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Abstract.  Buckling and vibration characteristics of circular laminated plates under in-plane edge loads and 
resting on Winkler-type foundation are solved by the Ritz method. Inclusive numerical data are presented for 
the first three eigen-frequencies as a function of in-plane load for different classical edge conditions. 
Moreover, the effects of fiber orientation on the natural frequencies and critical buckling loads of laminated 
angle-ply plates with stacking sequence of [(β / –β / β / –β)]s, are studied. Also, selected deformation mode 
shapes are illustrated. The correctness of results is established using finite element software as well as by 
comparison with the existing results in the literature. 
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1. Introduction 

 
The transverse vibration and buckling of composite laminated plate structures are the most 

typical dynamic problems come into aerospace industries, transportation, underwater applications, 
civil structures, etc., where weight saving is of main importance. Circular plates are widely used as 
structural components for diaphragms and deckplates in launch vehicles (Houmat 2009, Gupta 
2006). Laminated composite plates have the benefit of controllability of their mechanical 
properties by changing the fiber orientation and the number of plies. In the most of applications 
the mid-plane symmetry exists, which is avoided the coupling between transverse bending and 
in-plane stretching. 

The laminated circular plates resting on an elastic foundation finds applications in diverse areas 
of engineering such as foundation of deep wells (Van Niekerka et al. 1995, Zhang et al. 2011, 
Ponnusamy et al. 2012), reinforced concrete pavements of high runways, storage tanks and slabs 
of buildings, etc (Kim et al. 2005, Thomasa et al. 2003). Therefore there is a great interest in 
vibration analysis of the circular plates on elastic foundations. In various engineering applications, 
plates are often subjected to in-plane forces due to compressive loads which may induce buckling, 
a phenomenon which is highly undesirable. Thus, the study of stability of plates assumes great 
significance. An excellent review on stress and vibration analysis of composite plates was 
presented by Sharma and Mittal (2010). 
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A considerable amount of work dealing with vibration and buckling of rectangular laminated 
composite plates under the initial in-plane forces is available in literature. Dawe and Craig (1986) 
employed first-order shear deformation plate theory (FSDT) to create a model for vibration and 
buckling of thin and moderately thick rectangular symmetrically-laminated composite plates with 
various classical boundary conditions, subjected to different in-plane stress. They used the finite 
strip and Rayleigh-Ritz methods (RRM) to produce numerical results. Xiang et al. (1996) 
presented closed-form solutions for vibration and buckling of moderately thick, simply supported 
cross-ply laminates on Pasternak foundations. They used the variational principle in total potential 
energy functional to find the governing differential equations of motion for the free vibration of 
plate, Based on the FSDT. Aiello and Ombres (1999) used FSDT with the RRM to evaluate the 
buckling load and free vibration for simply supported, moderately thick unsymmetric rectangular 
composite laminates under the initial in-plane compression and shear forces, resting on the elastic 
foundations. In a series of publications, Matsunaga (2000, 2001, 2002) employed the method of 
power series expansion through Hamilton's principle, to derive the dynamic equations of vibration 
for thick rectangular cross-ply/angle-ply laminated composite plates under the in-plane stress, by 
using a global two-dimensional higher-order plate theory. Leung et al. (2005) used a new 
trapezoidal p-element with analytical integration to investigate free vibration of polygonal 
laminated composite plates subjected to in-plane forces, based on the FSDT. Won et al. (2006) 
presented an analytical solution for free vibration of some structural members with simply 
supported all edges, under lateral and in-plane forces. Lu and Li (2009) presented the precise 
integration method to study the free vibrations and buckling of initially stressed cross-ply, 
angle-ply and hybrid rectangular laminated plates with all boundaries simply supported, based on 
exact elasticity theory. Malekzadeh et al. (2010) used the Lindstedt–Poincare perturbation 
technique to analytically solve the natural vibration of laminated rectangular composite plates with 
non-ideal simply supported edge conditions under the initial in-plane stresses and on the Pasternak 
foundation. Chen et al. (2011) used the Galerkin method and Runge-Kutta method to numerically 
solve the nonlinear vibration of hybrid composite plates on Pasternak and Winkler foundations 
subjected to the initial in-plane force. 

In theoretical study, for polar orthotropic circular/annular plates resting on elastic foundation, 
Gupta et al. (1986) used Hamilton's energy principle and spline technique to analyzed the 
axisymmetric vibrations and buckling of polar orthotropic circular annular plate of variable 
thickness on Winkler-type elastic foundation subjected to the hydrostatic peripheral in-plane load, 
on the basis of classical plate theory. Gupta and Ansari (1998) obtained an approximate solution 
for the asymmetric vibration and buckling of polar orthotropic circular plate of variable profile 
with elastically restrained edge and subjected to in-plane load, based upon classical theory of 
plates, by using approximating functions in the Ritz method. Subsequently, Gupta et al. (2006) 
used basis functions based on the static deflection of polar orthotropic circular plates in the Ritz 
method to analyze the natural vibration and buckling behavior of plates of linearly varying 
thickness resting on Winkler-type foundation, with elastically restrained edge. 

