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Abstract.  This article is the result of an investigation on the influence of a Pasternak elastic foundation on 
the stability of exponentially graded (EG) cylindrical shells under hydrostatic pressure, based on the 
first-order shear deformation theory (FOSDT) considering the shear stresses. The shear stresses shape 
function is distributed parabolic manner through the shell thickness. The governing equations of EG 
orthotropic cylindrical shells resting on the Pasternak elastic foundation on the basis of FOSDT are derived 
in the framework of Donnell-type shell theory. The novelty of present work is to achieve closed-form 
solutions for critical hydrostatic pressures of EG orthotropic cylindrical shells resting on Pasternak elastic 
foundation based on FOSDT. The expressions for critical hydrostatic pressures of EG orthotropic cylindrical 
shells with and without an elastic foundation based on CST are obtained, in special cases. Finally, the effects 
of Pasternak foundation, shear stresses, orthotropy and heterogeneity on critical hydrostatic pressures, based 
on FOSDT are investigated. 
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1. Introduction 

 
Anisotropic composite cylindrical shells are widely used as a structural member in many 

engineering applications. In some practical applications, thin composite shells are in contact with 
an elastic foundation. A brief review of elastic foundation models is discussed in the studies of Hui 
and Hansen (1980), Gorbunov-Posadv et al. (1984) and Hui (1986). The influence of an elastic 
foundation on the stability and vibration of homogeneous isotropic and orthotropic cylindrical 
shells is well studied in the literature. Sofiyev and Marandi (1996) examined the dynamic stability 
problem of non-homogeneous isotropic cylindrical shells on elastic foundations. Ng and Lam 
(1999) studied the effect of elastic foundation on the dynamic stability of cylindrical shells. The 
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buckling analysis of short cylindrical shells surrounded by an elastic medium was carried out by 
Naili and Oddou (2000) and Croll (2001) using a ring model. Paliwal and Pandey (2001) presented 
free vibrations of an orthotropic thin cylindrical shell on an elastic foundation. Fok (2002) studied 
the buckling of a long cylindrical shell embedded in an elastic medium by the Rayleigh–Ritz 
method. Tornabene (2011) investigated free vibrations of anisotropic doubly-curved shells and 
panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations. 
Akoz and Ergun (2012) presented Pasternak foundation model, which is a two parameter 
foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi- 
infinite media. Shen (2013) studied postbuckling of axially-loaded laminated cylindrical shells 
surrounded by an elastic medium. 

