it is clear that SSM effectively refines the
performance of the RCS with increasing the order of the complexity of problem. Also it is clear
from Fig. 2 that the RCS cannot trace the SCS convergence. Table 5 lists the best obtained designs
by three options considering 1429 number of iterations as the stopping criteria.

3.3 The 216-bar space truss

The 216-bar truss as the last test case is the scaled structure of the first example with 12 stories
considered as the large test problem. Members are categorized like the first example resulting in
48 design variables. Maximum displacement limitations of ± 0.72 in are imposed on every node in
every direction. The minimum value for the cross-sectional areas is 0.1 in2 and the maximum

298

Subspace search mechanism and cuckoo search algorithm for size optimization

Table 5 Optimum designs for two last test cases using three options considered for CS

Element group

Optimal cross-sectional areas (in2)

144-bar truss 216-bar truss

SCS RCS CSS-SSM SCS RCS CSS-SSM

1 A1–A4 6.3375 6.5747 6.6133 17.4604 17.6797 17.3243

2 A5–A12 0.7122 0.7006 0.6898 1.5577 1.7164 1.6410

3 A13–A16 0.1000 0.1121 0.1025 0.1003 0.1000 0.1000

4 A17–A18 0.1005 0.1002 0.1000 0.1016 0.1001 0.1002

5 A19–A22 5.2825 5.3041 5.5013 16.1305 16.1796 15.9162

6 A23–A30 0.6927 0.6997 0.6861 1.6031 1.7381 1.6942

7 A31–A34 0.1000 0.1000 0.1008 0.1037 0.1004 0.1022

8 A35–A36 0.1008 0.1015 0.1000 0.1011 0.1063 0.1042

9 A37–A40 4.1698 4.2555 4.3684 14.7491 14.8640 14.4843

10 A41–A48 0.7452 0.7034 0.7144 1.6122 1.5923 1.6549

11 A49–A52 0.1004 0.1000 0.1000 0.1006 0.1000 0.1007

12 A53–A54 0.1004 0.1212 0.1003 0.1006 0.1336 0.1067

13 A55–A58 3.5476 3.7397 3.7117 12.6186 13.2090 12.5319

14 A59–A66 0.7118 0.6678 0.7070 1.6686 1.7446 1.5406

15 A67–A70 0.1011 0.1002 0.1000 0.1006 0.1000 0.1000

16 A71–A72 0.1010 0.1000 0.1086 0.1077 0.1635 0.1000

17 A73–A76 2.5643 2.5070 2.4391 11.5102 11.0379 11.3060

18 A77–A84 0.6874 0.7657 0.7066 1.6569 1.6586 1.6602

19 A85–A88 0.1018 0.1008 0.1003 0.1035 0.1000 0.1044

20 A89–A90 0.1004 0.1003 0.1000 0.1029 0.1001 0.1000

21 A91–A94 1.8255 1.6544 1.7368 10.4172 10.1130 10.2644

22 A95–A102 0.7081 0.6830 0.6891 1.6617 1.6460 1.7035

23 A103–A106 0.1020 0.1000 0.1000 0.1020 0.1005 0.1000

24 A107–A108 0.1006 0.1000 0.1000 0.1000 0.1000 0.1000

25 A109–A112 0.7408 0.8135 0.7709 8.7940 8.1296 9.0349

26 A113–A120 0.6806 0.7345 0.6846 1.6559 1.4398 1.6536

27 A121–A124 0.1010 0.1007 0.1000 0.1009 0.1000 0.1022

28 A125–A126 0.2348 0.1000 0.1257 0.1000 0.1005 0.1084

29 A127–A130 0.1346 0.1431 0.1427 7.4271 7.3187 7.2980

30 A131–A138 0.7894 0.7409 0.7635 1.6321 1.6768 1.6309

31 A139–A142 0.5660 0.5539 0.5311 0.1007 0.1000 0.1040

32 A143–A144 0.7570 0.7732 0.7417 0.1000 0.1008 0.1069

33 A145–A148 - - - 5.7125 5.8723 5.8620

34 A149–A156 - - - 1.6405 1.6077 1.6473

35 A157–A160 - - - 0.1000 0.1471 0.1004

36 A161–A162 - - - 0.1005 0.1002 0.1000

37 A166–A166 - - - 4.3148 3.8847 4.2788

299

A. Kaveh and T. Bakhshpoori

Table 5 Continued

Element group

Optimal cross-sectional areas (in2)

