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Abstract.  This paper deals with the geometric nonlinear bending analysis of laminated composite 
stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and 
three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the 
present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement 
relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study 
of the present formulation is carried out first and the results are compared with the results published in the 
literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner.  The 
effects of lamination angle, depth of stiffener and number of layers, on the bending response of the 
composite stiffened plates are considered and the results are discussed. 
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1. Introduction 

 
With the increased application of fiber reinforced composites in various fields, research on their 

behaviour for different structural form has also increased. Most commonly used structural forms 
are plates, used in aircraft, ship and automotive industries. The performance, i.e., strength/stiffness 
to weight ratio of the plates is enhanced by adopting suitable stiffened forms. The advanced 
mechanical properties of composite materials have resulted in large weight saving, and the use of 
stiffeners further enhance the weight saving. The composite material along with the use of 
stiffeners, have given flexibility in designing an efficient component, at the same time it requires a 
complex mathematical model to analyze their behaviour. As the structural components become 
very thin with the use of composite material and again with the use of stiffeners, they become 
susceptible to large deformation (Polat and Ulucan 2007, Zhang and Kim 2006). At higher loads 
the transverse deflection of plate is large compared to its thickness. The bending and stretching 
coupling comes into play and the load deflection behaviour becomes non-linear. At large 
deflection level, membrane stresses are produced which give additional stiffness to the structure. 
So a large deflection analysis provides accurate responses. 
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Sheikh and Mukhopadhyay (2000) have performed the geometric nonlinear analysis of 
isotropic stiffened plates by the spline finite strip method. von Karman’s nonlinear plate theory is 
adopted by them and the formulation is made in total Lagrangian coordinate system. 

Koko and Olson (1991) used a super-element approach for the large deflection and elastoplastic 
analyses of orthogonally stiffened plates. The super-elements are designed to contain all the basic 
mode of deformation so that only one plate element per bay and one beam element per span are 
needed to analyze a stiffened structure, therefore reducing the storage requirement and solution 
time. The geometrically non-linear analysis of isotropic stiffened plates with arbitrarily oriented 
stiffener was reported by Rao et al. (1993). The authors presented the finite element static analysis 
of the large deflection response of isotropic stiffened plates using an isoparametric quadratic 
stiffened plate bending element. The stiffened element was a development of the linear 
formulation presented by Mukhopadhyay and Satsangi (1984). The authors excluded the 
contribution of the stiffener non-linearities in their formulation. Paik and Lee (2005) have 
developed an analytical method to carry out the elastic-plastic large deflection analysis of stiffened 
panels under combined biaxial compression/tension, biaxial in-plane bending, edge shear, and 
lateral pressure loads. They have used the Galerkin method in their formulation. Sapountzaki and 
Dikaros (2012a) have performed a general solution to the geometrically nonlinear analysis of 
plates stiffened by arbitrarily placed parallel beams of arbitrary monosymmetric cross sections 
with a deformable connection subjected to arbitrary loading. The plate-beam structure is assumed 
to undergo moderate large deflections and the nonlinear analysis is carried out by retaining the 
nonlinear terms in the kinematical relationships. According to the proposed model, the stiffening 
beams are isolated from the plate by sections in the lower outer surface of the plate under the 
hypothesis that the plate and the beams can slip in all directions of the connection without 
separation and the arising tractions in all directions at the fictitious interfaces are taken into 
account. The same authors (Sapountzaki and Dikaros 2012b) have also carried out the geometric 
nonlinear analysis of stiffened plates without the deformable connection. 

The large deflection analysis of un-stiffened composite plates has been extensively reviewed in 
the paper by Chia (1988). The literature dealing with the flexural behaviour of laminated 
composite stiffened plates is few and mostly restricted to small deflection. Turvey (1983) has 
analyzed the uniformly loaded ring-stiffened composite stiffened plates for large deflection. In his 
modeling, the effect of stiffener in the plate has been incorporated by considering statically 
equivalent local body forces acting on the plate. The large deflection equations have been solved 
by finite difference scheme. Liao and Reddy (1990) have investigated the large deflection 
behaviour of composite stiffened plates and shells by the finite element method. They have used 
degenerated three dimensional shell elements and associated curved beam elements which have 
been derived from the degenerated elements by imposing appropriate kinematic constraints. The 
incremental equations of motion developed using the principle of virtual displacement of a 
continuum and the total Lagrangian concept have been solved by the Newton-Raphson iteration 
procedure. The experimental investigation on the flexural behaviour of composite stiffened plate in 
the nonlinear range has been carried out by Hyer et al. (1990). They have used the STAGS 
(Almroth and Brogan 1978) computer code to compare the experimental results with the analytical 
ones. STAGS models the stiffened plate as shell branches. Chattopadhyay et al. (1995) have 
performed the large deflections analysis of laminated composite stiffened plates using an eight 
noded isoparametric element. The element formulation is based on Reissner–Mindlin’s hypothesis 
with a total Lagrangian description of motion. The nonlinear equilibrium equations are solved by 
the Newton-Raphson iteration procedure. Goswami and Mukhopadhyay (1995) have analyzed the 

