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Abstract.  In the present study, a new simple first-order shear deformation theory is presented for 
laminated composite plates. Moreover, the number of unknowns of this theory is the least one comparing 
with the traditional first-order and the other higher-order shear deformation theories. Equations of motion 
and boundary conditions are derived from Hamilton’s principle. Analytical solutions of simply supported 
antisymmetric cross-ply and angle-ply laminates are obtained and the results are compared with the exact 
three-dimensional (3D) solutions and those predicted by existing theories. It can be concluded that the 
proposed theory is accurate and simple in solving the static bending and free vibration behaviors of 
laminated composite plates. 
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1. Introduction 

 
Composites are widely applicable in aerospace, civil, mechanical and other fields of modern 

technology due to their favorable characteristics of high stiffness and strength to weight ratio. 
Composite plates are one of the most important structural elements that were studied by many 
researchers in the last 6 or 7 decades and a variety of laminated theories has been introduced. The 
classical plate theory (CPT), which neglects the transverse normal and shear stresses, provides 
reasonable results for thin laminates. However, it underpredicts deflections and overpredicts 
frequencies as well as buckling loads with moderately thick laminates (Reddy 1997). However, in 
thick and moderately thick plates, the shear de formations cannot be neglected, and the theory 
shows inaccurate results for them. There are numerous theories that include the transverse shear 
strains. One of the well-known theories is the Reissner model (Reissner 1945), which is called the 
first-order shear-deformation theory (FSDT) and considers the displacement field as linear 
variations of midplane displacements. Considering FSDT, Moradi and Mansouri (2012) studied 
thermal buckling of thin and thick laminated plates using this method. Some other plate theories, 
namely, the higher-order shear-deformation theories (HSDT), which include the effect of 
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transverse shear de formations, are the Levy (1977), Hencky (1947), Lo et al. (1977), Nelson and 
Lorch (1974), and Reddy (1984) theories. The latter one is a simple higher-order theory that takes 
into account not only the trans verse shear strains, but also their parabolic variation across the plate 
thickness and requires no shear correction coefficients in computing the shear stresses. Reddy 
(1984, 2000) developed a third-order shear deformation theory (TSDT) with cubic variations for 
in-plane displacements. Xiang et al. (2011, 2013) proposed a n-order shear deformation theory in 
which Reddy’s theory can be considered as a specific case. Based on the mixed variational 
approach, Fares et al. (2009) proposed a HSDT with linear and parabolic variations for in-plane 
and transverse displacements, respectively. Bodaghi and Saidi (2011) presented a higher order 
shear deformation theory for thermo-elastic buckling behavior of thick rectangular plate made of 
functionally graded materials. Matsunaga (2000) developed a higher order theory based on a 
complete power series expansion of the displacement field in the thickness coordinate. Bouderba 
et al. (2013) developed a simple trigonometric shear deformation theory to investigate thermo 
-mechanical behavior of simply supported functionally graded plates resting on a Winkler– 
Pasternak elastic foundation. Bakhti et al. (2013) proposed an efficient and simple refined theory 
for nonlinear cylindrical bending behavior of functionally graded nanocomposite plates. 

Although some well-known HSDTs have five unknowns as in the case of FSDT (e.g., the 
third-order shear deformation theory (Reddy 1984, 2000, Bodaghi and Saidi 2011)), their 
equations of motion are much more complicated than those of FSDT. Thus, needs exist for the 
development of shear deformation theory which is simple to use. 

In the present work, a new a simple FSDT is developed for the bending and free vibration 
analysis of laminated composite plates. Unlike the conventional FSDT, the present one contains 
only four unknowns. Thus, the number of unknowns and governing equations for the present 
theory is reduced, significantly facilitating engineering analysis. Equations of motion are derived 
from Hamilton’s principle. Closed-form solutions of simply supported antisymmetric cross-ply 
and angle-ply laminates are obtained. Numerical examples are presented to verify the accuracy of 
the present theory. 
 
