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Abstract.  This paper presents the analytical solutions for the size-dependent static analysis of the 
functionally graded (FG) beams with various boundary conditions based on the nonlocal continuum model. 
The nonlocal behavior is described by the differential constitutive model of Eringen, which enables to this 
model to become effective in the analysis and design of nanostructures. The elastic modulus of beam is 
assumed to vary through the thickness or longitudinal directions according to the power law. The governing 
equations are derived by using the nonlocal continuum theory incorporated with Euler-Bernoulli beam 
theory. The explicit solutions are derived for the static behavior of the transversely or axially FG beams with 
various boundary conditions. The verification of the model is obtained by comparing the current results with 
previously published works and a good agreement is observed. Numerical results are presented to show the 
significance of the nonlocal effect, the material distribution profile, the boundary conditions, and the length 
of beams on the bending behavior of nonlocal FG beams. 
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1. Introduction 

 
In the local (classical) continuum theories based on the hyperelastic constitutive relations, the 

stress state at a reference point is only a function of strain state at that point. The nonlocal 
continuum theory initially developed by Eringen (1972a, b) indicates that the stress state at a 
reference point is a function of every strain state in the continuum body. Thus, the nonlocal theory 
can take the forces between atoms and small length scale into consideration. 

Up to now, considerable research efforts have been made to deal with the static and dynamic 
behavior of beams considering the nonlocal continuum theory. Peddieson et al. (2003) utilized the 
nonlocal continuum theory to develop the nonlocal Euler-Bernoulli beam model. Reddy (2007) 
formulated various beam theories, including Euler-Bernoulli, Timoshenko, Reddy and Levinson 
beam theories based on the nonlocal theory. Reddy (2010) also reformulated the classical and first 
order shear deformation theories for beam and plate concerning with the nonlocal theory and the 
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von Kármán nonlinear strains. Aydogdu (2009) presented a generalized nonlocal beam theory for 
different beam theories. The solutions for the static, buckling and vibration behaviors were 
obtained by Navier solutions for the simply supported beams. Phadikar and Pradhan (2010) used 
the finite element method with the Hermite cubic element to investigate the static, buckling and 
vibration of the nonlocal classical beam and plate. From their work, the solutions for four classical 
boundary conditions were accomplished and indicated that the nonlocal effect depends on 
boundary conditions. Alshorbagy et al. (2013) also carried out the finite element method for the 
nonlocal Euler-Bernoulli beam. Pradhan and Murmu (2010) investigated the flapwise bending 
vibration of the nonlocal Euler-Bernoulli cantilever beam. The governing equation was derived 
and solved by using differential quadrature method. Ghannadpour et al. (2013) performed a study 
on the bending, buckling and vibrational behaviors of the nonlocal Euler-Bernoulli beam by using 
the Ritz method and Wang et al. (2007) obtained the analytical solutions for the free vibration of 
the nonlocal Timoshenko beam. In addition, Zhang et al. (2010) employed the hybrid nonlocal 
theory introduced by Challamel and Wang (2008) to examine the bending, buckling and 
vibrational behaviors of beam. In their work, the obtained solutions from the hybrid nonlocal 
theory were remarkably different to those obtained by the nonlocal theory. 

Functionally grade materials (FGMs) are a kind of composite materials in which the material 
properties are designed to vary continuously and gradually from one surface to the other. In 
contrast to the laminated composites, the FGMs eliminate the undesirable stress discontinuity 
existing between two surfaces in laminated composites. These FGMs are usually composed of the 
mixture of ceramics and metals due to the better thermal resistance of ceramic phase and the 
stronger mechanical performance of metal phase. Owing to this advantage, the FGMs are 
extensively used in many scientific and engineering fields, such as electronics, optics, chemistry, 
biomedical engineering, nuclear engineering. 

During the last decade, many researchers have been attracted to understand the behavior of FG 
beams whose material properties vary through thickness direction. Sankar (2001) obtained the 
elasticity solution for the simply supported FG beam subjected to the sinusoidal transverse load. 
The Young’s modulus varied exponentially through the thickness direction. Zhu and Sankar (2004) 
also dealt with the similar problem in which the Young’s modulus was given by a polynomial 
function in the thickness. The differential governing equation was reduced by using the Fourier 
series method and solved by using the Galerkin method. Chakraborty et al. (2003) introduced the 
new finite beam element to study the thermoelastic behavior of the FG beam based on the 
Timoshenko beam theory, where material properties varied according to exponential and 
power-law functions through thickness direction. Zhong and Yu (2007) presented the analytical 
solutions of FG cantilever beams subjected to different loads with exponential variation of 
material through the thickness direction in term of the Airy stress function. Nie et al. (2013) 
continued to develop the solution for the arbitrary graded material and boundary conditions based 
on the Airy stress function. Li (2008) and Li et al. (2010) suggested the unified approach for 
analyzing the static and dynamic behavior of the FG beam by using the auxiliary function derived 
from governing equations. All parameters of the response of beam such as axial displacement, 
deflection, bending moment, shear force and internal stress could be described in term of the 
auxiliary function. 