868



 
 
 
 
 
 

Nonlinear bending analysis of laminated composite stiffened plates 

eccentrically stiffened composite shells for the first time in the literature. They have used the 
9-noded curved Lagrangian element stiffened with laminated stiffeners in their formulation. They 
have not reported any plate results in this paper. Kolli and Chandrashekhara (1997) have presented 
the static and dynamic analysis of eccentrically stiffened laminated plates. In the formulation they 
have considered the von Kamran kinematic relations of plate and stiffener. This formulation can 
analyze thin and thick laminated stiffened plates. They have used nine-noded isoparametric 
quadrilateral elements for the plate and three-noded isoparametric beam elements for the stiffeners. 
Ojeda et al. (2007) have carried out the large deflection finite element analysis of isotropic and 
composite plates with arbitrary orientated stiffeners. The large deflection analysis of laminated 
composite stiffened plates without stiffeners have been carried out by Cetkovic and Vuksanovic 
(2011a, b) using layer wise displacement model. With the layerwise displacement field, nonlinear 
Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear 
elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 
2D problem and the nonlinear equilibrium integral form is obtained. The resulting equations are 
solved by MATLAB computer program. Dash and Singh (2010) have performed the geometrically 
nonlinear bending analysis of laminated composite un-stiffened plate by finite element method. 

From the literature it is revealed that the works reported by the earlier investigators in the 
nonlinear bending behaviour of laminated composite stiffened plates are few. Still there exist a lot 
of scope to study the large deflection behaviour of the composite stiffened plates, as the thin 
composite structural elements are highly susceptible to large deformation. In this paper the 
emphasis has been given in the formulation of shell element and the stiffener element with the 
Green-Lagrange strain displacement relationship. The formulation of the stiffener is efficient. The 
nonlinear bending analysis of laminated stiffened plate subjected to uniform transverse loading is 
carried out. The total Lagrangian approach is taken in the formulation of the nonlinear equlibrium 
equations. The resulting nonlinear equations are solved by the Newton-Raphson iteration 
technique along with the incremental method. The effects of lamination angle, depth of stiffener 
and number of layers, on the bending response of the composite stiffened plates are considered and 
the results are discussed. 
 
 
2. Formulation 

 
The plate skin and the stiffeners are modeled discretely. The plate is modeled with Ahmad et 

al.’s (1970) degenerated shell element with Green-Lagrange strain displacement relationship. The 
element contains five degree of freedom per node, θz is neglected. Shear correction factor of 5/6 is 
adopted in the stress-strain relationship for transverse shear stresses. A three noded degenerated 
curved beam element with five degree of freedom per node is taken to model the stiffeners. As the 
in-plane rigidity of the plate is very high the sixth d.o.f. θz in the beam element is also neglected, 
as the bending of stiffener in the in-plain direction of the plate skin is insignificant. To consider the 
torsional rigidity of the beam adequately, a torsional correction factor is introduced in the 
formulation of the stiffener. The formulation of stiffener element is also based on the degeneration 
of the three dimensional solid element following the basic concept of degeneration of the shell 
element. The detail formulations of the shell element and stiffener element are presented below. 

 
2.1 Shell element 
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The formulation of the shell element is based on the basic concept of Ahmad et al. (1970), 
where the three-dimensional solid element used to model the shell is degenerated with the help of 
certain extractions obtained from the consideration that the dimension across the shell thickness is 
sufficiently small compared to other dimensions. The detail derivation of this element for isotropic 
case is available in the literature (Ahmad et al. 1970, Zienkiewicz 1977, Rao 1999). 

The element has a quadrilateral shape having eight nodes as shown in Fig. 1(a) where the 
external top and bottom surfaces of the element are curved with linear variation across the shell 
thickness. Fig. 1(b) shows the global Cartesian and local co-ordinate system at any node i. The 
geometry of the element can be nicely represented by the natural coordinate system (ξ, η and ζ) 
where the curvilinear coordinates (ξ - η) are in the shell mid-surface while ζ is linear coordinate in 
the thickness direction. According to the isoparametric formulation, these coordinates (ξ, η and ζ) 
will vary from ‒1 to +1 on the respective faces of the element. The relationship (Eq. (1)) between 
the global Cartesian coordinates (x, y and z) at any point of the shell element with the curvilinear 
coordinates holds good. This is the geometry of an element, which is described by the coordinates 
of a set of points taken at the top and bottom surfaces, where the line joining a pair of points (itop 

and ibottom) is along the thickness direction i.e., normal to the mid-surface at the ith node point. The 
line joining the top and bottom points is the normal vector (V3i) at the nodal point i. 
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where Ni are the quadratic serendipity shape functions in (ξ - η) plane of the two- dimensional 
element. 