 
2. Theoretical formulations 

 
Consider a rectangular composite plate of thickness h, length a, and width b, referred to the 

rectangular cartesian coordinates (x, y, z). The x – y plane is taken to be the undeformed mid-plane 
of the plate, and the z axis is perpendicular to the x – y plane. 

 
2.1 Basic assumptions 
 
The assumptions of the present theory are as follows: 
 

(1) The displacements are small in comparison with the plate thickness and, therefore, strains 
involved are infinitesimal. 

(2) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
(3) This theory assumes constant transverse shear stress and it needs a shear correction factor 

in order to satisfy the plate boundary conditions on the lower and upper surface. 
 
2.2 Kinematics 
 
Based on the assumptions made in the preceding section, the displacement field can be 

322



 
 
 
 
 
 

A novel first-order shear deformation theory for laminated composite plates 

obtained as follows 
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where, u, v, w are displacements in the x, y, z directions, u0 and v0 are the midplane surface 
displacements. Φ is function of coordinates x, y and time t. 

The strains associated with the displacements in Eq. (1) are 
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The linear constitutive relations of a for a layer can be written as 
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where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. 
Qij are the material constants in the material axes of the layer given as 
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Since the laminate is made of several orthotropic layers with their material axes oriented 

arbitrarily with respect to the laminate coordinates, the constitutive equations of each layer must be 
transformed to the laminate coordinates x, y, z. The stress-strain relations in the laminate 
coordinates of the k -th layer are given as 
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where ijQ  are the transformed material constants given in Reddy (2004). 

 
2.3 Equations of motion 
 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Reddy 2002, Jones 1999) 
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where δU is the variation of strain energy; δV is the variation of potential energy; and δK is the 
variation of kinetic energy. 

The variation of strain energy of the plate is calculated by 
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where N, M, and Q are the stress resultants defined as 
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The variation of potential energy of the applied loads can be expressed as 
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where q is the transverse applied load. 

The variation of kinetic energy of the plate can be written as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; ρ 
is the mass density; and (I0, I2) are mass inertias defined as 
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Substituting the expressions for δU, δV, and δK from Eqs. (8), (10), and (11) into Eq. (7) and 

integrating by parts, and collecting the coefficients of δu0, δv0, δΦ and δw, the following equations 
of motion of the plate are obtained 
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By substituting Eq. (2) into Eq. (4) and the subsequent results into Eq. (8), the stress resultants 

are obtained as 
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where Aij, Bij and Dij, are the plate stiffness, defined by 
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ks is a shear correction factor which is analogous to shear correction factor proposed by Mindlin 

(1951). 
By substituting Eq. (14) into Eq. (13), the equations of motion can be expressed in terms of 

displacements (u0, v0, Φ, w) as 
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Clearly, when the effect of transverse shear deformation is neglected (w = Φ), Eq. (17) yields 

the equations of laminated plate. 
 
 

3. Exact solution for a simply-supported antisymmetric cross-ply and angle-ply 
laminates 

 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (17a)-(17d) for a simply supported antisymmetric 
cross-ply and angle-ply laminates. The following boundary conditions are imposed at the side 
edges for the present theory: 

 
• Simply supported edge (cross-ply laminate) 
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• Simply supported edge (angle-ply laminate) 
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Following the Navier solution procedure, we assume the following solution form for u0, v0, Φ, 
and w that satisfies the boundary conditions 
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where Umn, Vmn, Ψmn, and Wmn are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with (m, n) th eigenmode, and λ = mπ / a, μ = nπ / b and 1i . 

