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Abstract.  The dynamic characterization is important in making accurate predictions of the seismic 
response of the hybrid structures dominated by different damping mechanisms. Different damping 
characteristics arise from the construction of the tower with different materials: steel for the upper part; 
reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling 
damping matrices and experimental verification is challenging because damping cannot be determined via 
static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to 
be analyzed consists of two or more parts with significantly different levels of damping, such as steel/ 
concrete mixed structure – supporting soil coupled system. The dynamic response of structures is critically 
determined by the damping mechanisms, and its value is very important for the design and analysis of 
vibrating structures. An analytical approach capable of evaluating the equivalent modal damping ratio from 
structural components is desirable for improving seismic design. Two approaches are considered to define 
and investigate dynamic characteristics of hybrid tower of cable-stayed bridges: The first approach makes 
use of a simplified approximation of two lumped masses to investigate the structure irregularity effects 
including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal 
damping; the second approach employs a detailed numerical step-by step integration procedure in which the 
damping matrices of the upper and the lower substructures are modeled with the Rayleigh damping 
formulation. 
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1. Introduction 

 
As demonstrated by many field forced-excitation tests, the damping characteristics of hybrid 

cable-stayed bridges vary from bridge to bridge. This is due to the fact that the energy mechanisms 
predominant in the bridges are different. Therefore an analytical approach capable of evaluating 
the equivalent modal damping ratio of cable-stayed bridge from structural components is desirable 
for improving seismic design (Johnson and Kienhholz 1982, Kawashima et al. 1993, Huang et al. 
1995, Abdel Raheem and Hayashikawa 2007, 2008, Abdel Raheem et al. 2009). By dividing a 
cable-stayed bridge into several substructures in which the energy dissipation mechanism can be 
regarded as the same, it is proposed for each substructure to evaluate the energy dissipation 
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function, which relates the amount of energy dissipation, with either the strain energy or the 
displacement at specific points in the substructures. In code-based seismic design of such hybrid 
structures several practical difficulties are encountered, due to inherent differences in the nature of 
damping of different part. Such structures are irregularly damped and have complex modes of 
vibration, so that their analysis cannot be handled with readily available commercial software. 
Studies of dynamic characterization are extremely important in formulating predictive models for 
seismic response of hybrid cable-stayed bridge structures subjected to earthquake loadings. 
Characterization of damping forces in a vibrating structure has long been an active area of research 
in structural dynamics (Prater and Singh 1990, Prells and Friswell 2000, Angeles and Ostrovskaya 
2002, Du et al. 2002, Adhikari 2004, Xu et al. 2004a, Khanlari and Ghafory-Ashtiany 2005, Abdel 
Raheem and Hayashikawa 2007, 2008). There are many situations in which the un-damped and 
classically damped assumptions are invalid. Examples of such cases are the structures made up of 
materials with different damping characteristics in different parts, structures equipped with passive 
and active control systems and structures with layers of damping materials (Qu et al. 2003). 

The process of modeling damping matrices and their experimental verification are challenging 
because damping cannot be determined via static tests as can mass and stiffness. Furthermore, 
damping is more difficult to determine from dynamic measurements than natural frequency. There 
have been detailed studies on the material damping (Bert 1973) and also on energy dissipation 
mechanisms in the joints (Bread 1979). But here difficulty lies in representing all these tiny 
mechanisms in different parts of the structure in unified manner. The performance of a classical 
damping matrix, constructed either from the use of initial structural properties or current structural 
properties, in the step-by-step solution of a nonlinear multiple degree of freedom system is 
analytically evaluated (Chang 2013). However, in most real systems the damping is non-classical, 
even when classical damping is assumed for each sub-system in the analysis of mixed 
steel/concrete structure - soil interaction systems. In such problems, a more realistic model for the 
damping force should be used to capture the correct response, which leads to complex Eigen 
properties (Chopra 1995). Moreover, the damping matrix is required for most of standard analysis 
methods for a complete system. The seismic response of non-classical damping system can be 
substituted approximately by the seismic response calculated according to uniform damping ratio 
of concrete tower and steel stiffening girder respectively, which can simplify the calculation 
during preliminary analysis (Ding et al. 2011). The equivalent damping could be approximately 
estimated with different methods, such as the complex modal analysis, neglecting off-diagonal- 
elements in modal damping matrix, composite damping rule. 