Eq. (1) may be rewritten in terms of mid-surface nodal coordinates with the help of unit nodal 
vectors (v3i) along the thickness direction as 
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Fig. 1 (a) Eight-noded quadrilateral degenerated shell element in curvilinear co-ordinates; (b) Global 
Cartesian co-ordinate (x, y and z) and local co-ordinate system at any node i 
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where, l3i,m3i and n3i are direction cosines of the nodal vector (V3i), i.e., components of unit nodal 
vectors (v3i), v3i is the unit vector along (V3i) direction, hi is the thickness at node i. 

Two orthogonal tangential vectors V2i and V1i are formed at the node i which are normal to V3i 
vector. The two tangential vectors V2i and V1i not necessarily follow ξ and η directions. The unit 
vectors along V2i  and V1i directions are v2i and v1i. The local co-ordinates x’, y’ and z’ are directed 
along V1, V2 and V3 directions respectively. The directions cosines of x’, y’ and z’ and V1, V2 and V3 
are same as the components of unit vectors v1, v2 and v3. The displacement u, v and w are along the 
global coordinates x, y and z directions. Similarly the local displacement components u’, v’ and w’ 
are along the local coordinates x’, y’ and z’ directions. The rotations of the mid surface normal θx 
and θy are taken about the local coordinates y’ and x’ or v2 and v1 directions respectively. 

The displacement field (Eq. (3)) of a point within the element can be defined with the help of 
three mid surface nodal translational displacement(ui, vi and wi) along the global Cartesian 
co-ordinates directions and two rotational components θxi and θyi about the local coordinates y’ and 
x’ directions. 
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where, l1i,m1i and n1i are direction cosines of the nodal vector (V1i), i.e., components of v1i, l2i, m2i 

and n2i are direction cosines of the nodal vector (V2i), i.e., components of v2i, and {d} is nodal 
displacement vector 

  T
yxyx uuwvud ][ 882211111                     (4) 

 
The strain displacement relationship with Green-Lagrange strain of the element in local 

co-ordinate system (x’-y’-z’) can be expressed as 
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     nl  0                             (6) 

 
After performing number of operations using Eqs. (2) and (3) we can write 
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       dBdB nl
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where, [B′0] and [B′nl] are strain-displacement matrices with respect to linear and nonlinear strain 
components respectively in local co-ordinate system (x’ - y’ - z’). The normal strain εz′ along z′ 
direction is neglected. 

Knowing, the stress-strain relationship of the laminated composite material in each layer in its 
material axis system (1 - 2 - 3), the stress-strain relationship in the local co-ordinate systems (x’ - 
y’ - z’) can be found out by simple transformation. Here material axis 3 is directed along z’ 
direction.  The material axes 1 - 2 lie in x’ - y’ plane but it can be oriented at some angle . After 
transforma- tion the stress-strain relationship in the local co-ordinate systems can be written as 
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After finding [B′0], [B′nl] and [D′] matrices the secant stiffness matrix can be expressed as 
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This secant stiffness matrix is not symmetric. To efficiently use the storage scheme which is 

used in linear analysis, this non symmetric scant stiffness matrix can be made symmetric (Wood 
and Schrefler 1978) as 
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where, [D′] matrix is stress-strain matrix in local co-ordinate system, and [τ] and [τnl] are stress 
matrix in local co-ordinate system for linear and nonlinear parts of the strain respectively. 

The tangent stiffness matrix, which is used in the nonlinear solution of the equilibrium equation 
by Newton-Raphson method, can be written as 
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2.2 Stiffener element 
 
The derivation of the stiffener element (Fig. 2) is based on the basic concept used to derive the 

shell element. In this case the stiffener element modeled with three dimensional solid element is 
degenerated with the help of certain extractions obtained from the consideration that the dimension 
across stiffener depth as well as breadth is small compared to that along the length. 
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Fig. 2 Degenerated curved beam element 

 

Fig. 3 Orientation of stiffener local axis with respect to shell local axis (Plan view) 
 
 