Non-homogeneous materials are widely used in engineering design and modern technology to 
enhance structural strength. Non-homogeneity of materials can be attributed to the effects of 
humidity, radiation, high temperature and manufacturing process, etc. Significant contributions to 
the theory of elasticity of non-homogeneous materials and designs have been brought in the study 
of Lomakin (1976). Thereafter, some studies on the behaviors of non-homogeneous structural 
elements have been published (Grigorenko and Vasilenko 1992, Sofiyev et al. 2009). Recently, a 
new class of composite materials known as functionally graded materials (FGMs) has drawn 
considerable attention. In order to take the oriented structure of FGMs, these materials are 
generally modeled as orthotropic with principal directions (Kar and Kanoria 2009, Wosu et al. 
2012). Both analytical and computational methods are developed to examine different problems in 
heterogeneous or FG orthotropic composite structures. Pan (2003) presented an exact solution for 
a simply supported rectangular FG anisotropic laminated plate using the pseudo-Stroh formalism 
extending Pagano’s solution to the FG plates. Chen et al. (2004a) presented thermal fracture 
analysis of a functionally graded orthotropic strip, where the crack is situated parallel to the free 
edges. Chen et al. (2004b) studied the three-dimensional free vibration of simply supported, 
fluid-filled cylindrically orthotropic FG cylindrical shells with arbitrary thickness. Batra and Jin 
(2005) studied natural frequencies of a FG graphite/epoxy rectangular plate based on first order 
shear deformation. Pelletier and Vel (2006) investigated an exact solution for the steady-state 
thermo-elastic response of FG orthotropic cylindrical shells using Flügge and Donnell shell 
theories. Ramirez et al. (2006) examined static analysis of FG orthotropic plates using a discrete 
layer approach in combination with the Ritz method. Ootao and Tanigawa (2007) examined 
three-dimensional solution for transient thermal stresses of an orthotropic FG rectangular plate 
using Laplace and finite cosine transformation methods. Baron (2011) investigated propagation of 
elastic waves in the anisotropic hollow cylinder with elastic properties (stiffness coefficients and 
mass density) functionally varying in the radial direction based on the sextic Stroh’s formalism 
and an analytical solution, the matricant, explicitly expressed under the Peano series expansion 
form. Peng and Li (2012) investigated the influence of orthotropy and gradient on the elastic field 
in particular the hoop stress distribution in hollow annular plates rotating at constant angular speed 
about its axis. Overview of static and dynamic problems of isotropic and anisotropic shells with 
variable parameters can be found in the study of Grigorenko and Grigorenko (2013). Mantari and 
Soares (2014) presented sinusoidal higher order shear deformation theory for the analysis of 
functionally graded plates and shells. However, the research works for FG orthotropic plates and 
shells on elastic foundations are rare in the literature. Morimoto and Tanigawa (2007) studied the 
elastic stability of FG orthotropic plates on a Winkler elastic foundation under in-plane com- 
pression. Sofiyev (2011) studied the hermal buckling behavior of FGM shells resting on a two 
parameter elastic foundation. Bagherizadeh et al. (2011) presented mechanical buckling of func- 
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tionally graded material cylindrical shells surrounded by elastic foundation. Kumar and Lal (2012) 
investigated vibrations of non-homogeneous orthotropic rectangular plates with bilinear thickness 
variation resting on Winkler foundation. Sofiyev et al. (2012) presented the effect of the 
Winkler-Pasternak type elastic foundations on the stability and vibration behaviors of 
non-homogeneous orthotropic shells. Najafov et al. (2013) studied the torsional vibration and 
stability of functionally graded orthotropic cylindrical shells on Winkler-Pasternak type elastic 
foundations. Firouz-Abadi et al. (2013) presented whirling frequencies of thin spinning cylindrical 
shells resting on the Winkler elastic foundation. Shen and Wang (2013) presented thermal 
buckling and postbuckling behavior for fiber reinforced composite laminated cylindrical shells 
embedded in a large outer elastic medium and subjected to a uniform temperature rise. Sofiyev et 
al. (2014) investigated the stability analysis of clamped nonhomogeneous shells on Winkler elastic 
foundation. Shariyat and Asemi (2014) presented shear buckling analysis of rectangular orthotro- 
pic FG plates surrounded by elastic foundations using three-dimensional non-linear elasticity- 
based 3D cubic B-spline finite element. 

In above mentioned studies, the materials of plates and cylindrical shells were assumed to be 
inhomogeneous orthotropic such as FG orthotropic and for derivation of the basic equations 
classic shell theory (CST) was used. The shear stresses (or deformation) play a significant role in 
the stability behavior of shells composed of traditional and new generation composites. As the 
effect of shear stresses is not considered, it can lead to significant errors for the buckling loads of 
homogeneous (H) composite cylindrical shells. Thus, the shear deformation theory (SDT) 
becomes more interesting than the CST. Due to the increased relevance of heterogeneous 
orthotropic cylindrical shells in the design of composite structures, their buckling characteristics 
with account taken of combined effect of non-homogeneity and shear deformation (or stresses) has 
vital importance. However, investigations involving the application of shear-deformable shell 
theories for the buckling analysis are limited in number. Shirakawa (1983) investigated effects of 
shear deformation and rotary inertia on the buckling and vibration of cylindrical shells. Palazotto 
and Linnemann (1991) studied the buckling and vibration characteristics of composite cylindrical 
panels incorporating effects of a higher-order shear theory. Han and Simitses (1991) investigated 
buckling behavior of symmetric laminates composite cylindrical shell subjected to lateral or 
hydrostatic pressure based on Sanders-type of first-order shear deformation theory (FOSDT). 
Soldatos and Timarci (1993) presented a unified formulation of laminated composite, shear 
deformable, five-degrees-of-freedom cylindrical shell theories. Kardomateas (1997) presented 
Koiter-based solution for the initial postbuckling behavior of moderately thick orthotropic and 
shear deformable cylindrical shells under external pressure. Eslami and Shariyat (1999) developed 
a higher order shear deformation theory to study the dynamic buckling and postbuckling of thick 
composite cylindrical shells and the solution was sought on the basis of numerical methods. Shen 
(2008) used the boundary layer theory for the buckling and post-buckling of an anisotropic 
laminated cylindrical shell with the shear deformation under the external pressure. Civalek (2008) 
investigated vibration analysis of conical panels using the method of discrete singular convolution. 
Li and Lin (2010) studied the buckling and post-buckling of shear deformable anisotropic 
composite cylindrical shell subjected to various external pressure loads. Ferreira et al. (2011) 
investigated buckling analysis of isotropic and laminated plates by radial basis functions according 
to a higher-order shear deformation. Asadi and Qatu (2012) presented static analysis of thick 
laminated shells with different boundary conditions, using two first order shear deformation 
theories (FOSDTs). Ádány (2014) examined flexural buckling of simply-supported thin-walled 
columns with consideration of membrane shear deformations, based on shell model. Sofiyev and 
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Kuruoglu (2014) studied buckling and vibration of shear deformable functionally graded 
orthotropic cylindrical shells under external pressures. Jung and Han (2014) studied the initial 
buckling response of laminated composite plates and shells under the combined in-plane loading 
using a finite element method, based on a modified FOSDT. 