144-bar truss 216-bar truss

SCS RCS CSS-SSM SCS RCS CSS-SSM

38 A167–A174 - - - 1.6313 1.6473 1.6021

39 A175–A178 - - - 0.1013 0.1000 0.1002

40 A179–A180 - - - 0.1000 0.1003 0.1000

41 A181–A184 - - - 2.9194 2.8857 2.9805

42 A185–A192 - - - 1.6131 1.6369 1.6198

43 A193–A196 - - - 0.1000 0.1000 0.1000

44 A197–A198 - - - 0.1004 0.1000 0.1000

45 A199–A202 - - - 1.3295 1.3971 1.3919

46 A203–A210 - - - 1.6328 1.6605 1.6465

47 A211–A214 - - - 1.3035 1.4017 1.3918

48 A215–A216 - - - 0.4610 0.4682 0.4739

Weight (lb) 1320.43 1322.76 1321.65 4990.73 5002.31 4992.61

0 1000 2000 3000
5000

10000

15000

Iterations

Pe
na

li
ze

d
w

ei
gh

t (
lb

)

CS-SSM
RCS
SCS

0 1000 2000 3000

5000

5200

5400

5600

5800

6000

Iterations

Pe
na

li
ze

d
w

ei
gh

t (
lb

)

CS-SSM
RCS
SCS

Fig. 4 Comparison of the convergence curves obtained for the 216-bar truss relative to the
average optimization of 25 independent runs

value is limited to 30.0 in2. The same load conditions are applied to the same nodes as the first
problem in the last story. Remaining details are same as the first example.

Sub-spacing for 48 design variables are considered for each type of members in four adjacent
stories leading to a set of subspaces using by SSM as: S = {[1 5 9 13] [17 21 25 29] [33 37 41 45]
[2 6 10 14] [18 22 26 30] [34 38 42 46] [3 7 11 15] [19 23 27 31] [35 39 43 47] [4 8 12 16] [20 24
28 32] [36 40 44 48]}. The maximum number of truss analyses equal to 30000 is considered as the
stopping criteria which results in 2143 and 3750 number of algorithm iterations for the first option
and the last two options, respectively. The convergence history of the average optimization results
achieved for 25 independent runs based on the SCS, CS-SSM and RCS are compared in Fig. 4. As
it is clear the CS-SSM diagram again is consistent with the SCS in the global search phase and
traces the SCS in the local search phase with minor loss of accuracy. Table 6 represents the
statistical results of 25 independent runs for three options with 2143 iterations. SSM enables CS to

300

Subspace search mechanism and cuckoo search algorithm for size optimization

Table 6 Performance comparison of the SCS, RCS and CS-SSM for the 216-bar truss in 25 runs

Option
Weight (lb)

Best Average Worst SD

SCS 4990.73 4994.73 5002.94 2.86

RCS 5002.31 (0.23%) 5491.43 (9.94%) 6737.88 (34.68%) 560.47

CS-SSM 4992.61 (0.04%) 5057.19 (1.25%) 5417.47 (8.29%) 127.65

reach the designs averagely 1.25% heavier than ones obtained via the standard CS with 42%
saving in computational cost. Comparing to the previous test cases, it is clear that the SSM
effectively refines the performance of the RCS with increasing order of the complexity of problem.
Also it is clear from Fig. 2 that the RCS cannot trace the converging of SCS. Table 5 lists the best
obtained designs by three options considering 2143 number of iterations as the stopping criteria.