The stiffener element follows an edge of a shell element where the parameters of three nodes 
lying on that shell element edge are used to express the geometry and deformation of the stiffener 
utilizing compatibility between shell and stiffeners. It helps to eliminate the involvement of 
additional degrees of freedom for the modeling of stiffeners. The stiffener element having any 
arbitrary curved geometry is mapped into a regular domain in  -  -  co-ordinate system where 
all these coordinates vary from – 1 to + 1. Again  is taken along the stiffener axis while  and  
are taken along the width and depth directions respectively. It has been found that the vectors ν1i, 
ν2i and ν3i of the shell element are quite useful for the representation of geometry and deformation 
of the stiffener element. For the stiffener element a similar set of vectors ν s

1i, ν
s
2i and ν s

3i are used 
and these may be obtained from those of the shell element (ν1i, ν2i and ν3i) as 
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s             (13) 
 
where (ν s

1i - ν
s
2i) is oriented at an angle of θs with respect to (ν1i - ν2i) and ν s

1i follows the stiffener 
axis (Fig. 3). 

The direction of the vectors ν s
1i, ν

s
2i and ν s

3i are the direction of the local co-ordinate system x’, 
y’ and z’ directions respectively for the stiffeners, which are used in the stiffener element’s 
stain-deformation and stress-strain relationships. The component of these vector are direction 

873



 
 
 
 
 
 

Shuvendu N. Patel 

cosines of x’, y’ and z’ lines with respect to the global (x - y - z) co-ordinate. l s
1i, ms

1i and ns
1i 

aredirection cosine of x’ axis for stiffener, those are same as the component of unit vector ν s
1i, l

s
2i, 

ms
2i and ns

2i are direction cosine of y’ axis for stiffener, those are same as the component of unit 
vector ν s

2i and l s
3i, m

s
3i and ns

3i are direction cosine of z’ axis for stiffener, those are same as the 
component of unit vector ν s

3i. 
With these vectors, the co-ordinates of any point within the stiffener may be expressed in terms 

of co-ordinates (xi, yi, zi) of those three nodes of the corresponding shell element edge as 
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where bs is stiffener width, ds is its depth and e is the eccentricity (distance of the stiffener axis 
from the shell mid surface, taken positive when the stiffener is attached to the top of the plate and 
taken negative when the stiffener is attached to the bottom), Nsi are the expressions of the quadratic 

shape functions along -direction 
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Now considering the deformation of the stiffener element, the present formulation differs from 
the usual one (Bathe 1996, Ferguson and Clark 1979, Liao and Reddy 1990) where six degrees of 
freedom are generally taken to represent the biaxial bending apart from torsion and axial 
deformation. In the present study the bending of the stiffener in the tangential plane of the shell is 
not considered. This has helped to eliminate the involvement the sixth degrees of freedom θz like 
that of shell element. Moreover the usual formulation (Bathe 1996, Ferguson and Clark 1979, Liao 
and Reddy 1990) overestimates the torsional rigidity and it cannot be corrected simply with some 
correction factor since it got mixed with other terms. In these cases the warping displacement in 
the stiffener element is also neglected. However, the present formulation facilitates to treat it 
nicely where a torsion correction factor is introduced for parallel as well as perpendicular stacking 
schemes (Figs. 4(a) and (b)). Actually this is the primary object for the reformulation of the 
stiffener element. Based on this the displacement components at any point within the stiffener may 
be expressed as 
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where, θ s

xi and θ s
yi are rotations about local y’ and x’ axes (i.e., vs

2i and vs
1i) of the stiffener node 

respectively. θ s
xi and θ s

yi can be written as 
 

ysxs
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s
xi   cossin   and   sincos           (16) 

 
Using Eq. (16) in Eq. (15), the displacement components at any point within the stiffener can 

be expressed with the help of unit vectors and rotations at shell mid surface node as 
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where,{δs} is the displacement vector of stiffener element, which is same as the displacement 
vector of the three nodes of the shell element coming in line with the stiffener element, s  
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The matrix [Tvi] is used to make the component of translational displacement along ν s

2i at shell 
mid-plane as zero, since the bending of the stiffener in the tangential plane of the shell is not 
considered. Its effect should be insignificant since bending deformation in this mode will be very 
small due to high in-plane rigidity of the shell skin. This assumption will not affect the accuracy of 
the solution. Moreover the flexural rigidity of stiffener in this mode is usually found to be small. 