Until now, several researchers have performed the free vibration and stability analyses of the 
axially FG beams. Huang and Li (2010) studied the free vibration of the axially FG beam with 
non-uniform cross-section by transforming the differential governing equation into the Fredholm 
integral equation. Hein and Feklistova (2011) dealt with the free vibration of the non-prismatic and 
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axially FG beam by using Euler-Bernoulli beam theory and Haar matrices. In their wok, the 
governing equation was transformed with the aid of a set of simplest wavelets. Shahba and 
Rajasekaran (2012) and Rajasekaran (2013) suggested the differential transform element method 
and the differential quadrature element method of lowest-order to analyze the free vibration and 
stability of the tapered axially FG beam based on the Euler-Bernoulli and Timoshenko beam 
theories, respectively. Shahba et al. (2011) exploited the super-convergent shape functions given 
in Reddy (2002) to examine the free vibration and stability behavior of the axially Timoshenko FG 
beam with classical and elastic supports. Based on the basic displacement functions obtained by 
using unit-dummy-load method, Shahba et al. (2011) introduced the shape functions for the finite 
element method to analyze the static, stability and free vibration responses of the axially 
Euler-Bernoulli FG beam. 

With the speedy progress of technology, some researchers paid attention to study on the 
small-scale FG beams including the nonlocal theory. Eltaher et al. (2012, 2103a, b) exploited the 
general finite element method to figure out the static, stability and free vibration solutions of the 
nonlocal Euler-Bernoulli FG beam. The material property was assumed to vary through the 
thickness direction according to power-law form. Şimşek and Yurtcu (2013) examined the static 
and buckling responses of the nonlocal FG beam. In their study, the Navier solution was obtained 
for both Euler-Bernoulli and Timoshenko simply supported beams. Uymaz (2013) accomplished 
Navier solution for the forced vibration of the simply supported nonlocal FG beam. Various shear 
deformable beam theories were considered and the material properties varied through the thickness 
direction with the power-law form. Furthermore, Şimşek (2102) investigated the free longitudinal 
vibration of the axially nonlocal FG nanorods by using the Galerkin method. In his work, Young’s 
modulus varied through the axial direction according to power-law form. 

From the previously cited references, one can note that despite extensive researches for the 
analysis of FG beams as well as nonlocal FG beams, to the best of authors’ knowledge, due to the 
appearance of nonlocal parameter in governing equations, there was no study reported on the exact 
explicit solutions for the static analysis of FG beams with various boundary conditions considering 
the nonlocal effect in the literature. To overcome, some researchers exploited Navier-type solution 
for only simply supported boundary condition. Therefore, that gives us a strong encouragement to 
obtain the exact solutions for the static behavior of the nonlocal FG beams with various boundary 
conditions. 

The main objectives of this work are to present the explicit solutions for the static analysis of 
the transversely or axially FG beams with various boundary conditions considering the nonlocal 
effect and to show the significant influences of the nonlocal parameter, the material distribution 
profile, the boundary conditions, and the length of beams on the flexural behavior of nonlocal FG 
beams. The outline of this paper is as follows. The nonlocal elasticity theory is presented in 
Section 2. The mathematical model and the governing equations are explained in Section 3. After 
that, the explicit solutions for the bending of the transversely or axially FG beams are derived for 
various boundary conditions in Section 4. Section 5 is devoted to numerical results and parametric 
studies. The accuracy and reliability of this study is presented and verified by comparing the 
results with published works. Finally, concluding remarks are drawn. 
 
 
2. Nonlocal elasticity theory 

 
It is known that in contrast to the constitutive equation in classical elasticity, the nonlocal 
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elasticity theory by Eringen (1983) states that the stress at a point x in an elastic continuum body 
depends not only on the strain at point x but also on those at all other points of the body. Therefore, 
the nonlocal stress tensor σ at point x is expressed as Reddy (2007, 2010), Şimşek and Yurtcu 
(2013). 

  xxtxxσ ijij   d
V

)(,
                         

 (1) 

 
where tij(x) are the components of the classical macroscopic stress tensor at point x; the kernel 
function α(|x′ – x|, τ) is the nonlocal modulus or the attenuation function specifying the nonlocal 
effect at a reference point x produced by the local strain at the source x′, |x′ – x| being the distance 
(in Euclidean distance); τ is a material constant that depends on the internal and external 
characteristic lengths (such as the lattice spacing and wavelength, respectively). The integration is 
taken for total volume V of elastic body. The macroscopic stress t at a point x in a Hookean solid 
is related to the strain ε at the point by the generalized Hooke’s law as follows 
 

klijklij εCtxεxCxt  or    )(:)()(                        (2) 
 
where C(x) is the fourth-order elasticity tensor and the colon denotes the ‘double-dot product’. The 
integral constitutive relation in Eq. (1) makes the elasticity problems difficult to solve, in addition 
to possible lack of determinism. Therefore, Eringen (1983) discussed in detail properties of the 
nonlocal kernel α(|x′ – x|) and proved that when a kernel takes a Green’s function of the linear 
differential operator 

   xxxx  aL                            (3) 
 