4. Conclusions

This paper proposes a strategy named Subspace Search Mechanism (SSM) for population based

metaheuristic algorithms dealing with structural optimization problems, which enables optimizers
to work with less number of population in exchange for some loss of accuracy. SSM is inspired by
this idea that the complexity of structural optimization problems can be partially due to the
presence of high-dimensional design variables. SSM approach aims to dimensional reduction of
the problem. Design variables of a ng-dimentional optimization problem are categorized to
predefined groups (subspaces). SSM focuses on the multiple employment of the metaheuristic at
hand to each subspace. Optimization algorithm updates the design variables for each subspace
independently. Updating rules require the candidate designs evaluation. Each candidate design is
the assemblage of responsible set of design variables for subspaces specified based on some
criteria of interest.

SSM is utilized in conjunction with the Cuckoo Search algorithm for truss sizing optimization
problem (three small, moderate and large space trusses are considered) as a common global
constrained structural optimization problem. CS is successfully applied to structural optimization
problems of the literature. Optimization results indicate that SSM enables the CS to work with less
number of population (42%), as a result reducing the time of convergence, in exchange to some
reduction of accuracy (1.5%). It is shown that the loss of accuracy reduces with the increase of the
order of complexity. This suggests its applicability to other algorithms and other complex finite
element-based engineering design problems. SSM is easy to implement since it needs considering
only a sub-spacing. In solving continuous sizing optimization of trusses, our proposed mechanism
is an effective tool.

Acknowledgments

The first author is grateful to Iran National Science Foundation for the support.

301

A. Kaveh and T. Bakhshpoori

References

Adeli, H. and Cheng, N. (1994), “Augmented Lagrangian genetic algorithm for structural optimization”, J.

Aerosp. Eng., 7(1), 104-118.
Camp, C.V. (2007), “Design of space trusses using big bang-big crunch optimization”, J. Struct. Eng.,

133(7), 999-1008.
Camp, C.V. and Bichon, B.J. (2004), “Design of space trusses using ant colony optimization”, J. Struct.

Eng., 130(5), 741-751.
Davarynejad, M., Vrancken, J., van-den-Berg, J. and Coello-Coello, C.A. (2012), “A fitness granulation

approach for large-scale structural design optimization”, In: Variants of Evolutionary Algorithms for
Real-World Applications, (Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz Eds.),
Springer-Verlag, pp. 245-280.

Degertekin, S.O. (2012), “Improved harmony search algorithms for sizing optimization of truss structures”,
Comput. Struct., 92-93, 229-241.

Degertekin, S.O. (2013), “Sizing truss structures using teaching-learning-based optimization”, Comput.
Struct., 119, 177-188.

Gandomi, A.H., Yang, X.S. and Alavi, A.H. (2013), “Cuckoo search algorithm: a metaheuristic approach to
solve structural optimization problems”, Eng. Comput., 29(1), 17-35.

Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F. and Saka, M.P. (2009), “Performance evaluation of
metaheuristic search techniques in the optimum design of real size pin jointed structures”, Comput. Struct.,
87(5-6), 284-302.

Kaveh, A. and Bakhshpoori, T. (2013a), “Optimum design of space trusses using cuckoo search algorithm
with Lévy flights”, IJST, Trans. Civil. Eng., 37(C1), 1-15.

Kaveh, A. and Bakhshpoori, T. (2013b), “Optimum design of steel frames using cuckoo search algorithm
with Lévy flights”, Struct. Design. Tall. Spec. Build., 22(13), 1023-1036.

Kaveh, A. and Mahdavi, V.R. (2014), “Colliding Bodies Optimization method for optimum design of truss
structures with continuous variables”, Adv. Eng. Softw., 70, 1-12.

Kaveh, A. and Talatahari, S. (2009) “Particle swarm optimizer, ant colony strategy and harmony search
scheme hybridized for optimization of truss structures”, Comput. Struct., 87(5-6), 267-283.

Kaveh, A. and Talatahari, S. (2010a), “Optimal design of skeletal structures via the charged system search
algorithm”, Struct. Multidiscip. Optim., 41(6), 893-911.