The matrix [Tvi] used in the above equation may be expressed with the help of ν s
1i, ν

s
2i as 
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The strain displacement relationship with Green-Lagrange strain of the stiffener element in 
local co-ordinate system (x’ - y’ - z’) of the stiffener can be expressed as 
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The strains εy′ and γy′z′ are neglected in the stiffener element. 
Similar to the shell element, the stress and strain components at any point within the stiffener 

element are taken in a local axis system (x’ - y’ - z’) corresponding to ν s
1i, ν

s
2i and ν s

3i. The 
relationship between them may be expressed as 
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where βs is the shear correction factor, which is taken as 5/6. The torsion correction factor βt and 
other rigidity parameters in the rigidity matrix [D ′s] in Eq. (22) are presented for two different 
types of stacking arrangements of the stiffener as shown in Fig. 4(a) (parallel stacking) and Fig. 
4(b) (perpendicular stacking). For both the arrangements, the fibers are oriented with respect to x’ 
axis. The material axis system is 1 - 2 - 3. Axes 1 - 2 is oriented with x’ - r by angle θ, while direction 
3 is along the direction of s. In both the arrangements, the stress-strain relationship of a lamina in 
its axis system (x’ - r - s) as shown in Figs. 4(a) and (b), after transforming from their material axis 
system (1 - 2 - 3) can be written as 
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In (x’ - r - s) axes system for Ply arrangement-I, r corresponds to y’ and s corresponds to z’, 

while in Ply arrangement-II, s corresponds to negative y’ and r corresponds to z’, of the local axis 
system (x’ - y’ - z’). The orientation of x’ of (x’ - r - s) axis system is same as the orientation of x’ of 
(x’ - y’ - z’) in both cases of arrangement. So the rigidity parameters [D ′s] in Eq. (22) is found out 
separately for both arrangements of ply with respect to (x’ - r - s) axes system. The local axes are 
required to be found out in each node and integration point to evaluate the strain-displacement 
matrices. In a particular layer [D ′s] remains constant. It will change from layer to layer. Even if two 
layers have same ply orientation, the torsion correction factor βt changes from layer to layer. 

The rigidity parameters [D ′s] of Eq. (22) may be obtained by modifying the Eq. (23), utilizing 
the conditions (σr = 0) and (τrs = 0). 

For ply arrangement-I, the rigidity parameters will be 
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For ply arrangement-II, the rigidity parameters will be 
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(a) 

 
(b) 

Fig. 4 (a) Ply arrangement-I in stiffener (Parallel stacking); (b) Ply arrangement-II in stiffener 
(Perpendicular stacking) 
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where nls is the number of layers of the stiffener rib and k is the factor to get torsion constant of an 
isotropic beam having rectangular section, which is a function of ds/bs ratio of the rectangular 
section (Timoshenko and Goodier 1951). 

After finding [B ′0s], [B ′nls] and [D ′s] matrices, the secant and tangent stiffness matrices of the 
stiffener element can be obtained by following the same procedure as done in the shell element. 

The secant and tangent stiffness matrices of all elements of the plate and stiffeners are 
calculated and assembled properly to form the global secant and tangent stiffness matrices of the 
structure. The load vector is calculated. The nonlinear equations are solved by the Newton- 
Raphson iteration technique along with the incremental method using Cholesky decomposition 
method. The tolerance is defined with respect to the residual load. 

 
2.3 Nodal load vector 
 
The element load vector due to externally applied distributed load can be derived in a similar 

manner with the help of Eq. (3) and it may be expressed as 
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where qx, qy and qz are the components of the intensity of the distributed load per unit volume 
along x, y and z, respectively. If the distributed load acts on the top surface (ζ = + 1) or bottom 
surface (ζ = ‒ 1), the quantity in Eq. (32) will be computed for the specific value of ζ while the 
integration will be carried out only in the (ξ – η) plane. In that case, intensity of the distributed 
load will be defined as load per unit area. 

 
2.4 Solution of equations 
 
For an elastic continuum undergoing small or large deformation, the equilibrium of external 

and internal forces can be expressed by virtual work equation as 
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where 
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{Δ} = Nodal displacements of the discretized continuum, 
{ψ} = Resultant of external and internal forces, 
{σ} = Stress 
{ε} = Strain 
{F}= Applied load 
 

Again 
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Now, using Eqs. (36) and (39) in Eq. (33), we can write 
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Eliminating, d{Δ}T form both sides the Eq. (40) becomes 
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where, [Ks] = secant stiffness matrix, which is similar to the matrix in Eq. (10). 

Eq. (42) is the final equilibrium matrix either in elemental level or in global level, which is to 
be solved. Eq. (33) to Eq. (43) are the equations written in general sense, i.e., without any specific 
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axis system. So we can evaluate all the parameters in these equations in our required axis system 
and we can solve the Eq. (42) either in elemental level or in global level. 