The transverse load q is also expanded in the double-Fourier sine series as 
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The coefficients Qmn are given below for some typical loads 
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a b
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Substituting Eqs. (21) and (22) into Eq. (17), the closed-form solutions can be obtained from 

 

       ,2 PMC                           (24) 
 

where    tWVU ,,,  , and  C  and  M  are the symmetric matrixes given by 
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in which 

 
 

 

 

 
03444

22
233

02211

2
44

2
5544

2
44

2
5534

2
44

2
55

4
22

22
6612

4
1133

24

22
3

23

2
22

2
6622

14

11
3

13

661212

2
66

2
1111

)2(2

0

0

  

Imm

Im

Imm

AAa

AAa

AADDDDa

a

Ba

AAa

a

Ba

AAa

AAa







































        (26) 

 

The components of the generalized force vector    tPPPPP 4321 ,,,  are given by 
 

04
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0

0

0
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P
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                              (27) 

 
4. Results and discussion 

 
In this section, various numerical examples are presented and discussed to verify the accuracy 

of the present theory in predicting the bending and free vibration responses of simply supported 
laminated composite plates. For verification purpose, the obtained results are compared with the 
exact 3D solutions and those predicted by other plate models. The description of various plate 
models and their corresponding number of unknowns are listed in Table 1. For all calculations, the 
value of shear correction factor is taken as 5/6. The following lamina properties are used: 
 

• Material 1 (Reddy 2004) 
 

25.0,2.0,5.0,25 122232131221  EGEGGEE             (28a) 
 

• Material 2 (Noor 1973) 
 

25.0,5.0,6.0open,/ 122232131221  EGEGGEE           (28b) 
 

• Material 3 (Noor and Burton 1990) 
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Table 1 Displacement models 

Model Theory Unknowns 

CPT Classical plate theory 3 

ZSDT Zeroth-order shear deformation theory (Ray, 2003) 5 

FSDT First-order shear deformation theory 5 

TSDT Third-order shear deformation theory (Reddy, 1984) 5 

HSDT Higher-order shear deformation theory (Swaminathan and Patil, 2008) 12 

Present Simple first-order shear deformation theory 4 

 
 

3.0,35.0,5.0,15 122232131221  EGEGGEE             (28c) 
 

For convenience, the following dimensionless forms are used 
 

,,
2

,
2

)(  ,
2

,
2

100  ,,
2

,0100)(  , ,2
0

2

,4
0

3
2

4
0

3
2 




















 z

ba

aq

h
z

ba
w

aq

hE
wz

b
u

aq

hE
zu

h

z
z yxyx   

 

 
2

2

00
2

0

2  
  ,,0,

2
)(  ,,

2
,0)(  ,,0,0)(

Eh

a
z

a

aq

h
zz

b

aq

h
zz

aq

h
z yzyzxzxzxyxy

 












  

 
4.1 Bending analysis 
 
Example 1 
In the first example, thin and thick two-layer antisymmetric cross-ply (0/90) square laminates 

made of Material 1 and subjected to sinusoidal loads are considered. The thickness ratios a / h are 
taken to be 2 (corresponding to very thick plates), 5 (corresponding to thick plates), 10, 20 
(corresponding to moderately thick plates), and 100 (corresponding to thin plates). In Table 2, the 
obtained results using the new simple first-order shear deformation theory are compared with the 
exact 3D solutions given by Pagano (1970) and those computed using TSDT, FSDT and CPT. In 
general, the present theory and existing conventional FSDT give almost identical results for 

 
 
Table 2 Dimensionless deflection w of two-layer antisymmetric cross-ply (0/90) square laminates under 

sinusoidal loads (Material 1) 

Theory 
a / h 

2 5 10 100 

Exact (Pagano 1970) 4.9362 1.7287 1.2318 1.0742 

TSDT 4.5619 1.6670 1.2161 1.0651 

FSDT 5.4059 1.7584 1.2373 1.0653 

Present 5.4059 1.7584 1.2373 1.0653 

CPT 1.0636 1.0636 1.0636 1.0636 
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various values of thickness ratio a / h. For the case of very thick laminates with a / h = 2, there are 
small errors in values predicted by the present theory, conventional FSDT and TSDT. However, 
these errors become negligible when the thickness ratio a / h is greater than 5. Due to ignoring 
shear deformation effects, the CPT provides acceptable results for the laminated composite plates 
with a / h ≥ 20. 