In composite damping rule method; the equivalent damping ratio is computed as the sum of the 
damping ratio of each component weighted by the modal strain energy ratio of each component to 
that of total bridge system (Ragget 1975, Johnson and Kienhholz 1982, Lee et al. 2004). 
Papageorgiou and Gantes (2010, 2011) proposed equivalent modal/uniform damping ratios for 
structures with Rayleigh type damping and with simpler damping configurations; the basis of these 
works is a trial and error process of potential uniform damping ratios in substitution of the actual 
damping distribution of the structure. Villaverde (2008) proposed a method for using the complex 
modes of irregularly damped structures in combination with response spectra in order to compute 
the maxima of the structural response. Warburton and Soni (1977) proposed a parameter to assess 
the accuracy of the effective modal damping ratio that is computed by eliminating the off-diagonal 
elements of modal damping matrix. 

The classical damping assumption is not appropriate if the system to be analyzed consists of 
two or more parts with significantly different levels of damping, although it may be reasonable for 
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each region separately. The well separated different materials cause damping to be unevenly 
distributed for the complete bridge, known as non-classical damping (Qin and Lou 2000). In 
conventional analysis of hybrid structures, it is generally assumed that damping may be defined in 
terms of modal damping ratios for different types of sub-structures. One such example is mixed 
steel/concrete structure soil system; where the equivalent damping ratio for the hybrid system 
would typically be much different (Japan Road Association 1996, 2002) (15~20% for the soil 
region, 5~10% for footing compared to 2~5% for the steel super-structure). It is shown that the 
effect of non-classical damping is significant in systems that have nearly tuned modes and 
sufficiently small values of modal mass ratios. An analytical approach capable of evaluating the 
equivalent modal damping ratio from structural components is desirable for improving seismic 
design. Two approaches are considered to define and investigate dynamic characteristics of hybrid 
tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two 
lumped masses to investigate the structure irregularity effects including damping of different 
material, mass ratio, frequency ratio on dynamic characteristics and modal damping; the second 
approach employs a detailed numerical step-by step integration procedure in which the damping 
matrices of the upper and the lower substructures are modeled with Rayleigh damping 
formulation. 
 
 
2. Theoretical Approach 

 
2.1 Dynamic equilibrium equation of motion and characteristic equation 
 
The dynamic equilibrium equation of motion for a structural system with n-degree of freedom 

(DOF) subject to ground motion excitation, whether classically or non-classically damped, can be 
expressed as follow 

guMrKuuCuM                              (1) 
 

In which M and K are n × n mass and stiffness positive definite matrices, respectively. C is n × 
n damping semi-positive definite matrix, r is the dynamic load effect vector with all n elements 
being 1. The classical damping occur when the damping matrix is a linear combination of the mass 
and stiffness matrices. A commonly accepted for of the damping matrix Cp of classically damped 
system is Rayleigh’s scheme, thus 

KMC p                                  (2) 
 

where  and  are real parameters, in formulating the Eigen value problem of the system, both 
sides of governing equation are pre-multiplied by M-1, which is also done with Eq. (2), to yield 
 

KMICM p
11                                (3) 

 