There are very few studies on the static and dynamic behaviors of shear deformable 
heterogeneous structural elements resting on elastic foundations. Alipour et al. (2010) presented a 
semi-analytical solution for free vibration of variable thickness two-directional-functionally graded 
plates on elastic foundations based on FOSDT. Atmane et al. (2011) investigated free vibration 
analysis of functionally graded plates resting on Winkler–Pasternak elastic foundations using a 
new shear deformation theory. Thai and Choi (2012) presented a refined shear deformation theory 
for free vibration of functionally graded plates on an elastic foundation. Bouderba et al. (2013) 
studied thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak 
elastic foundations based on refined trigonometric shear deformation theory. Zenkour et al. (2013) 
examined bending of cross-ply laminated plates resting on two-parameter elastic foundations 
under thermo-mechanical loading using a unified shear deformation plate theory. Tornabene et al. 
(2014) studied the Winkler-Pasternak foundation effect on the static and dynamic analyses of 
laminated doubly-curved and degenerate shells and panels. 

In this study, the stability behavior of EG orthotropic cylindrical shells including shear stresses 
resting on a Pasternak elastic foundation under a uniform hydrostatic pressure is investigated. The 
expressions for the dimensionless critical hydrostatic pressures of EG orthotropic cylindrical shells 
resting on a Pasternak elastic foundation, based on FOSDT and CST are obtained. The shear 
stresses shape function is distributed parabolic manner through the shell thickness. The effects of 
the Pasternak elastic foundation, shear stresses, material heterogeneity, material orthotropy and 
shell characteristics on the values of critical hydrostatic pressures are examined independently. 
 
 
2. Formulation of the problem 

 
Fig. 1 shows the nomenclature of a circular cylindrical shell resting on a Pasternak elastic 

 
 

 

Fig. 1 Nomenclature and coordinate system of a cylindrical shell resting on a Pasternak elastic foundation
and subjected to a uniform hydrostatic pressure 

456



 
 
 
 
 
 

Stability of EG cylindrical shells with shear stresses on a Pasternak foundation 

foundation with radius R, axial length L and thickness h. The cylindrical shell subjected to the 
uniform hydrostatic pressure, P. The origin of the coordinate system (Oxyz) is located at the end of 
the cylindrical shell on the reference surface. The parameters x, y and z denote length in the axial, 
circumferential and normal to the reference surface direction, respectively. The load-displacement 
relationship of the foundation is assumed to be p0 = Kww ‒ Kp (w,xx + w,yy), where p0 is the force per 
unit area, Kw (N/m3) is the Winkler foundation stiffness, Kp (N/m) is shearing layer stiffness of the 
foundation, w is the displacement and a comma denotes partial differentiation with respect to the 
corresponding coordinates (Shen 2013). Let Φ(x, y) be the stress function for the stress resultants 
defined by Tx = hΦ,yy Txy = ‒ hΦ,xy and Ty = hΦ,xx. Assume that the Young’s moduli and shear 
moduli of the orthotropic shell are exponential function of the coordinate in the thickness direction 
(Pan 2003, Ootao and Tanigawa 2007). 