 
Example 2 
In this example, an antisymmetric cross-ply (0/90)n square laminate under sinusoidal loads is 

investigated using Material 1. In Table 3, dimensionless deflections of laminates for different 
values of the thickness ratio and ply number are presented. The obtained results are compared with 
those given by Ray (2003) using the zeroth-order shear deformation theory (ZSDT) and those 
reported by Reddy (2004) using TSDT, FSDT and CPT. It can be seen that the present FSDT and 
existing conventional FSDT give solutions identical to each other, and their solutions are also in 
close agreement with those generated by Ray (2003) for all values of the thickness ratio and ply 
number. 

The variations of dimensionless deflection with respect to thickness ratio a / h and material 
anisotropy E1 / E2 are showed in Figs. 1 and 2, respectively. These figures illustrate also the 
accuracy of present theory for wide range of thickness ratio a / h and material anisotropy E1. The 
obtained results obtained by the present theory with only four unknowns are compared with those 
predicted by CPT and the conventional FSDT with five unknowns. Again, the present FSDT and 
the conventional FSDT give identical results, whereas CPT underestimates deflections of thick 
laminates with a / h < 20 due to ignoring shear deformation effects (see Fig. 1). The through 
thickness variations and corresponding values of the in-plane displacement u , normal stresses 
( x , y ), and shear stresses ( xy , xz , yz ) are also given in Fig. 3, for a moderately thick laminate 
with a / h = 10. It can be seen again from Fig. 3 that the results predicted by the present theory with 
only four unknowns are identical with those obtained using the conventional FSDT with five 
unknowns. 

 
 
Table 3 Dimensionless deflection w  of antisymmetric cross-ply (0/90)n square laminates under sinusoidal 

loads (Material 1) 

n Theory 
a / h 

4 10 20 100 

1 

ZSDT (Ray 2003) 2.0010 1.2160 1.1020 1.0650 

TSDT 1.9985 1.2161 1.1018 1.0651 

FSDT 2.1492 1.2373 1.1070 1.0653 

CPT 1.0636 1.0636 1.0636 1.0636 

Present 2.1492 1.2373 1.1070 1.0653 

3 

ZSDT (Ray 2003) 1.5410 0.6380 0.5060 0.4630 

TSDT 1.5411 0.6382 0.5060 0.4635 

FSDT 1.5473 0.6354 0.5053 0.4635 

CPT 0.4617 0.4617 0.4617 0.4617 

Present 1.5473 0.6354 0.5053 0.4635 
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Fig. 1 Variation of dimensionless deflection of antisymmetric cross-ply (0/90)n square laminates 
under sinusoidal loads versus thickness ratio (Material 1) 
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Fig. 2 Variation of dimensionless deflection of antisymmetric cross-ply (0/90)n square laminates 
under sinusoidal loads versus material anisotropy (Material 1, a / h = 10) 
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Fig. 3 Distributions of in-plane displacement and stress for antisymmetric cross-ply (0/90)n square 
laminates under sinusoidal loads (Material 1, a / h = 10) 
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Example 3 
In this example, an antisymmetric angle-ply (45/–45)n square laminate under sinusoidal load is 

investigated using Material 1. In Table 4, dimensionless deflections of the plate are presented for 
different values of the thickness ratio and ply number. The obtained results are compared with 
those computed using CPT and the conventional FSDT. It can be seen that the present FSDT and 
the conventional FSDT give solutions close to each other. It should be noted that the present FSDT 
is simpler than the existing one due to containing a fewer number of unknowns and equations of 
motion (see Table 1). 