In the present case the all the parameters are evaluated in the local axis system and the 
equilibrium equation is solved in a global (assembled) sense. The Eq. (42) is a nonlinear equation 
as it contains the nonlinear terms of the square of derivatives of the displacements. The derivatives 
of the displacements are strains. In this case the nonlinear equilibrium Eq. (42) is solved by 
Newton-Raphson iteration technique along with the incremental method. First different load steps 
are selected and in each load step the Newton-Raphson iteration technique is followed to get the 
conversed solution in that step. The solution in the nth load step is used in the solution in n + 1th 
load step. In a particular load step as the solution converges the difference between the external 
load and the internal force developed tends to zero, i.e., {ψ} tends to zero. The iterations should go 
up to the point where {ψ} attains zero value, for this a tolerance is specified. In each iteration the 
load deformation (equilibrium) equation is solved by Cholesky decomposition method. 

In order to solve the nonlinear equilibrium equation by Newton-Raphson, we have to follow the 
following steps. Suppose, at ith iteration the solution of deformations is {Δ}i, and at this 
deformation the resultant of external and internal forces(also called as unbalanced forces) is {ψ}i. 
Then in the next iteration at i + 1, an improved solution of value {Δ}i+1 can be obtained by a Taylor 
series expansion (with one term) of {ψ}i (i.e., in its neighbour point) as 
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, called as tangent stiffness matrix, it can be evaluated from the incremental 

equilibrium equation. The value obtained is similar to the Eq. (12). 
Now, we can write 
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Putting the value of {ψ}i from Eq. (42) in Eq. (46), we get 
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After finding {δΔ}i, we can find 

 
iii }{}{}{ 1                              (49) 

 
In the first load step, initially a linear equilibrium is solved to get {Δ} for the load of that step. 

Once this is obtained we proceed for the nonlinear solution. In the first iteration of the nonlinear 
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solution the {δΔ}1 is obtained. Then the total deformation in the first iteration becomes summation 
of linear solution plus the {δΔ}1. In the second iteration we calculate {δΔ}2 and final deformation 
in this iteration is total of first iteration plus {δΔ}2. Similarly we proceed till the results are 
converged. For the convergence we can use different criterion. In the present method the 
convergence of load is adopted. The iteration process terminates when 
 

 
 

Tolerance100
}{}{

}{}{
2
1

2
1


FF T

T 
                      (50) 

 
In the present analysis 1% Tolerance has been adopted for all the analysis carried out. 
 
 

3. Results 
 

The convergence and validation of the present formulation is tested considering the systems 
solved by previous researchers. The definition of the problem for the present analysis is presented. 
The numerical results and the parametric study of the present system is reported. The formulation 
and the analysis are done by writing a computer program in FORTRAN 90. 

 
3.1 Convergence and validation 
 
The convergence and validation of the present formulation is tested first. Then the results of the 

present problem under investigation are presented. 
 
3.1.1 Two bay rectangular isotropic stiffened plate 
An isotropic stiffened plate (1000 mm × 500 mm × 3 mm) with a central stiffener (depth = 18 

mm, breadth = 10 mm) along the shorter direction, clamped on all sides is considered for the 
convergence study and validation purpose of the present formulation. The Young’s modulus of the 
plate is 71700 N/mm2 and Poission’s ratio is 0.33. The central deflection of the plate with different 
mesh size for two loading intensity is presented in Table 1. It is seen from the table that the results 
are converging quickly with the increase in the mesh size. The 8 × 8 mesh size of the full plate is 
sufficient to get the converged result. 

The result of this problem with 8 × 8 mesh of full plate is compared with the results of Sheikh 

 
 
Table 1 Central deflection of the isotropic stiffened plate 

Mesh size (full plate) 
Central deflection in mm 

Load intensity (0.1 N/mm2) Load intensity (1.0 N/mm2) 

2 × 2 4.766 23.480 

4 × 4 3.418 16.251 

6 × 6 3.284 15.426 

8 × 8 3.268 15.272 

10 × 10 3.258 15.307 
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Fig. 5 Central deflection of isotropic stiffened plate 
 
 
and Mukhopadhyay (2000) by spline finite strip method, Ojeda et al. (2007) by finite element 
method, Koko and Oslan (1991) by super element method as well as by semi-analytic finite strip 
method and ANSYS solved by Ojeda et al. (2007) in Fig. 5, to further validate the formulation. 
Sheikh and Mukhopadhyay (2000) and Ojeda et al. (2007) have used the Green-Lagrange strain- 
displacement relationship with von Karman’s assumption. However, in the present formulation, 
full Green-Lagrange strain-displacement relationship is used. It is seen from Fig. 5 that the results 
obtained in the present formulation are matching well with others’ results. 