The nonlocal constitutive relation in Eq. (1) is reduced to the following differential equation. 
 

ijij tσ aL
                                

 (4) 
 

Thus, Eringen (1983) proposed a nonlocal model with the linear differential operator La by 
matching the dispersion curves with lattice models as follows 
 

  221  aeL oa                               (5) 
 
in where ∇2 is the Laplace operator; eo is a constant to adjust the model to match the reliable 
results by experiments or other models; a is an internal characteristics length (e.g., granular 
distance, lattice parameter); eoa denotes the nonlocal parameter which reveals the small scale 
effect on the responses of structures of nanosize. Eringen (1983) proposed the parameter 

39.02)4( 2  oe  and 288.0121 oe  was given by Wang and Hu (2005). For a 
beam type structure, the nonlocal behavior can be neglected in the thickness direction. Thus, the 
constitutive relation for the nonlocal elasticity can be represented by following form 
 

 2
2

2

, aeE
x

oxx
xx

xx 



 
                      

 (6) 

 
where σxx and εxx are the axial normal stress and the axial strain, respectively, and E is the elasticity 
modulus. When the nonlocal parameter is taken as eoa = 0, the constitutive relation of the local 
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theory is obtained. Integrating Eq. (6) over the area of cross-section of beam, we can obtain the 
axial force-strain and moment-curvature relations as follows 
 





A

xx
x

x dAE
x

N
N 

2

2

                          
 (7) 
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xx
x

x dAzE
x

M
M 

2

2

                         
 (8) 

 
where Nx and Mx are the axial force and the bending moment, respectively, and A is the area of the 
cross-section. 

 
 

3. Functionally graded beams 
 

3.1 Material properties 
 
Figs. 1(a) and (b) show the transversely functionally graded (T-FG) beam and the axially 

functionally graded (A-FG) beam, respectively. It is assumed that the Poisson’s ratio of beam 
through the thickness direction or the longitudinal direction is constant since the effect of 
Poisson’s ratio on the deformation in static analysis is much less than that of Young’s modulus 
from the study by Li (2008). According to the Voigt model introduced by Nakamura et al. (2000), 
the elasticity modulus of the FG material can be expressed as follows 
 

ccmmf VEVEE 
                             

 (9) 

 
where Em and Ec are the elasticity moduli of the metal and the ceramic, respectively; Vm and Vc are 
the volume fractions of the metal and the ceramic, respectively. 

The volume fractions of the T-FG and A-FG materials are defined by the power-law form. The 
metal and ceramic volume fractions are assumed by 
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(a) T-FG beam (b) A-FG beam 

Fig. 1 Geometry and coordinate system of FG beams 
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(a) T-FG beam (b) A-FG beam 

Fig. 2 Variation of Young’s moduli of FG beams with respect to k 
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where k is a material non-homogeneity parameter which indicates the material variation profile 
along the depth or the length of the beam, and k = 0 corresponds to an isotropic homogeneous 
metal and k = ∞ corresponds to an isotropic homogeneous ceramic. 

 Substituting Eqs. (10) and (11) into Eq. (9), the elasticity moduli can be obtained for T-FG 
and A-FG beams, respectively, as follows 

    c

k

cm E
h

z
EEzE 
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and 

    c
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cm E
L

x
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
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



                        
 (13) 

 
Figs. 2(a) and (b) show the variation of the elasticity moduli for T-FG and A-FG beams, 

respectively, with different values of k, where ξ denotes x/L in Fig. 2(b). 
 
3.2 Governing equations 
 
The Euler-Bernoulli beam theory is based on that plane section perpendicular to the axis of the 

beam before deformation remains plane, rigid, and perpendicular to the deformed axis after 
deformation. Owing to the distribution of material, the neutral axis would be disagreed with 
mid-plane for transversely FG beams as mentioned by Li et al. (2005), Kang and Li (2009) and 
Taeprasartsi (2012). However, let assume that the neutral axis is still kept at mid-plane which was 
employed by many researchers working on transversely FG beams. The kinematic relations 
according to the Euler-Bernoulli beam theory can be given by Reddy (1999). 
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   
dx

xdw
zxuzxu o

o
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, 

                         
 (14) 

 

   xwzxw o,                               (15) 
 
where u and w are the axial and transverse displacements, respectively, at any general point in the 
deformed state of beam; uo and wo are their counterparts calculated at the mid-plane. The definition 
of the axial strain is written by 
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where εo is the extensional strain and κ is the bending strain. 