Thereby making apparent the foregoing damping leads to a linear combination of what is 
known as identity matrix I and the dynamic matrix M-1K. Therefore, matrices M-1 Cp and M-1K 
share the same set of eigenvectors, which explain why under form (2); the mathematical model can 
be decoupled. Indeed, adding a linear combination of powers of the dynamic matrix at the right 
hand side of equation (3) yields a new matrix that still shares the same eigenvectors with the 
dynamic matrix. Such generalization of the Cp matrix according to generalized damping scheme. 
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For both classically and non-classically damped structures; a coordinate transformation from 
physical coordinate’s u to modal coordinate’s q is adopted 
 

qu                                    (4) 
 

where q is m × 1 generalized coordinates vector (with m  n), and  is the n × m modal matrix, 
normalized with respect to mass matrix and given by the solution of the un-damped Eigen problem 
 

2 MK                                (5) 
 

where  is a diagonal matrix listing the first m few natural circular frequencies. By using equation 
(4), the differential equations of motion (1) in the modal sub-space can be written as follows 
 

gupqqq   2                              (6) 
 

where p is the vector of participation coefficients and Ξ is the generalized damping matrix, given 
respectively by 

 CMrp TT ,                           (7) 
 

For non-classically damped systems, the matrix Ξ is not diagonal. The relative maximum 
magnitude of the off-diagonal elements of Ξ with respect to the diagonal elements can be 
expressed by the following coupling index (Claret and Venancio-Filho 1991, Falsone and 
Muscolino 2004), which measures the degree of non proportionality of the damping. 
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2.2 Eigenvalue problem by state-space approach 
 
The dynamic analysis of non-classically damped systems has been one of the most important 

topics in the field of structural dynamics. In the dynamic analysis of structures, the Eigen value 
problem of the system should be solved a priori in order to avoid resonance or to define the natural 
vibration characteristics. By introducing the state vector U (Veletsos and Ventura 1986), the 
equation of motion can be converted to a 2n-dimensional system of the first order differential 
equation given by 

guFBUUA                                (9) 
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The characteristic equation can be written as 

 

0)( 2  jjj KCM                            (11) 

 
Eq. (6) can be rearranged into state space form as 
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where λj and φj are the j eigenvalue and the eigenvector of the structure system, respectively. The 
complex frequency has the form as 
 

modes  vibrationofnumber  :   ) ,......2 ,1(   mmji jjj            (13) 
 

The equivalent modal frequency wmj and equivalent modal damping ratio ζmj of the complex 
frequencies are give as 
 

modes  vibrationofnumber  :   ) ,......2 ,1(   /   ,22 mmjwaw jjmjjjmj      (14) 

 

The free vibration or natural modes of a non-classically damped system are to be distinguished 
from those of a corresponding system with classical damping by the fact that the components of 
the former modes differ in phase as well as amplitude. The effect of this variable phase on the 
motion of the system is that the motion is no longer characterized by the presence of fixed nodes 
as is the case for un-damped or classically damped systems. The nodes are no longer stationary but 
rather wander along the modal shape. 

 
 

3. Numerical results and discussion 
 

The structural behavior during an earthquake can be explained with the aid of modes of 
vibration of a structure. The major response in a system is primarily due to vibrations of its 
subsystems. The hybrid tower structure is composed of different substructures representing steel 
tower superstructure, reinforcement concrete footing/pier and supporting soil. Different damping 
characteristics arise from the construction of the tower with different materials; steel for the upper 
part; reinforced concrete for the lower main part and supporting soil. Two approaches are 
considered to define and investigate dynamic characteristics of hybrid tower of cable-stayed 
bridges: The first approach method makes use of a simplified approximation of two lumped 
masses to investigate the structure irregularity effects including damping of different material, 
mass ratio, frequency ratio on dynamic characteristics and modal damping; the second approach 
employs a detailed numerical step-by step integration procedure in which the damping matrices of 
the upper and the lower substructures are modeled with the Rayleigh damping formulation. 