 
3.1.2 Cross-stiffened laminated composite stiffened plate 
A simply supported cross stiffened composite square plate (2438 mm × 2438 mm × 6.35 mm) 

as shown in Fig. 6 is taken to further validate the formulation. This plate has been analyzed for 
cross-ply (0 / 90) and angle-ply (‒ 45 / 45) lamination schemes. The stiffeners are attached on both 
sides of the plate on both x and y directions as shown in the Fig. 6. The lamination scheme in the 
plates and stiffeners are same. The stiffener depth, ds = 6.35 mm and breadth, bs = 20 mm. The 
material properties of the plate as well as stiffeners are E1 = 25E2, E2 = 7031 N/mm2, G12 = G13 = 
0.5E2, G23 = 0.2E2 and ν12 = 0.25. Two types of simply supported boundary conditions, BC-1 and 
BC-2 are considered. 

 
BC-1, 
 

Side-1 and Side-2, u = w = φx = 0 (φx is the rotation about y-axis) 
Side-3 and Side-4, v = w = φy = 0 (φy is the rotation about x-axis) 
 
BC-2, 
 

Side-1 and Side-2, v = w = φx = 0 (φx is the rotation about y-axis) 
Side-3 and Side-4, u = w = φy = 0 (φy is the rotation about x-axis) 
 
The central deflection of the plate with BC-1 for different mesh size for two loading intensity 

for both, cross-ply and angle-ply lamination schemes are presented in Table 2. In this case also 
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Fig. 6 Crossed-stiffened plate with cross-section at stiffener with two layers 

 
 
the results are converging quickly with the increase in the mesh size. The 8 × 8 mesh size of the 
full plate is sufficient to get the converged result. So in the present analysis 8 × 8 mesh of the full 
plate is adopted. 

Again to validate the formulation further, the central deflection of the plate with BC-1 are 
presented in Figs. 7(a) and (b) for angle-ply and cross-ply lamination scheme respectively along 
with the results obtained from ABAQUS finite element software. The stiffeners are modeled with 
shell element in ABAQUS and the required shells are tied up with tie constraint (surface-surface). 
The element used in the ABAQUS model is S8R5. The results are matching well. 

Results for this example with BC-2 have been previously reported by Chattopadhyay et al. 
(1995), Liao and Reddy (1990) and Ojeda et al. (2007). The result of this problem with BC-2 for 
angle-ply lamination and cross-ply lamination scheme is compared with the finite element results 
of Chattopadhyay et al. (1995), Liao and Reddy (1990) and Ojeda et al. (2007) along with the 
results obtained from ABAQUS software, in Figs. 8(a) and (b), respectively. The results are 
matching well. 
 
 
Table 2 Central deflection of the laminated composite crossed-stiffened plate (with BC-1) 

Mesh size 
(full plate) 

Central deflection in mm 

Cross-ply scheme Angle-ply scheme 

Load intensity 
(2.0 × 10-5 N/mm2) 

Load intensity 
(1.0 × 10-4 N/mm2) 

Load intensity 
(2.0 × 10-5 N/mm2)

Load intensity 
(1.0 × 10-4 N/mm2) 

2 × 2 1.050 5.028 1.710 5.751 

4 × 4 3.655 11.569 2.145 6.486 

6 × 6 3.825 11.780 2.277 6.563 

8 × 8 3.839 11.869 2.296 6.652 
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(a) 

 
(b) 

Fig. 7 (a) Central deflection of the crossed-stiffened plate with (‒45/45) lamination (BC-1); (b) 
Central deflection of the crossed-stiffened plate with (0/90) lamination scheme (BC-1) 

 
 

3.2 Problem under investigation 
 
The basic configuration of the problem considered here (Fig. 9) is a square laminated 

composite stiffened plate (1000 mm × 1000 mm × 10 mm) with a central x-directional stiffener (ds 

(depth) = 20 mm and bs (breadth) = 10 mm) subjected to uniformly distributed transverse loading. 
The lamination scheme adopted is (θ / ‒ θ)n for plate and stiffener, n varies from 1 to 4. The 

884



 
 
 
 
 
 

Nonlinear bending analysis of laminated composite stiffened plates 

(a) 

 
(b) 

Fig. 8 (a) Central deflection of the crossed-stiffened plate with (‒ 45 / 45) lamination (BC-2); (b) 
Central deflection of the crossed-stiffened plate with (0 / 90) lamination scheme (BC-2) 
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Fig. 9 Stiffened plate with cross-section at stiffener with two layers of lamina 

 
 
numbering of layers starts from bottom to top in plate as well as in stiffeners. The stiffeners are 
attached at the bottom of the plate. All four sides are simply supported. 