Substituting Eq. (16) into Eqs. (7) and (8), the force-strain and moment-curvature relations of 
the nonlocal Euler-Bernoulli beam theory can be obtained as follows 
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where A11, B11, and D11 are the extensional, bending-extension coupling, and bending stiffnesses, 
respectively, and defied by 

    A
dAzzEDBA 2

111111 ,,1,,
                       

 (19) 

 
In this study, the FG beams are subjected to the uniformly distributed transverse load q. Thus, 

from the principle of virtual work as well as Reddy (2007), we obtain following equations 
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Substituting Eqs. (20) and (21) into Eqs. (17) and (18), the governing equation of the nonlocal 
FG beams can be presented as follows 
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where c1, c2 and c3 are the integration constants. 
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It is noted that in governing equations Eqs. (22) and (23), the nonlocal effect is expressed in 
relation to distributed load. On the contrary, in the governing equations derived by Reddy (2007), 
Aydogdu (2009) and Şimşek and Yurtcu (2013) for bending problem, the nonlocal term is state in 
relation to second order derivative of distributed load. Thus, if beam is subjected to uniform 
loading, the nonlocal term would be eliminated from the governing equations. Due to this problem, 
almost researchers exploit the Fourier transformation to convert uniform load into sinusoidal load. 
In the present study, owing to the advantage of governing equations, the close-form solution can 
be directly obtained from governing equations which are presented in following section. 

 
 

4. Analytical solution for bending of FG beams 
 
In this section, the governing equations are analytically solved for the static bending of T-FG 

and A-FG beams with various boundary conditions. 
 
4.1 Solutions for T-FG beams 
 
The analytical solutions for the bending of T-FG beams are derived. In this case, the 

extensional, bending-extension coupling, and bending stiffnesses can be derived as follows 
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where A, I is the cross section area and the moment of inertia of beams. 
By solving Eqs. (22) and (23), the following equations can be obtained. 
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By introducing the dimensionless parameter ξ = x/L and integrating Eqs. (27) and (28), the 
axial and transverse displacements can be obtained as follows 
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The six integration constants c1~ c6 in Eqs. (29) and (30) can be determined by using the 

boundary conditions, and the explicit expressions for the axial and transverse displacements of 
T-FG beams are presented in Appendix A for various boundary conditions. As can be seen in 
Appendix A, the axial displacement of HH beam is identical to that of CC beam. 

 
4.2 Power series methodology for A-FG beams 
 
In this subsection, the power series methodology is presented in order to obtain the solutions of 

A-FG beams. In a similar way to the T-FG beam, the extensional, bending-extension coupling, and 
bending stiffnesses are obtain as follows 
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It is seen that the axial displacement and the transverse one can be evaluated separately since 
the bending-extension coupling stiffness is zero. For a beam under the uniformly distributed 
transverse load, the axial displacement at mid-plane uo can be omitted. For convenience, let us 
introduce the following denotation. 
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By substituting Eqs. (32)-(35) into Eq. (23), we can obtain the following equation 
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In order to evaluate the transverse displacement wo in Eq. (36), the power series methodology is 

employed. The right terms of Eq. (36) can be transformed by using the Maclaurin expression as 
follows 
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Substituting Eq. (37) into Eq. (36) and integrating Eq. (36), the transverse displacement of the 
A-FG beam can be expressed as follows 
 

         87
0

2

22
3

3
2

4

21
2

32

2

43
cc

nknkLqL

c

nknkqL

c

nknk
w

n

nknknk
n

o 


























 







  (38) 

 

where 

IE

qL

c2

4


                               

 (39) 

 

In which n is the series parameter and c7 and c8 are integral constants. Similar to the previous 
subsections, the four integration constants c2, c3, c7, and c8 in Eq. (38) can be determined by using 
the boundary conditions. The explicit expressions for the transverse displacements of A-FG beams 
with various boundary conditions are presented in Appendix B. 

 
 

5. Results and discussion 
 
In numerical examples, the flexural analysis of the T-FG and A-FG beams with various 

boundary conditions subjected to the uniformly distributed transverse unit load is performed. The 
results obtained from this study are compared with those from other available literatures. 
Especially, the influences of the nonlocal parameter eoa the non-homogeneity parameter k, and the 
boundary conditions (BCs), and the length of beams on the flexural behavior of the T-FG and 
A-FG beams are parametrically investigated. 