To further illustrate the accuracy of the present theory for a wide range of lamination angle, Fig. 
4 plots dimensionless deflections of antisymmetric angle-ply (θ / ‒ θ)n square laminates under 
sinusoidal loads (a / h = 10). The obtained results are compared with those computed using CPT 
 
 
Table 4 Dimensionless deflection w  of antisymmetric angle-ply (45/-45)n square laminates (Material 1) 

n Theory 
a / h 

10 20 100 

1 

FSDT 0.8284 0.6981 0.6564 

CPT 0.6547 0.6547 0.6547 

Present 0.8284 0.6981 0.6564 

4 

FSDT 0.4198 0.2896 0.2479 

CPT 0.2462 0.2462 0.2462 

Present 0.4198 0.2896 0.2479 
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Fig. 4 Variation of dimensionless deflection of antisymmetric angle-ply (θ / ‒ θ)4 square laminates 
under sinusoidal loads versus lamination angle θ (Material 1, a / h = 10) 
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and the conventional FSDT. In general, the results of present theory and the conventional FSDT 
are almost identical, except in the case of low values of lamination angle (θ < 20°) where a small 
discrepancy between the present theory and the conventional FSDT is seen. 

 
4.2 Free vibration analysis 
 
Example 4 
In this verification, a thick antisymmetric cross-ply (0/90)n square laminate with a / h = 5 is 

analyzed using Material 2. The dimensionless fundamental frequency b is presented in Table 5 for 
different values of modulus ratio and ply number. The obtained results are compared with the 
exact 3D solutions reported by Noor (1973) and those computed using TSDT and the conventional 
FSDT. Again, it can be seen that the obtained results are identical with those predicted by the 
conventional FSDT. This can be observed also from Fig. 5 where the present solutions are 
compared with those predicted by the conventional FSDT for a wide range of thickness ratio a / h. 
 

Example 5 
The next example is carried out for a thin and thick 10-layer antisymmetric angle-ply (θ / ‒ θ)5  

square laminates using Material 3. This example aims to verify the accuracy of the present theory 
for very thick FG plates. Table 6 shows dimensionless frequency for various values of thickness 
ratio and lamination angle. The obtained results are compared with the exact 3D solutions given by 
Noor and Burton (1990) where a very good agreement between the results is obtained. 

 
Example 6 
The last example is performed for antisymmetric angle-ply (45/–45)n square laminates with 

thickness ratio varied from 2 to 100. Material 2 is considered. Table 7 shows dimensionless 

 
 
Table 5 Dimensionless fundamental frequency of antisymmetric cross-ply (0/90)n square laminates (Material 

2, a / h = 5) 

E1 / E2 Theory 
n 

1 2 3 5 

3 

Exact (Noor 1973) 6.2578 6.5455 6.6100 6.6458 

TSDT 6.2169 6.5008 6.5558 6.5842 

FSDT 6.2085 6.5043 6.5569 6.5837 

Present 6.2085 6.5043 6.5569 6.5837 

10 

Exact (Noor 1973) 6.9845 8.1445 8.4143 8.5625 

TSDT 6.9887 8.1954 8.4052 8.5126 

FSDT 6.9392 8.2246 8.4183 8.5132 

Present 6.9392 8.2246 8.4183 8.5132 

40 

Exact (Noor 1973) 8.5625 10.6789 11.2728 11.6245 

TSDT 9.0871 11.1716 11.5012 11.6730 

FSDT 8.8333 11.2708 11.5264 11.6444 

Present 8.8333 11.2708 11.5264 11.6444 
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Fig. 5 Variation of dimensionless fundamental frequency of antisymmetric cross-ply (0/90)n 
square laminates versus thickness ratio (Material 2, E1 / E2 = 40) 
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Fig. 6 Variation of dimensionless fundamental frequency of antisymmetric angle-ply (45/-45)n 
square laminates versus material anisotropy (Material 2, a / h = 10) 
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Table 6 Dimensionless fundamental frequency of ten-layer antisymmetric angle-ply (θ / ‒ θ)5 square 
laminates (Material 3) 

h / a Theory 
θ 

15° 30° 45° 

0.01 
Exact (Noor and Burton 1990) 13.2800 15.1000 15.9500 

Present 13.2795 15.1039 15.9484 

0.10 
Exact (Noor and Burton 1990) 11.6200 12.9600 13.5100 

Present 11.8161 13.0695 13.6140 

0.15 
Exact (Noor and Burton 1990) 10.2400 11.2533 11.6311 

Present 10.5338 11.4087 11.7710 

0.20 
Exact (Noor and Burton 1990) 8.9700 9.7225 9.9825 

Present 9.2965 9.892 10.1288 

0.25 
Exact (Noor and Burton 1990) 7.8944 8.4576 8.6400 

Present 8.2107 8.6185 8.7756 

0.30 
Exact (Noor and Burton 1990) 7.0078 7.4356 7.5667 

Present 7.2930 7.5778 7.6849 

 
Table 7 Dimensionless fundamental frequency of antisymmetric angle-ply (45/-45)n square laminates 