 
Simply supported boundary condition: 
 
Side-1 and Side-2, u = w = φx =0 (φx is the rotation about y-axis) 
Side-3 and Side-4, v = w = φy =0 (φy is the rotation about x-axis) 

 
3.3 Numerical results of the present problem 
 
The numerical results of the considered system are presented in this section considering 

different parameters. 
 
3.3.1 Effect of lamination angle 
The central deflection of the simply supported laminated composite stiffened plate considering 

8 × 8 mesh of the whole plate is computed for two layers (θ /‒ θ)1 plate and stiffener, taking θ form 
0° to 90° with the interval of 15°. The material properties of the plate as well as stiffener are, E1 = 
25E2, E2 = 7031 N/mm2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25 and ds (depth of stiffener) = 20 
mm. The stacking in the stiffener is horizontal. The results are presented in Fig. 10. 

It is observed that the stiffened plate with (45 / ‒ 45) skin and s stiffer among all lamination 
angle and plate with (90 / ‒ 90) skin and stiffener is weaker among all lamination angles. The 
central deflection for (45 / ‒ 45) skin and stiffener plate is 21.474 mm and for (90 / ‒ 90) skin and 
stiffener plate is 40.551 mm which is almost double of the previous result. The lamination scheme 
has great effect on the bending response of the stiffened plate. 

 
3.3.2 Effect of stiffener depth 
In this section the effect of stiffener depth on the bending response of the laminated composite 

stiffened plate will be analyzed. The depth of stiffener ds will vary from 10 mm to 40 mm with an 
interval of 10 mm. The stacking in the stiffener is horizontal. The lamination scheme in the plate 
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Fig. 10 Central deflection of stiffened plate for different angle of lamination 

 

 

Fig. 11 Central deflection of stiffened plate for different depth of stiffener (nonlinear solution) 
 
 
skin and stiffener is (45 / ‒ 45). The material constants are same as those of earlier section. The 
results of the central deflection with different load magnitude are shown in Fig. 11 along with the 
results of plate without stiffener. It is observed from this Fig. 11 that the effect of stiffener is not 
very much on the nonlinear bending of the laminated stiffened plate. This is because while 
performing the nonlinear solution the plate without stiffener is also showing very high stiffness 
value, which is coming from the stretching of the plate. In this high stiffness plate the contribution 
of the stiffener on the overall stiffness of the plate is not much. So the results are almost equal in 
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Fig. 12 Central deflection of stiffened plate for different depth of stiffener (linear solution) 

 
 
all cases. On the other hand the contribution of stiffener can be remarkably observed on the 
bending behaviour of stiffened plate while performing a linear solution. In the linear solution the 
extra stiffness coming from the stretching effect of the plate is neglected. The results of the linear 
solution can be observed in Fig. 12. 

 
 

 

Fig. 13 Central deflection of stiffened plate for different numbers of layers in plate and stiffener 
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3.3.3 Effect of number of layers 
To analyze the effect of number of layers in the plate and stiffener on the bending behaviour we 

have taken four different lamination scheme in the plate and stiffener. Those are (45 / ‒ 45), (45 / ‒ 

45 / 45 / ‒ 45), (45 / ‒ 45 / 45 / ‒ 45 / 45 / ‒ 45) and (45 / ‒ 45 / 45 / ‒ 45 / 45 / ‒ 45 / 45 / ‒ 45) lamination on both 
plate and stiffener. The depth of stiffener ds is 20 mm. The stacking in the stiffener is horizontal. 
The nonlinear bending results are shown in Fig. 13. 

It is observed from the Fig. 13 that when the number of layers is increasing the plate is 
becoming more and more stiff. 

 
 

4. Conclusions 
 
The findings of the present investigation can be summarized as: 
 

 The formulation of geometrically nonlinear analysis of laminated composite stiffened plate 
with Green-Lagrange strain displacement relationship in total Lagrangian co-ordinate is 
done. The formulation and analysis is implemented by writing a computer program in 
FORTRAN 90. 

 The stiffened plate with (45 / ‒ 45) skin and (45 / ‒ 45) stiffener is stiffer among all lamination 
angles and with (90 / ‒ 90) skin and (90 / ‒ 90) stiffener is weaker among all lamination angles. 

 The depth of stiffener is not showing much effect on the bending results of the plate. This is 
because in the nonlinear solution the plate without stiffener is also very highly stiff, due to 
the extra stiffness out of the stretching of the plate. In this high stiffness plate the 
contribution of the stiffener on the overall stiffness is not much. 

 The number of layers, on the plate and stiffener for a given plate thickness and stiffener 
depth, has remarkable effect on the bending behaviour. 

 The present formulation can be extended to nonlinear dynamic, postbuckling and other 
aspects of analysis of composite stiffened plates. 
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