 
 

3. Governing relations and equations 
 

The equations relating the stresses to strains for an EG orthotropic cylindrical shell, in term of 
structural axes coordinates are given by the following matrix equation (Ootao and Tanigawa 2007) 
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where σx, σy, σyz, σxz, σxy are the stresses, εx, εy, γyz, γxz, γxy are the strains of the cylindrical shell and  
the quantities Bij (Z), (i, j = 1, 2,…, 6) are 
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where E01 and E02 are Young’s moduli of the homogeneous orthotropic material along x and y 
directions, respectively; G012, G013, G023 are shear moduli which characterize angular chances 
between principal directions x and y, x and z, y and z, respectively; where v12 and v21 are Poisson 
ratios of the orthotropic cylindrical shell, which are constant and μ is the variation coefficient of 
Young’s moduli and shear moduli satisfying 0 ≤ μ ≤ 1. 

The shear stresses of cylindrical shells varies depending on the thickness coordinate as follows 
(Ambartsumian 1964) 
 

),()(),,()(,0 21 yxZfyxZf yzxzz                    (3) 
 
where φ(x, y) and ψ(x, y) are arbitrary functions of the coordinates x and y which are to be 
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determined; fi (Z), (i = 1, 2) are the functions which characterized the variation of shear stresses σxz 
and σyz with respect to the shell thickness. 

Substituting relations (3) into third and fourth equations of the system (1), we obtain 
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where the following definitions apply 
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Due to assumptions of the shear deformation theory, we obtain (Soldatos and Timarci 1993) 
 

yzyzyxzxzx wuwu   ,,, ,,                        (6) 
 

Integration of Eq. (6) with respect to z from zero to z with the condition that for z = 0, ux = u(x, 
y) and uy = v(x, y), the following expressions for the in-plane displacements of any point in the 
cylindrical shell are obtained 
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where ux = u(x, y) and uy = v(x, y) are displacements along coordinates x and y, respectively, and 
the following definitions apply 
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The strain components εx, εy, γyz, γxz, γxy are related to the displacements ux, uy, uz by the 
equations 
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Substituting ux and uy from Eq. (7) into Eq. (9) we obtain expressions for the corresponding 
deformation components 
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where 000 ,, xyyx   are the strains on the reference surface. 
The force and moment resultants are defined according to (Reddy 2004) 
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where Tx and Ty are normal forces, Txy is the tangential force, Qx and Qy are shear forces, Mx and 
My are bending moments and Mxy is the torque moment. 

The governing equations of cylindrical shells resting on a Pasternak elastic foundation and 
subjected to a uniform hydrostatic pressure are given as (Shirakawa 1983, Morimoto and 
Tanigawa 2007) 
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The governing Eq. (12) can be expressed in terms of Φ, w, φ, ψ by using Eqs. (1), (3), (4), (10), 

(11) and the relation for the Airy stress function as 
 

0

44434241

34333231

24232221

14131211











































w

LLLL

LLLL

LLLL

LLLL

                         (13) 

 
where Lij (i, j = 1, 2, 3, 4) are differential operators and given in Appendix A. 

Eq. (13) is governing equations for the stability of EG orthotropic cylindrical shells under a 
uniform hydrostatic pressure and resting on a Pasternak elastic foundation, based on FOSDT. 

 
 

4. Solution of governing equations 
 
The case of an EG orthotropic cylindrical shell under the simply supported boundary conditions 

(Shen 2008) 
LxxMw yyx  ,0when0,,0,0,0               (14) 

 
can now be considered. For the solution of equations system (13), the set of displacement, stress 
and rotary functions satisfying these boundary conditions can be written as (Soldatos and Timarci 
1993) 
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where ϕmn, fmn, φmn, ψmn are unknown amplitudes, 
R
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  , , in which, m is the half wave 

number in axial direction and n is the circumferential wave number. 
Introduction of (15) into the system of Eq. (13), yields a set of algebraic equations for ϕmn, fmn, 

φmn, ψmn 
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where the following definitions apply 
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For the non-trivial solution of system of Eq. (16), the determinant of this set of equations must 

be zero 
0]det[ Q                                 (18) 

 