 
5.1 Homogeneous beams 
 
For the purpose of verification, the transverse displacements of homogeneous beams 

considering the nonlocal effect are evaluated and compared with the existing data available in the 
literature. The geometry and material properties of beam as well as normalized displacement are 
used according to Aydogdu (2009). Moreover, from the derived solution in Appendix A, B, it is 
interesting to observe that the normalized displacement still base on the length L of beam although 
the results are normalized by dimensionless quantities (for example, normalized deflection w* = 

100 × wo ×
4qL

EI
 for simply supported homogeneous beams under uniform load). It can be 

explained from the assumption that the nonlocal effect is only valid in longitudinal direction for 
beam-type structures. As a result, the nonlocal effect is investigated for the variation of the length 
L and the height is kept constant as h = 1 in this study. For the simply supported (HR or HH) 
beams, the normalized maximum transverse displacements are given in Table 1 for various values 
of the length of beams (L = 10, 30, 100) and the nonlocal parameter. For comparison, the classical 
solutions which neglecting the nonlocal effect, the analytical solutions by Aydogdu (2009) using 
100 terms in the series, and the Navier-type solutions by Şimşek and Yurtcu (2013) are presented. 
It can be found from Table 1 that results from this study are in excellent agreement with those 
from literature. It is noted that the present study obviously gives the exact values. Indeed, the 
well-known maximum displacement for the simply supported beam under the uniformly 
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Table 1 Normalized transverse displacements for homogeneous HR or HH beams (h = 1) 

L (eoa)2 Classical solutions Aydogdu(2009) Şimşek and Yurtcu (2013) This study 

10 

0 1.3021 1.3130 1.3020 1.3021 

1 1.3021 1.4487 1.4270 1.4271 

2 1.3021 1.5844 1.5520 1.5521 

3 1.3021 1.7201 1.6770 1.6771 

4 1.3021 1.8558 1.8020 1.8021 

20 

0 1.3021 1.3130 1.3020 1.3021 

1 1.3021 1.3469 1.3333 1.3333 

2 1.3021 1.3808 1.3645 1.3646 

3 1.3021 1.4148 1.3958 1.3958 

4 1.3021 1.4487 1.4270 1.4271 

50 

0 1.3021 1.3130 1.3020 1.3021 

1 1.3021 1.3184 1.3070 1.3071 

2 1.3021 1.3239 1.3120 1.3121 

3 1.3021 1.3313 1.3170 1.3171 

4 1.3021 1.3347 1.3220 1.3221 
 
 

distributed load is wo =
EI

qL

384

5 4

 from the classical beam theory. Thus, the normalized displacement 

for L = 10 is w*
o = 

384

1005 = 1.3021 which is identical to the present result. It can also be found 

from Table 1 that the displacement increases as the nonlocal parameter increases, and its increase 
ratio of displacement is more significant in the small length. 

 
5.2 T-FG beams 
 
To investigate the significance of using the T-FG material on the displacement of nonlocal 

beams, we consider a nanobeam that is composed of the metal and the ceramic where it changes 
across the beam’s thickness according to a power-law given in Eq. (12). As a result, the bottom 
surface of the beam is pure metal and the top surface of the beam is pure ceramic. The elasticity 
moduli of the metal and the ceramic are Em = 0.25 TPa and Ec = 1 TPa, respectively. Wang and Hu 
(2005) proposed a conservative estimate of the nonlocal parameter 0 ≤ eoa ≤ 2 nm for 
single-walled carbon nanotubes (SWCNTs). Therefore, in this study, the parameter is taken as eoa 
= 0, 0.5, 1.0, 1.5, and 2 nm to investigate the effects of eoa, k, BCs, and the length of beams L on 
the responses of T-FG nanobeams. For convenience, the displacements are normalized by 
following equation 

3
*

4
* 100   ,100

qL

IE
uu

qL

IE
ww c

o
c

o 
                   

(40) 

 

where the transverse and axial displacements are evaluated at mid-span of beams. As seen in Eqs. 
(A-5) and (A-22) in Appendix A, u* at mid-span are zero for HH and CC beams due to symmetric 
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Table 2 Normalized transverse displacements for HR T-FG beams (h = 1) 

L k 

eoa 

0 0.5 1.0 1.5 2.0 

Şimşek 
(2013) 

This  
study 

Şimşek 
(2013) 

This 
study 

Şimşek
(2013)

This 
study 

Şimşek
(2013)

This  
study 

Şimşek 
(2013) 