 
3.1 Simplified 2-DOF model 
 
An elementary analysis based on a simplified 2-DOF model “SDOF-SDOF coupled 

sub-systems”, Fig. 1, as representative of non-classically damped tower foundation soil interaction 
system is used to demonstrate the dynamic characteristics. Tower structure system of substructures 
with different damping characteristics is represented by simple model to study the effect of system 
structural parameters on modal properties including natural frequency, modal damping 
characteristics, damping matrix, vibration mode shapes and modal participation factor. The 
sub-systems modal parameters including natural frequency and damping ratio for each sub-system 
are give as follows 
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Fig. 1 Simplified 2-DOF tower model 
 
 

 

(a) 

  

(b) (c) 

Fig. 2 Frequency response function: (a) damping effect on vibration modes; (b) Classical (real normal) 
mode schematic; (c) Non-classical (complex) mode schematic 
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)2 ,1(     2   ,/  jmwcmkw jjjjjjj                    (15) 
 

The frequency domain approach is used to find dynamic response characteristics. For systems 
with classical damping distributions, in each mode the phase angles between DOF’s are always 
zero degrees (in-phase) or 180 degrees (completely out-of-phase). The result is that, as time 
progresses, the shape (not the amplitude) of the free vibration response in a given mode shape 
remains constant. For systems with non-classical damping distributions, the phase angles generally 
lie between zero and 180 degrees and thus the DOF’s are either in-phase or completely 
out-of-phase. The result is that the shape of the free vibration response in a given mode shape 
changes with time. From the frequency response function plot as shown in Fig. 2, mass ratio (m2 / 
m1) and frequency ratio (w2 / w1) equal to unity for different level of damping, it can be noticed 
that the amplitude of the peak decreases significantly, verifying the damping effects. The lower 
plot shows the phase relation between the base and the mass for different frequencies. At low 
frequencies, the phase is zero degrees means that the mass is in phase with base. The phase 
becomes 90 degree at resonance. At high frequencies, the phase is ‒180 degree; the mass is out of 
phase with the base and move in opposite directions. The damping ratios affect the slope of the 
phase. 

The effect of mass ratio (m2 / m1) and frequency ratio (w2 / w1) on the acceleration frequency 
response function is investigated for equal damping ratio case (1 = 2 = 0.02) and different 
damping ratio of sub-systems (1 = 0.20, 2 = 0.02), as shown in Fig. 3. As the mass ratio decreases, 
the vibration modes get closer, the soft substructure dominant frequency increase, while the stiff 
substructure dominant frequency decreases. The lower mass ratio leads to significant modal 
coupling especially for equal dominant frequency of substructures. Also it is noted the horizontal 
shift in the position of the natural frequencies as the mass ratio increases. In a complex valued 
eigenvector, each element describes the relative magnitude and phase of the motion of the DOF 
associated with that element when the system is excited at that mode only. The relative position of 
each DOF can be out of phase by the amount indicated by the complex part of the mode shape 
element; all DOFs vibrate with the same phase angle if the mode shape is real-valued. For 
frequency domain analysis, high damping lowers the resonant peak of a frequency response 
function. A further complication of large damping arises when natural frequencies are close, which 
is a common situation for high frequency modes in complex systems. In such situations, the modal 
bandwidth of adjacent resonant peaks might exceed the natural frequency difference, leading to a 
merger of the resonant peaks into one broader peak, which is known as mode coupling. This can 
make it difficult to distinguish the individual modes. It is shown that the effect of non-classical 
damping is significant in systems that have nearly tuned modes and sufficiently small values of 
modal mass ratios. 

The type of modes of vibration would depend on relative stiffness and mass of different 
subsystems of tower structure, to cover a range of parameter variations including tower 
superstructure to footing structure frequency ratio; mass ratio, and different damping ratio for 
sub-systems. One of the major effects of non-classical damping on tower structures is to cause the 
damped modal vectors to be coupled with respect to the damping matrix, which is reflected 
mathematically by the non-zero off-diagonal elements in the transferred damping matrix and 
measured by coupling index given by Eq. (8). Fig. 4 shows the variation of coupling index with 
mass ratio (m2 / m1) and frequency ratio (w2 / w1) for equal and different damping substructures. 
For sub-systems with similar damping (almost classical damping scheme), the coupling index 
increases with structure irregularity as frequency ratio increases and the trend of increase 
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(a) 1 = 0.02, 2 = 0.02 
 