Solving the set of Eq. (18), we obtain an expression for the critical hydrostatic pressure of an 
EG orthotropic cylindrical shell resting on a Pasternak elastic foundation on the basis of FOSDT 
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where the following definition apply 
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     (20) 

 
The dimensionless critical hydrostatic pressure for an EG orthotropic cylindrical shell on a 

Pasternak elastic foundation, based on the FOSDT expressed as follow 
 

021 / EPP crwp
FOSDT

crwp
FOSDT                             (21) 

 
The strain compatibility and stability equations of EG orthotropic cylindrical shells under a 
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hydrostatic pressure and resting on a Pasternak elastic foundation based on CST can be expressed 
as follows 































0

0
~~

~~

2221

1211

wLL

LL
                            (22) 

 
where the following definitions apply 
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Substituting Eq. (15) into Eq. (22), after mathematical operations, for the critical hydrostatic 

pressure of EG orthotropic cylindrical shells resting on a Pasternak elastic foundation, based on 
the CST, the following expression is obtained 
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The dimensionless critical hydrostatic pressure of an EG orthotropic cylindrical shell on a 

Pasternak elastic foundation based on the CST is expressed as follows 
 

02/ EPP crwp
CST

crwp
CST                               (25) 

 
In a special case, the expressions for critical hydrostatic pressures of EG orthotropic cylindrical 

shells without an elastic foundation based on CST and FOSDT can be obtained by letting Kw = Kp 
= 0 in Eqs. (19), (22), (24) and (25). 

The expressions for critical hydrostatic pressures of homogeneous orthotropic cylindrical shells 
on a Pasternak elastic foundation based on CST and FOSDT can be obtained by letting μ = 0 in 
Eqs. (19), (22), (24) and (25). 

The minimum values of dimensional and dimensionless critical hydrostatic pressures based on 
CST and FOSDT obtained by minimizing Eqs. (19) and (22), and (24) and (25), respectively, with 
respect to (m, n). 

 
 

5. Numerical analysis 
 
The accuracy of the present study, the values of the critical hydrostatic pressure (in kPa) for 

461



 
 
 
 
 
 

A.M. Najafov, A.H. Sofiyev, D. Hui, Z. Karaca, V. Kalpakci and M. Ozcelik 

shear deformable homogeneous orthotropic cylindrical shells without an elastic foundation for 
different L/R ratio shown in Table 1 and are compared with those presented by Han and Simitses 
(1991), and Li and Lin (2010). To this end, μ should be assumed zero and the homogeneous 
orthotropic material properties of Han and Simitses (1991), and Li and Lin (2010) are adopted. 
Two orthotropic material properties are taken to be (Material 1): E01 = 149.66 GPa, E02 = 9.93 GPa, 
G012 = G013 = G023 = 4.48 GPa, v12 0.28; (Material 2): E01 = 9.93 GPa, E02 = 149.66 GPa, G012 = 
G013 = G023 = 4.48 GPa, v21 0.28, respectively. The shell characteristics are taken to be R/h = 30, 
L/R = 2 and 5. The circumferential wave number (ncr) in parentheses corresponds to the critical 
hydrostatic pressure. The results show that the present results in very well agreement with the 
results of Li and Lin (2010), but lower than those of Han and Simitses (1991). 

In addition, the critical hydrostatic pressures for homogeneous isotropic cylindrical shells 
without an elastic foundation, based on CST are compared with the finite element results of Kasagi 
and Sridharan (1993), and boundary layer theory solution of Shen and Noda (2007) and presented 

in Table 2. Here 
Rh

L
Zb

2
0

2 1 
  is the Batdorf shell parameter. The data are taken to be E0 = 10 

× 106 psi, v0 = 0.33, R/h = 200 (Kasagi and Sridharan 1993). It can be seen that, the present results 
agree very well with the results of Kasagi and Sridharan (1993), and Shen and Noda (2007). 