This 
study 

10 

0 5.2083 5.2083 5.3333 5.3333 5.7083 5.7083 6.3333 6.3333 7.2083 7.2083

0.3 3.1401 3.1387 3.2154 3.2140 3.4415 3.4400 3.8183 3.8167 4.3459 4.3440

1 2.3674 2.3674 2.4242 2.4242 2.5946 2.5947 2.878 2.878 3.2765 3.2765

3 1.8849 1.8850 1.9302 1.9302 2.0659 2.0659 2.2921 2.2921 2.6088 2.6088

10 1.5450 1.5450 1.5821 1.5821 1.6933 1.6934 1.8787 1.8788 2.1383 2.1383

30 

0 5.2083 5.2083 5.2222 5.2222 5.2638 5.2639 5.3333 5.3333 5.4305 5.4306

0.3 3.1401 3.1387 3.1484 3.1471 3.1736 3.1722 3.2154 3.2140 3.2740 3.2726

1 2.3674 2.3674 2.3737 2.3737 2.3926 2.3927 2.4242 2.4242 2.4684 2.2684

3 1.8849 1.8850 1.8900 1.8900 1.9050 1.9051 1.9302 1.9302 1.9654 1.9654

10 1.5450 1.5450 1.5491 1.5492 1.5615 1.5615 1.5821 1.5821 1.6109 1.6110

100 

0 5.2083 5.2083 5.2095 5.2096 5.2133 5.2133 5.2195 5.2196 5.2283 5.2283

0.3 3.1401 3.1387 3.1408 3.1395 3.1431 3.1417 3.1468 3.1455 3.1521 3.1508

1 2.3674 2.3674 2.3679 2.3680 2.3696 2.3697 2.3725 2.3725 2.3765 2.3765

3 1.8849 1.8850 1.8854 1.8854 1.8867 1.8868 1.8890 1.8890 1.8922 1.8922

10 1.5450 1.5450 1.5454 1.5454 1.5465 1.5465 1.5483 1.5484 1.5509 1.5510

 
Table 3 Normalized axial displacements for HR T-FG beams (h = 1) 

L k 
eoa 

0 0.5 1.0 1.5 2.0 

10 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.3 0.8932 0.9200 1.0004 1.1344 1.3220 

1 0.7576 0.7803 0.8485 0.9621 1.121. 

3 0.4176 0.4301 0.4677 0.5303 0.6180 

10 0.1507 0.1553 0.1688 0.1914 0.2231 

30 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.3 0.8932 0.8962 0.9051 0.9200 0.9409 

1 0.7576 0.7601 0.7677 0.7803 0.7980 

3 0.4176 0.4190 0.4232 0.4301 0.4399 

10 0.1507 0.1512 0.1527 0.1553 0.1588 

100 

0 0.0000 0.000 0.0000 0.0000 0.0000 

0.3 0.8932 0.8935 0.8943 0.8956 0.8975 

1 0.7576 0.7578 0.7585 0.7596 0.7612 

3 0.4176 0.4177 0.4181 0.4187 0.4196 

10 0.1507 0.1508 0.1509 0.1511 0.1515 
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characteristic. 
The variations of w* and u* are tabulated in Tables 2-3 with various values of eoa, k, and L for 

HR T-FG beams. As discussed in previous subsection, the height h is kept as unit. Table 2 clearly 
shows that the present transverse displacements agree very well with the solutions of Şimşek and 
Yurtcu (2013). For k = 0, u* are zero for all BCs since there is no coupling effect between bending 
and extension. In addition, once again, if eoa is ignored, one can see that the presented results are 
completely agree with solutions of homogenous beams given by Budynas and Nisbett (2010). For 
example, for k = 0 and eoa = 0, T-FG beams becomes the homogeneous metal beams as shown in 

Fig. 2; then the transverse displacement for HR beam is wo =
IE

qL

m384

5 4

. Thus, the normalized 

transverse displacement is w* = 
m

c

E

E 5100  = 5.2083, which is exactly same with the result from 

this study in Table 2. It is seen in Tables 2-3 that the nonlocal effect is also significant in a small 
length on both of transverse and axial displacements for T-FG beams. 

To show the effects of eoa and k, the variation of w* and u* are plotted in Figs. 3-5 for various 
BCs with L = 10 and h = 1. It is interesting to observe from Figs. 3-5 that as we expected, w* 
decreases as k increases for all BCs since the elasticity modulus increases as shown in Fig. 2(a). 
On the other hand, u* increases with increase of k and obtain the maximum value as k of 0.378. 
This value of k can be easily obtained by optimizing Ω1 in Eq. (31). It means that the coupling 
effect between bending and extension of T-FG beam is strongest for beam with k of 0.378. After 
the maximum point, u* decreases to zero with further increase of k. The reason of this phenomenon 
is due to fact that as k approaches zero or infinite, the T-FG beam approaches the homogenous 
metal or ceramic beams, respectively. It is remarkable observation that the nonlocal effect depends 
on BCs. The distinct features of the effect of the nonlocal parameter on BCs are summarized as 
follows: (1) for HR, HH, CR, and CH beams as shown in Figs. 3(a)-(c), 4, w* increases as eoa 

 
 

(a) HR beams-Transverse displacements (b) HR beams-Axial displacements 

Fig. 3 Effects of a nonlocal parameter eoa and a material non-homogeneity parameter k on the 
transverse and axial displacements of T-FG beams 
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(c) HH beams-Transverse displacements (D) CC beams-Transverse displacements 

Fig. 3 Continueds 
 
 
increases. That is to say, eoa softens nanobeams with above BCs. (2) On the contrary, w* and u* for 
CF beam decrease with increase of eoa as shown in Fig. 5. Thus, eoa affects the increase of 
stiffness of CF beam. (3) There is no effect of eoa on w* for CC beam as seen in Fig. 3(d) which is 
found to be consistent with the results of Alshorbagy et al. (2013) and Eltaher et al. (2013a, b). (4) 
Finally, the effect of eoa on w* is the largest for HR beam, followed by CR, CF and CC beams. 