 

(b) 1 = 0.20, 2 = 0.02 

Fig. 3 Frequency response function 
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(b) 1 = 0.05, 2 = 0.02 

Fig. 4 Coupling index variation with mass/frequency ratio 
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(c) 1 = 0.20, 2 = 0.02 

Fig. 4 Continued 
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Fig. 5 1st mode modal damping variation with mass/frequency ratio 
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(c) 1 = 0.20, 2 = 0.02 

Fig. 5 Continued 
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become slight as the system approach regular mass distribution (mass ratio = 1.0) as shown in Fig. 
4(a). The effect of mass ratio on coupling index has bell shape with its peak locus shift to lower 
mass ration with the increase of frequency ratio increase, moreover the peak value get high value. 
For sub-systems with different damping (non-classical damping scheme, super structure with 
damping 2%, and sub-structure with higher damping 5% and 20%), new trend behavior of the 
coupling index behavior with the variation of stiffness and mass irregularity of structure appears. 
For sub-structure with 5% damping, the coupling index have two different regions, Fig. 4(b), the 
first trend is the same as that showed in Fig. 4(a), but this region get smaller. The second trend is 
that the coupling index increases with structure irregularities of mass and stiffness, the peak locus 
make slight angle to the right with the vertical axis. As frequency ratio increases, the coupling 
index decrease and expand over a wide range of mass ratio variation. The second region expands 
while the first region and trend disappear as shown in Fig. 4(c). 
 

3.2 Finite element model of hybrid tower structure 
 

A cable-stayed bridge located in Hokkaido, Japan is considered. Since the cable-stayed bridges are 
not structurally homogeneous, the tower, deck and cable stays affect the structural response in a 
wide range of vibration modes. The tower is taken out of the cable-stayed bridge and modeled as 
three-dimensional frame structure as shown in Figs. 8 and 9. The dimensions units are based on SI 
system, meter; m. The finite element of soil foundation superstructure interaction model is 
formulated based on the design drawings (Abdel Raheem et al. 2003, Park and Hashash 2004, 
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Fig. 6 2nd mode modal damping variation with mass/frequency ratio 
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Fig. 6 Continued 
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(a) 1st mode of vibration 
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(b) 2nd mode of vibration 

Fig. 7 Natural frequency variation with mass/frequency ratio (1 = 0.02/0.20, 2 = 0.02) 

816



 
 
 
 
 
 

Dynamic characteristics of hybrid tower of cable-stayed bridges 

Hayashikawa et al. 2004, Abdel Raheem and Hayashikawa 2013a, b). Damping, which dissipates 
energy, as the velocities of motion and strain are varied, is important to dynamic structural 
analyses. The damping matrix for the complete system is constructed by directly assembling the 
damping matrices for the individual subsystems, assumed to be classically damped. Soil damping 
is captured primarily through the hysteretic energy dissipating response. Viscous damping, using 
the Rayleigh damping formulation, is often added to represent damping at very small strains where 
many soil models are primarily linear (Park and Hashash 2004). For concrete structures, the elastic 
damping ratio is taken as 5% related to critical damping, a value that is supported by recent 
experiments (Petrini et al. 2008). 

For cable stayed bridges without special dampers it can be assumed that the steel structural 
parts exhibit a uniformly distributed 2% viscous damping, and that the concrete parts exhibit a 
uniformly distributed 5% damping, moreover, the Soil damping is captured primarily through the 
hysteretic energy using nonlinear soil springs for large strain of soil plus viscous damping using 
dashpot for small strain range of soil. Consequently, a pair of Rayleigh damping coefficients a0s 
and a1s can be used to describe the element damping matrices of all steel structural components, 
and another pair of Rayleigh damping coefficients a0f and a1f can be used to describe the element 
damping matrices of all concrete structural components. The damping matrices could be 
constructed by Rayleigh’s damping procedures, thus the damping matrices for the structure and the 
foundation soil; 5% for footing and 2% for the steel super-structure is used. 
 