Numerical results for stability of H and EG orthotropic cylindrical shells with and without a 
Pasternak elastic foundation and subjected to a uniform hydrostatic pressure, based on FOSDT and 
CST are presented in Tables 3-4, and Fig. 2. The homogeneous material properties adopted as in 
Reddy (2004), are: E01 = 25E02, G012 = G013 = 0.5E0.2, G023 = 0.2E02, and v12 = 0.25. For these 
examples the cylindrical shell characteristics are R/h = 30 to 50 and L/R = 0.25 to 1.0. The stiff- 
 
 
Table 1 Comparison the present results with the results of Han and Simitses (1991), and Li and Lin (2010) 

 L/R = 2 L/R = 5 

Orthotropic 
Materials 

Han and 
Simitses (1991) 

HOST 

Li and Lin 
(2010) 
HOST 

Present study
(FOSDT) 

Han and  
Simitses (1991)

HOST 

Li and Lin 
(2010) 
HOST 

Present study
(FOSDT) 

cr
SDTP (kPa), (ncr) 

(Mat 1) 1517(5) 1425.7(5) 1425.7(5) 683(4) 620.6(4) 620.6(4) 

(Mat 2) 6798(3) 5243.2(3) 5243.2(3) 3847(3) 2403.8(3) 2403.8(2) 

 
Table 2 Comparison of cr

CSTP  (in psi) for homogeneous isotropic cylindrical shells with different length 

 cr
CSTP  (psi), (ncr) 

Zb Kazagi and Sridharan (1993) Shen and Noda (2007) Present study 

50 35.09(13) 35.167(13) 35.205(13) 

100 24.26(11) 24.305(11) 24.322(11) 

500 10.42(8) 10.436(8) 10.440(8) 

1000 7.388(7) 7.398(7) 7.400(7) 

5000 3.412(5) 3.416(5) 3.416(5) 

10000 2.312(4) 2.315(4) 2.315(4) 

462



 
 
 
 
 
 

Stability of EG cylindrical shells with shear stresses on a Pasternak foundation 

ness is characterized by (Kw, Kp) for a Pasternak elastic foundation model, by (Kw, 0) for a Winkler 
elastic foundation model, and by (Kw, Kp) = (0, 0) for an unconstrained shell. The shear stresses 
shape function is distributed parabolic manner through the shell thickness, i.e., f1(Z) = f2(Z) = 1 ‒ 
4Z2. The EG compositional profile is taken to be eμ(Z ‒ 0.5) and exponential factor is μ = 1. As μ = 0, 
it correspond to the homogeneous case. The circumferential wave number (ncr) in brackets 
corresponds to dimensionless critical hydrostatic pressures and the longitudinally wave number is 
taken to be m = 1. 

The values of dimensionless critical hydrostatic pressures for H and EG orthotropic cylindrical 
shells with and without an elastic foundation based on FOSDT and CST are presented in Table 3. 
The Pasternak foundation stiffness is taken to be (Kw, Kp) = (2 × 107

 N/m3; 3 × 103
 N/m). The values 

of dimensionless critical hydrostatic pressures for H and EG orthotropic cylindrical shells with and 
without Pasternak elastic foundation based on FOSDT and CST decrease as R/h and L/R increase. 
The circumferential wave numbers corresponding to critical hydrostatic pressures decrease as L/R 
increases, whereas, changes irregularly as R/h increases depending on the ratio L/R. Considering 
the effect of a Pasternak elastic foundation, increase the values of the dimensionless critical 
hydrostatic pressures for H and EG orthotropic cylindrical shells. The influence of the Pasternak 
elastic foundation on the values of crwp

SDTP1  for H and EG orthotropic cylindrical shells increases, as 
the ratios L/R and R/h increase. For example, the influence of a Pasternak elastic foundation on the 
values of crwp

SDTP1  for EG (or H) shells increases from 1.12% to 3.92% (or from 0.68% to 2.37%) 
 
 
Table 3 Variation of dimensionless critical hydrostatic pressures and corresponding circumferential wave 

numbers for H and EG orthotropic cylindrical shells with and without a Pasternak elastic foun- 
dation versus R/h and L/R 

crP1 × 103, (ncr) 

 
FOSDT CST FOSDT CST FOSDT CST 

R/h = 30 R/h = 40 R/h = 50 

L/R EG shells without an elastic foundation (Kw, Kp) = 0 

0.25 1.883(28) 3.324(26) 0.977(27) 1.403(26) 0.561(27) 0.719(26) 

0.5 0.704(14) 0.841(13) 0.323(14) 0.358(14) 0.173(14) 0.185(14) 

1.0 0.228(8) 0.239(8) 0.104(8) 0.107(8) 0.058(9) 0.059(9) 