Kaveh, A. and Talatahari, S. (2010b), “Optimum design of skeletal structures using imperialist competitive
algorithm”, Comput. Struct., 88(21-22), 1220-1229.

Kaveh, A., Bakhshpoori, T. and Afshary, E. (2011), “An optimization-based comparative study of double
layer grids with two different configurations using cuckoo search algorithm”, Int. J. Optim. Civil. Eng., 1,
507-520.

Kaveh, A., Bakhshpoori, T. and Ashoory, M. (2012), “An efficient optimization procedure based on cuckoo
search algorithm for practical design of steel structures”, Int. J. Optim. Civil. Eng., 2(1), 1-14.

Kaveh, A., Bakhshpoori, T. and Barkhori, M., (2014), “Optimum design of multi-span composite box girder
bridges using cuckoo Search algorithm”, Steel. Compos. Struct., Int. J., 17(5), 705-719.

Kaveh, A., Bakhshpoori, T. and Azimi, M. (2015), “Seismic optimal design of 3D steel frames using cuckoo
search algorithm”, Struct. Design. Tall. Spec. Build., 24(3), 210-227. DOI: 10.1002/tal.1162

Cheng, K.C.K. and Yap, R.H.C. (2008), “Search space reduction for constraint optimization problems”,
Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, 5202:635-639,
Springer-Verlag.

Lamberti, L. (2008), “An efficient simulated annealing algorithm for design optimization of truss structures”,
Comput. Struct., 86(19-20), 1936-1953.

Liu, B., Wang, L., Jin, Y.H., Tang, F. and Huang, D.X. (2005), “Improved particle swarm optimization
combined with chaos”, Chaos, Solitons & Fractals., 25(5), 1261-1271.

Reddy, J.N. (1993), Introduction to the Finite Element Method, McGraw-Hill, New York, USA.

302

Subspace search mechanism and cuckoo search algorithm for size optimization

Saka, M.P. and Dogan, E. (2012), “Design optimization of moment resisting steel frames using a cuckoo
salgorithm”, Proceedings of the Eleventh International Conference on Computational Structures
Technology, (B.H.V. Topping, Ed.), Civil-Comp Press, Stirlingshire, UK, Paper 71.
DOI: 10.4203/ccp.99.71

Saka, M.P. and Geem, Z.W. (2013), “Mathematical and metaheuristic applications in design optimization of
steel frame structures: an extensive review”, Math. Probl. Eng., DOI: 10.1155/2013/271031

Sarma, K.C. and Adeli, H. (2001), “Bilevel parallel genetic algorithms for optimization of large steel
structures”, Comput. Aided. Civ. Infrastruct. Eng., 16(5), 295-304.

Shayanfar, M.A., Ashoory, M., Bakhshpoori, T. and Farhadi, B. (2013), “Optimization of modal load pattern
for pushover analysis of building structures”, Struct. Eng. Mech., Int. J., 47(1), 119-129.

Sonmez, M. (2011), “Artificial bee colony algorithm for optimization of truss optimization”, Appl. Soft.
Comput., 11(2), 2406-2418.

Talatahari, S., Kheirollahi, M., Farahmandpour, C. and Gandomi, A.H. (2013), “A multi-stage particle
swarm for optimum design of truss structures”, Neural. Comput. Applic., 23(5), 1297-1309.

Talbi, E.G. (2009), Metaheuristics: From Design to Implementation, John Wiley & Sons, Hoboken, NJ,
USA.

Tang, W., Tong, L. and Gu, Y. (2005), “Improved genetic algorithm for design optimization of truss
structures with sizing, shape and topology variables”, Int. J. Numer. Meth. Eng., 62(13), 1737-1762.

Yang, X.S. (2008), Nature-Inspired Metaheuristic Algorithms, Luniver Press.
Yang, X.S. and Deb, S. (2009), “Engineering optimization by cuckoo search”, Int. J. Math. Model. Num.

Optim., 1, 330-343.

BU

303