In order to investigate the effect of k on the displacements of beams with the roller and hinged  
 
 

(a) CR beams-Transverse displacements (b) CR beams-Axial displacements 

Fig. 4 Effects of a nonlocal parameter eoa and a material non-homogeneity parameter k on the 
transverse and axial displacements of T-FG beams 
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(c) CH beams-Transverse displacements (d) CH beams-Axial displacements 

Fig. 4 Continued 
 
 
BCs, w* and u* are presented in Fig. 6 for HR and HH beams along longitudinal direction of beams. 
In this case, eoa, L and h are assumed to be 0, 10 and 1, respectively. It is seen that for the 
homogeneous metal beam (k = 0), w* of HR beam is the same as that of HH beam as shown in Fig. 
6(a) and u* is zero for both HR and HH beams as shown in Fig. 6(b) since there is no coupling 
effect between bending and extension. However, for beams with k > 0, w* of HR beam is slightly 
larger than that of HH beam and u* of HR beam is significantly different from that of HH beam. 
 
 

(a) CF beams-Transverse displacements (b) CF beams-Axial displacements 

Fig. 5 Effects of a nonlocal parameter eoa and a material non-homogeneity parameter k on the 
transverse and axial displacements of T-FG beams 
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(a) Transverse displacements (b) Axial displacements 

Fig. 6 Transverse and axial displacements of HR T-FG beams and HH T-FG beams 
 
 

5.3 A-FG beams 
 
The A-FG beams as shown in Fig. 1(b) with various BCs are considered. The geometric and 

material properties of beam are the same as those in the previous example except that the elasticity 
modulus of A-FG beam is assumed to vary with the power-law function given by Eq. (13) through 
the axial direction of beam. In this case, as would be expected, the axial displacements at 
mid-plane are zero since there is no coupling effect between bending and extension. 

In Table 4, the study of convergence quality of power series method for transverse 
displacement of HR A-FG beams are figured out for L = 10, h =1. One can see that the results 
from power series methodology converge monotonically for 25 term of series parameter n. On 
addition, the faster convergence results are obtained for the larger non-homogeneity parameter k. 
The results for transverse displacement of HR A-FG beams are presented in Table 5 by using 25 
terms of series parameter n. It is clearly evident from Table 5 that the present results are great 
agreement with those given by Şimşek and Yurtcu (2013) in the case of k = 0. 

 
 
Table 4 Convergence study of power series methodology for transverse displacements of HR A-FG beams 
(L = 10, h =1) 

eoa k 
Series parameter n 

5 10 15 20 25 

1.0 

1 2.3673 2.3970 2.3992 2.3994 2.3995 

3 1.6765 1.6789 1.6791 1.6791 1.6791 

10 1.4512 1.4513 1.4513 1.4513 1.4513 

2.0 

1 2.9977 3.0383 3.0415 3.0419 3.0420 

3 2.1289 2.1328 2.1331 2.1332 2.1332 

10 1.8376 1.8379 1.8379 1.8379 1.8379 
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Table 5 Normalized transverse displacements for HR A-FG beams (h = 1) 

L k 
eoa 

0 0.5 1.0 1.5 2.0 

10 

0 
5.2083 

(5.2083) 
5.3333 

(5.3333) 
5.7083 

(5.7083) 
6.3333 

(6.3333) 
7.2083 

(7.2083) 

0.3 3.3520 3.4326 3.6744 4.0774 4.6416 

1 2.1853 2.2389 2.3995 2.6672 3.0420 

3 1.5278 1.5656 1.6791 1.8683 2.1332 

10 1.3225 1.3547 1.4513 1.6124 1.8379 

30 

0 
5.2083 

(5.2083) 
5.2222 

(5.2222) 
5.2639 

(5.2638) 
5.3333 

(5.3333) 
5.4306 

(5.4305) 

0.3 3.3520 3.3609 3.3878 3.4326 3.4953 

1 2.1853 2.1913 2.2091 2.2389 2.2805 

3 1.5278 1.5320 1.5446 1.5656 1.5950 

10 1.3225 1.3261 1.3368 1.3547 1.3798 

100 

0 
5.2083 

(5.2083) 
5.2096 

(5.2095) 
5.2133 

(5.2133) 
5.2196 

(5.2195) 
5.2283 

(5.2283) 