 H shells without an elastic foundation (Kw, Kp) = 0 

0.25 3.106(28) 5.524(26) 1.615(27) 2.332(26) 0.929(27) 1.195(26) 

0.5 1.166(14) 1.397(13) 0.535(14) 0.595(14) 0.287(14) 0.307(14) 

1.0 0.376(8) 0.395(8) 0.172(8) 0.177(8) 0.095(9) 0.097(9) 

 EG shells on an elastic foundation (Kw = 2 × 107
 N/m3; Kp = 3 × 103 N/m) 

0.25 1.904(28) 3.346(26) 0.999(27) 1.426(26) 0.583(27) 0.741(27) 

0.5 0.739(14) 0.878(14) 0.357(14) 0.393(14) 0.207(15) 0.220(15) 

1.0 0.298(9) 0.311(8) 0.166(10) 0.170(10) 0.112(11) 0.114(11) 

 H shells on an elastic foundation (Kw = 2 × 107
 N/m3; Kp = 3 × 103 N/m) 

0.25 3.127(28) 5.546(26) 1.637(27) 2.354(26) 0.951(27) 1.217(27) 

0.5 1.201(14) 1.435(14) 0.569(14) 0.630(14) 0.322(14) 0.342(14) 

1.0 0.448(8) 0.467(8) 0.237(9) 0.243(9) 0.153(10) 0.155(10) 
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and from 30.7% to 93.1% (or from 19.15% to 61.05%), respectively, as R/h increases from 30 to 
50 with L/R = 0.25 and 1.0, respectively. It is observed that the influence of an elastic foundation 
on the dimensionless critical hydrostatic pressures for H and EG orthotropic cylindrical shells is 
slight in short shells, i.e., for L/R = 0.25. The influence of shear stresses on the values of 
dimensionless critical hydrostatic pressures for EG (or H) shells resting on the Pasternak elastic 
foundation decreases from 43.1% to 4.18% (or from 43.62% to 4.07%) and 21.32% to 1.75% (or 
from 21.86% to 1.29%), respectively, as L/R increases from 0.25 to 1 for R/h = 30 and 50, 
respectively. The influence of heterogeneity on the values of dimensionless critical hydrostatic 
pressures for the unconstrained orthotropic cylindrical shell on the basis of CST and FOSDT 
almost remain constant and approximately around 39%, as R/h increases from 30 to 50 for fixed 
L/R, whereas, this influence on the dimensionless critical hydrostatic pressures of orthotropic 
cylindrical shell resting on a Pasternak elastic foundation decreases from 39% to 34% and from 
39% to 27%, as L/R increases from 0.25 to 1 for R/h = 30 and 50, respectively. 

The variation of the values of dimensionless critical hydrostatic pressures and corresponding 
circumferential wave numbers for H and EG orthotropic cylindrical shells versus the foundations 
moduli Kw and Kp for R/h = 30 and different L/R are tabulated in Table 4. The values of 
dimensionless critical hydrostatic pressures and corresponding circumferential wave numbers for 
H and EG orthotropic cylindrical shells on the basis of CST and FOSDT increase with increasing 
of the foundations moduli Kw and Kp. The effect of heterogeneity on the dimensionless critical 
 
 
Table 4 Variation of the values of dimensionless critical hydrostatic pressures and corresponding 

circumferential wave numbers for H and EG orthotropic cylindrical shells versus the foundations 
moduli Kw and Kp with different L/R 

 crP1 × 103, (ncr) 

 
FOSDT CST FOSDT CST FOSDT CST 

L/R = 0.25 L/R = 0.5 L/R = 1.0 

Kw (N/m3) Kp (N/m) EG cylindrical shells 

0 0 1.883(28) 3.324(26) 0.704(14) 0.841(13) 0.228(8) 0.239(8)

107 

0 1.885(28) 3.327(26) 0.713(14) 0.851(13) 0.255(8) 0.266(8)

2 × 103 1.897(28) 3.338(26) 0.724(14) 0.863(13) 0.266(8) 0.278(8)

4 × 103 1.908(28) 3.350(26) 0.736(14) 0.874(14) 0.278(8) 0.289(8)

2 × 107 

0 1.887(28) 3.329(26) 0.722(14) 0.860(14) 0.282(9) 0.294(8)