kamackamac fffsss 1010    ,                       (16) 
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Fig. 8 Tower structure of cable-stayed bridge (m)
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Fig. 10 Natural frequencies for the first 50 Eigen modes of the different tower models 
 
 

3.2.1 Vibration analysis hybrid tower model 
Because response of cable-stayed bridges significantly depends on damping ratio, it is of great 

importance to correctly evaluate the damping ratio for seismic design. Therefore an analytical 
approach capable of evaluating the system-level damping based upon the damping information of 
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components is desirable, by dividing a cable-stayed bridge into several substructures. In this study, 
the damping characteristics soil foundation superstructure interaction model of cable-stayed 
bridges tower is studied. The formulation, analysis methods, and results are first compared for 
classically and non-classically damped structural systems. The effect of non-classical damping on 
the properties of natural frequency; vibration modes; effective modal mass and modal damping 
eigenvectors of soil foundation super-structure interaction model is presented and compared with 
that of fixed base model. From the un-damped natural vibration analysis, the dynamic 
characteristics including natural frequency and effective modal mass are investigated. Fig. 10 
shows natural frequencies for the first 50 Eigen modes of the different tower models, the first 
seven modes up to 2.6 Hz almost coincide for the different models, while significant differences 
grow for higher modes due to footing and soil effects. The vibration modes of higher effective 
modal mass are significantly changed, which could be seen from Fig. 11. The type of modes of 
vibration would depend on relative stiffness and mass of different subsystems of tower structure. It 
is shown that tower superstructure fixed base model of classical damping, the modal damping 
increase linearly with natural frequency, while for tower footing soil interaction model give higher 
modal damping and increase with high rate, nonlinearly change as shown in Fig. 12. 

It is shown that in classically damped structures increasing the damping decreases the natural 
frequencies of the system; with non-classical damping some of the natural frequencies of the 
damped system may be greater than the corresponding natural frequencies of the un-damped 
system. Also the coupling index is calculated of the tower structure system, it is equal to 0.174 for 
the tower footing fixed base model, and equal to 0.439 for the tower superstructure footing soil 
interaction model, the modal coupling could attribute different damping characteristics, dynamic 
(frequency ratio) and structural (mass and stiffness ratio) of the substructures of tower structure. 
So in the dynamic analysis of such structure, where the damping matrix is required for the 
complete system, more attention should be considered in the formulation of damping matrix. 
Neglecting the non-classical damping effect would result in un-conservative results. The 
Rayleigh’s damping can cause significant error in the calculation of the damping matrix if the  
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Fig. 11 Modal effective mass ratio for the first 50 Eigen modes of the different tower models 
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Fig. 12 Modal damping ratio for different tower models 
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Fig. 13 In-plane acceleration time history and response spectra 
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Fig. 14 Vertical acceleration time history and response spectra 
 
 
combined structures have significant different substructure damping ratios. 

 
3.2.2 Nonlinear dynamic analysis hybrid tower model 
A nonlinear dynamic analysis, including soil-structure interaction, is developed to estimate the 