(Material 2) 

n E1 / E2 Theory 
a / h 

2 4 10 20 50 100 

1 

3 
HSDT(a) 4.5312 6.1223 7.1056 7.3001 7.3583 7.3666 

Present 4.4556 6.0665 7.0700 7.2694 7.3291 7.3378 

10 
HSDT(a) 4.9742 7.2647 8.9893 9.3753 9.4943 9.5123 

Present 4.9316 7.2169 8.9324 9.3173 9.4362 9.4537 

20 
HSDT(a) 5.1817 8.0490 10.6412 11.2975 10.5074 11.5385 

Present 5.2387 8.1185 10.6265 11.2517 11.4511 11.4806 

30 
HSDT(a) 5.2771 8.5212 11.8926 12.8422 13.1566 13.2035 

Present 5.4104 8.7213 11.9456 12.8208 13.1077 13.1505 

40 
HSDT(a) 5.3325 8.8426 12.9115 14.1705 14.6012 14.6668 

Present 5.5205 9.1609 13.0439 14.1790 14.5608 14.6183 

2 

3 
HSDT(a) 4.6498 6.4597 7.6339 7.8724 7.9442 7.9545 

Present 4.6519 6.4626 7.6293 7.8657 7.9368 7.9472 

10 
HSDT(a) 5.2061 8.3447 11.4116 12.2294 12.4952 12.5351 

Present 5.3765 8.5634 11.4939 12.2463 12.4881 12.5239 

20 
HSDT(a) 5.4140 9.3306 14.4735 16.2570 16.8949 16.9927 

Present 5.6542 9.7575 14.7292 16.3394 16.9008 16.9862 

30 
HSDT(a) 5.5079 9.7966 16.4543 19.2323 20.3134 20.4839 

Present 5.7641 10.3391 16.8825 19.3944 20.3361 20.4827 

40 
HSDT(a) 5.5674 10.0731 17.8773 21.6229 23.1949 23.4499 

Present 5.8228 10.6839 18.4633 21.8722 23.2368 23.4541 
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fundamental frequencies. The obtained results are compared with those reported by Swaminathan 
and Patil (2008) based on HSDT. A good agreement between the results is seen for various values 
of thickness ratio and material anisotropy. In addition, the dimensionless fundamental frequencies 
obtained from the present theory are in excellent agreement with those predicted by the 
conventional FSDT as shown in Fig. 6. It should be noted that the number of unknowns of the 
present theory is only four as against five in the case of the conventional FSDT and twelve in the 
case of HSDT (Swaminathan and Patil 2008) (see Table 1). Thus, it can be concluded that the 
present theory is not only accurate but also simple in predicting the response of laminated plates. 

 
 

5. Conclusions 
 
A simple FSDT was developed for bending and free vibration analysis of laminates. Unlike the 

other shear deformations theories, just four unknown displacement functions are used in the 
present theory against five unknown displacement functions used in the corresponding ones. 
Verification studies show that these simplifying assumptions have a minimal effect on the 
accuracy of results for the problem considered. Therefore, it can be concluded that the new FSDT 
is not only accurate but also simple in predicting the bending and vibration responses of laminates. 
Finally, the formulation lends itself particularly well to study the mechanical behavior of 
functionally graded structures (Yaghoobi and Torabi 2013a, b, c, Yaghoobi and Yaghoobi 2013, 
Bouderba et al. 2013, Bakhti et al. 2013, Benachour et al. 2011), which will be considered in the 
near future. 
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