2 × 103 1.899(28) 3.341(26) 0.733(14) 0.872(14) 0.293(9) 0.305(8)

4 × 103 1.910(28) 3.352(26) 0.745(14) 0.883(14) 0.304(9) 0.316(8)

Kw (N/m3) Kp (N/m) H cylindrical shells 

0 0 3.106(28) 5.524(26) 1.166(14) 1.397(13) 0.376(8) 0.395(8)

107 

0 3.108(28) 5.526(26) 1.175(14) 1.407(13) 0.404(8) 0.423(8)

2 × 103 3.119(28) 5.538(26) 1.186(14) 1.419(13) 0.415(8) 0.434(8)

4 × 103 3.131(28) 5.550(26) 1.198(14) 1.430(13) 0.426(8) 0.445(8)

2 × 107 

0 3.110(28) 5.529(26) 1.184(14) 1.417(13) 0.432(8) 0.450(8)

2 × 103 3.122(28) 5.540(26) 1.195(14) 1.429(14) 0.443(8) 0.462(8)

4 × 103 3.133(28) 5.552(26) 1.207(14) 1.440(14) 0.454(8) 0.473(8)
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Fig. 2 Variation of the values of dimensionless critical hydrostatic pressures for H and EG orthotropic
cylindrical shells with and without an elastic foundation versus E01 / E02 

 
 
hydrostatic pressure decreases, while the effect of shear stresses almost remains constant with 
increasing of the foundation stiffness. The effect of a Pasternak elastic foundation on the values of  

crwp
FOSDTP  slightly higher from its effect on the values of crwp

CSTP , as a percentage. Furthermore, the 
influence of shear stresses on the dimensionless critical hydrostatic pressures is considerable for 
short shells, while the influence of an elastic foundation is significant for medium length shells. 
The influence of a Pasternak elastic foundation on the dimensionless critical hydrostatic pressures 
is higher than the Winkler elastic foundation. 

The variation of dimensionless critical hydrostatic pressures for H and EG orthotropic 
cylindrical shells with and without a Pasternak elastic foundation versus E01 / E02 are plotted in Fig 
2. To explain the effect of the degree of anisotropy of the shell material on the stability process, 
the ratios of the Young’s moduli were assumed to be E01 / E02 = 10; 20; 30; 40. The material 
properties and shell characteristics are taken to be E01 = 2 × 1011 Pa, v12 0.2, L/R = 0.5 and R/h = 30. 
The Pasternak foundation stiffness is taken to be (Kw, Kp) = (2 × 108

 N/m3; 5 × 104
 N/m). The values 

of dimensionless critical hydrostatic pressures for H and EG orthotropic shells with and without an 
elastic foundation on the basis of CST and FOSDT increase with increasing the ratio, E01 / E02.  
The effect of heterogeneity on the dimensionless critical hydrostatic pressure for unconstrained 
orthotropic cylindrical shell with the CST remains constant, while this effect decreases for 
orthotropic cylindrical shell resting on a Pasternak elastic foundation, as  the ratio, E01 / E02, 
increases, based on CST and FOSDT. The effect of shear tresses on the values of dimensionless 
critical hydrostatic pressures for H and EG orthotropic shells with and without an elastic 
foundation increases, as E01 / E02 increases from 10 to 40 by steps 10. 
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6. Conclusions 
 
In this study, the effect of a Pasternak elastic foundation on the stability of EG orthotropic 

cylindrical shells including shear stresses subjected to a uniform hydrostatic pressure is 
investigated. The shear stresses shape functions are distributed parabolic manner through the shell 
thickness. The governing equations of EG orthotropic cylindrical shells on the basis of FOSDT are 
derived in the framework of Donnell-type shell theory. The boundary condition is considered to be 
simply-supported. The novelty of the present work is to achieve the closed-form solutions for the 
critical hydrostatic pressures of EG orthotropic cylindrical shells resting on a Pasternak elastic 
foundation based on FOSDT. Finally, the effects of a Pasternak elastic foundation, shear stresses, 
heterogeneity, material orthotropy and shell characteristics on the values of dimensionless critical 
hydrostatic pressures are investigated. 
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Appendix 
 
 
The differential operators Lij (i, j = 1, 2, 3, 4) are 
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