seismic response characteristics and to predict the earthquake response of cable-stayed bridges 
towers with spread foundation. An incremental iterative finite element technique is adopted for a 
more realistic dynamic analysis of nonlinear soil-foundation-superstructure interaction system 
under great earthquake ground motion. In the dynamic response analysis, the seismic motion by an 
inland direct strike type earthquake that was recorded during the 1995 Hyogoken-Nanbu 
earthquake of high intensity but short duration is used as an input ground motion to assure the 
seismic safety of bridges. The horizontal and the vertical accelerations recorded at the station of 
JR-Takatori observatory are used for the dynamic response analysis of the cable-stayed bridge 
tower. From the Fourier spectra study of tower acceleration response at different levels of tower 
for soil foundation superstructure nonlinear interaction model, it is shown that there is 
amplification of different modes over a wide frequency range as seen in Figs. 13 and 14. The in- 
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plane superstructure base response spectrum is larger than that at footing base at spectral 
frequency less than 2.0 Hz because of amplification induced by flexible superstructure and 
massive rigid substructure interaction, while at high frequency above 2.0 Hz, the response spectra 
is slightly attenuated due to inertial interaction. The tower top response spectra is significantly 
amplified at low frequency range and is almost totally attenuated at high frequency range due to 
tower superstructure flexibility. The massive foundation has the effect of amplifying the response 
over a wide frequency band. The vertical acceleration response at the footing base level shows 
relative high frequency amplification as the response spectra within the frequency range 2~3 Hz is 
slightly amplified at superstructure base level, and it is dramatically amplified at tower top. On the 
other hand, the response spectrum at high frequency range is attenuated by superstructure 
flexibility filter of the tower response. The nonlinear seismic response of bridge piers is distinctly 
different from that of the linear response. There is a great difference whether it is in vibration 
amplitude or in frequency property. The nonlinear properties of foundations make the stiffness of 
the structure low, the response of rotational angle increase and the response of bending moment 
decrease. 
 
 
4. Conclusions 

 
Structures consisting of two parts, a lower part made of concrete and an upper part made of 

steel are investigated. In code-based seismic design of such structures several practical difficulties 
are encountered, due to inherent differences in the nature of dynamic response of each part. The 
specific issue addressed here is the analysis complications due to the different damping ratios of 
the different parts. Such structures are irregularly damped and have complex modes of vibration. 
In the dynamic analysis of a non-classically damped and coupled system, such soil structure 
interaction systems, a major step is to define and compute the damping matrix for the combined 
system either in the time domain or the modal domain. A characteristic of the non-classical system 
is that the system damping matrix is neither diagonal nor proportional to stiffness or mass matrix. 
The task of computing the damping matrix for the coupled system is a nontrivial process 
especially when the components within the system have large dissimilar damping characteristics, 
and are dominated by different energy dissipation mechanisms. The formulation, analysis methods 
and results have been compared in this paper for classically and non-classically damped structural 
systems. The following conclusions can be drawn from this study: 

One of the major effects of non-classical damping on MDOF structures is to cause the 
un-damped modal vectors to be coupled with respect to the damping matrix. However, the degree 
of modal coupling in tower footing soil structure model is much higher than that in fixed-base 
structure model. It is also illustrated that proportional modal damping can result in incorrect 
responses in non-classically damped systems. In classically damped systems, increasing the 
damping decreases the natural frequencies of the system: with non-classical damping some of the 
natural frequencies of the damped system may be greater than the corresponding natural 
frequencies of the un-damped system. The coupling of the various modes along with their specific 
damping characteristics should be taken into account in the model of the structure. Damping is 
extremely important in formulating predictive models of structures, especially combined structures 
such as tower superstructure footing soil system. The choice of a proper damping ratio is critical to 
the design/analysis of tower structure response. If the dynamic interaction of the tower 
superstructure and the supporting footing structure is deemed significant; then the damping of the 
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combined system can exhibit non-classical damping. Non-classical damping gives rise to 
complex-valued mode shapes. If the tower superstructure is tuned with a dominant mode of the 
supporting structure and has damping values much lower than those of the supporting structure, 
neglecting the non-classical damping effect would result in un-conservative results. The 
Rayleigh’s damping can cause significant error in the calculation of the damping matrix if the 
combined structures have significant different substructure damping ratios. It is shown that the 
effect of non-classical damping is significant in systems that have nearly tuned modes and 
sufficiently small values of modal mass ratios. The inclusion of massive foundation and 
nonlinearity of soil effects leads to amplification of higher modes of vibration and activates the 
high frequency translational motion of the input ground motion and generates foundation-rocking 
responses. 
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