0.3 3.3520 3.3528 3.3552 3.3592 3.3649 

1 2.1853 2.1858 2.1875 2.1901 2.1939 

3 1.5278 1.5281 1.5293 1.5312 1.5338 

10 1.3225 1.3228 1.3238 1.3254 1.3276 

Note: (   ) are the results from Şimşek and Yurtcu (2013) 
 
 

(a) HR and HH beams (b) CF beams 

Fig. 7 Effects of a nonlocal parameter eoa and a material non-homogeneity parameter k on the 
transverse displacements of A-FG beams 
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(c) CR and CH beams (d) CC beams 

Fig. 7 Continued 

 

Fig. 8 Transverse displacements of HR and HH A-FG beams 
 
 

Fig. 7 show the variation of w* at mid-span of beams with L = 10 and h = 1 for various BCs. It 
is seen that similar to the behavior of T-FG beams, w* decreases with increase of k for all BCs. It is 
also seen that eoa reduces the bending stiffness of HR and CR beams but increases that of CF 
beam. Furthermore, the transverse displacements of CC beam are independent of eoa. In contrary 
to the T-FG beams, w* of HR and CR beams are identical to those of HH and CH beams, 
respectively, since the coupling term between bending and extension of A-FG beam does not exist. 
In Fig. 8, the variation of w* of HR and HH beams are plotted with respect to ξ for eoa = 0, L = 10 
and h = 1. It is seen that the curves of w* of A-FG beams (k > 0) are asymmetric and the value of ξ 
corresponding to the maximum w* moves right side as k increases. This is due to the fact that the 
material of the right end of beam is the full metal which is more flexible than that of the left end of 
beam. 
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6. Conclusions 
 
In this paper, the static analysis of the transversely or axially functionally graded (T-FG or 

A-FG) beams is performed. The Euler-Bernoulli beam theory combined with the nonlocal 
continuum theory is used in the analysis. The explicit solutions for the transverse and axial 
displacements of the nonlocal FG beams subjected to the uniformly distributed transverse load 
with various boundary conditions are derived from the governing equations. The effects of the 
nonlocal parameter, the material non-homogeneity parameter, the boundary condition as well as 
the length of beam on the static behavior of FG beams are discussed. From the results analyzed 
above, the importance observations are summarized as follows: 

 

 The nonlocal effect plays an important role on the static response of the FG nanobeams. 
Therefore, the small scale effect (or nonlocal effect) should be considered in the static 
analysis of the mechanical behavior of FG nanobeams. 

 The nonlocal effect has inconsistent behavior for different boundary conditions. The 
transverse and axial displacements increase as the nonlocal parameter increases for HR, HH, 
CR, and CH beams. Whereas, two displacements decrease with increase of the nonlocal 
parameter for CF beam. This nonlocal effect on the transverse displacement is the largest for 
HR beam, followed by CR, CF and CC beams. In addition, this effect has no influence on 
the transverse displacement for CC beam and on the axial displacements for HH and CC 
beams. 

 For A-FG beams, the transverse displacements of HR and CR beams are identical to those 
of HH and CH beams, respectively, which is contrary to the T-FG beams. 

 The material distribution profile manipulates to change the maximum transverse and axial 
displacements. As the material non-homogeneity parameter increases, the transverse 
displacement decreases for all boundary conditions. On the other hand, the axial 
displacement has the maximum value at the material non-homogeneity parameter of 0.378. 

 The length of beam influences on the nonlocal effect. In a small length, the nonlocal effect 
is significant on both of transverse and axial displacements. But its effect is negligible in a 
large length of beam. 
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Appendix A 
 

The explicit solutions of T-FG beams 
 
(1) Hinged-Roller (HR) T-FG beam 
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(2) Hinged-Hinged (HH) T-FG beam 
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(3) Clamped-Free (CF) T-FG beam 
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(4) Clamped-Roller (CR) T-FG beam 
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(5) Clamped-Hinged (CH) T-FG beam 

 

   1
2

1
3

3
1 313
6





qL

uo
                  

 (A-17) 

 

  2
1

3
1

4
4

2 414
24

 



qL

wo
                 

 (A-18) 

where 

2

111111

2

1111112

2

111111

1

3

4

2

3

2

6

5

TTT

TTTTTT

BDA

BDA
L

BDA








 






 





              

 (A-19) 

BCs 

0
)0(

;0)0(;0)0( 
d

dw
wu o

oo

                 
 (A-20) 

 

0)1(;0)1(;0)1(  xoo Mwu                    (A-21) 
 

(6) Clamped-Clamped T-FG beam 
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Appendix B 
 

The explicit solutions of A-FG beams 
 
(1) Hinged-Roller (HR) and Hinged-Hinged (HH)A-FG beams 
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(2) Clamped-Free (CF) A-FG beam 
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(3) Clamped-Roller (CR) and Clamped-Hinged (CH) A-FG beams 
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(4) Clamped-Clamped (CC) A-FG beam 
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