For laminated angle-ply or cross-ply circular plates, Sivakumaran (1989) used the Rayleigh- 
Ritz energy method to calculate the natural frequencies of asymmetric composite annular and 
circular laminated thin plate based on Kirchhoff's hypothesis, considering bending-stretching 
coupling and rotatory inertia with free boundary conditions. Krizhevsky and Stavsky (1996) 
employed Hamilton’s variational principle to obtain a closed form solution for asymmetric 
linearized vibrations and buckling of transversally isotropic annular laminated plates elastically 
restrained against rotation, including effects of transverse shear and rotatory inertia. Narita et al. 
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(2002) presented an analytical approach for the free vibration of symmetrically laminated, 
composite elliptical and circular thick plates, employing FSDT. Nallim and Grossi (2008) used the 
Rayleigh–Ritz approach with general polynomial type shape function to solve the free vibration of 
symmetrically laminated angle-ply and cross-ply, solid and annular, circular and elliptical plates 
with the existence of internal ring support, concentrated masses and the elastically restrained edge 
conditions. Viswanathan et al. (2009) used spline function and point collocation method to study 
the asymmetric vibrations of symmetric and anti-symmetric laminated cross-ply annular plates 
considering the effects of shear deformation and rotary inertia. Malekzadeh et al. (2010) employed 
the Hamilton’s principle in conjunction with layerwise-finite element method based on 
three-dimensional elasticity theory to derive the discretized governing equations for free vibration 
of composite laminated thick circular and annular plates, supported on Pasternak-type foundation. 
Nguyen-Van et al. (2011) presents a smoothed quadrilateral flat shell element to study the 
vibration and buckling of laminated composite plate/shell structures of various shapes, boundary 
conditions, and stacking sequence within the framework of the FSDT. Seifi et al. (2012) used 
energy method and Trefftez rule in the stability equations to investigate the critical buckling loads 
of symmetrically laminated cross-ply annular plates under uniform external and internal radial 
edge forces. 

The above review clearly indicates to be no rigorous analytic, approximate solutions for the 
vibration and buckling of composite symmetrically laminated circular plates under uniform 
in-plane stress and resting on Winkler foundations. The main purpose of present document is to 
utilize the classical theory of plates in conjunction with the Ritz energy method, to calculate 
critical buckling loads and natural frequencies of laminates with different boundary conditions. It 
can well assist the design engineers in evaluating the effects of changing the fiber orientation, 
foundation parameter and in-plane force on the dynamic characteristics of laminated circular plates 
in a wide range of physical and industrial applications. 
 
 
2. Formulation 

 
2.1 Basic relations 
 
Fig. 1 shows a symmetrically laminated composite plate made of L plies. Each ply of the 

laminated plateconsists of unidirectional fiber reinforced composite material. The ply orientation is 
indicated by an angle βm in Fig. 1 measured from the x axis to the fiber direction. The constitutive 
relation for the m-th ply is written as 
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where Qij (i, j = x, y, s) are the stiffness constants defined in the x-y off-axis coordinate system.   
The relationships between the stiffness components of on-axis and off-axis are given in (Tsai and 
Hahn 1980), where for the on-axis stiffness parameters we have 
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Fig. 1 Problem geometry 

 
 
that defined in the material on-axis coordinates. E1

m and E2
m are the longitudinal and transverse 

Young’s of m-th ply in the direction of the fibers, E6
m is Longitudinal shear modulus and mv12  and 

mv21  are transverse and longitudinal Poisson’s ratios. 
In the classical laminated plate theory (CLPT) (Reddy 2004), the extensional and bending 

stiffness of plate is obtained by integrating the stress-strain relations and its first-order moment 
relations over the thickness. We study symmetric laminate that have not coupling stiffness so [B] = 
0. Extensional and bending stiffness matrices are defined as 
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where and [Q]m is stiffness matrix in Eq. (1). Also, the displacements of an arbitrary point in the 
plate in x, y, and z directions are given as 
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where u(x, y, t), v(x, y, t) and w(x, y, t) are the displacements on the middle surface. Substitution of 
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Eq. (4) into the linear strain-displacement relations, the strain and curvature components are 
obtained as 
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2.2 Energy expressions 
 
Assumed that the Donnell-Mushtari-Vlasov’s assumptions (Soedel 2004), the kinetic energy of 

the laminated plate is as follows 
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and A is the plate domain (A = {(x, y), x2 + y2 ≤ a2; x, y  R}), and ρm is the mass per unit volume 
of m-th ply. The total strain energy of laminate can be expressed as 
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where [ε] = [εx  εy  εs]

T, and [σ] = [σx  σy  σs]
T. The potential energy due to subjected external 

in-plane radial tensile force N can be obtained as 
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and for the potential energy due to elastic foundation we have 
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where Kw is parameter of Winkler-type foundation. Finally, the total energy of the elastic structure 
is defined as 
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2.3 Ritz method 
 
The variational approach in conjunction with the Ritz method is used to obtain the frequencies 

and critical buckling loads of the laminated plates (Reddy 2007). The weak form related to Eq. 
(10) is given by 
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In order to finding the natural frequencies we suppose the harmonic motion for the deflection 

of laminate in the form 
tieyxwtyxw ),(),,( 0                          (12) 

 
where ω indicates natural frequency and w0 (x, y) is the amplitude. Next with integration in z 
direction and substituting Eqs. (1) and (12) into Eq. (11), we obtain 
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The pertinent moment resultants, stress resultants within the plies, appearing in the relations are 

expressed as 
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Next, since we study lateral vibration of laminate with uncoupling of in-plane and lateral 

equations, because of [B] = 0, we ignore in-plane equations for this study. In the Ritz method, the 
unknown displacement, w0, is approximated by a finite linear combination of wij in the form 
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Substituting Eqs. (14) and (15) into Eq. (13), after some manipulation, we have 
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Since δcpq are arbitrary and linearly independent, we conclude that the coefficients of them 

must be zero. So we obtain 

  ,0 2  CMKK Next                          (17) 
 
where C = [c00, c01, ... c0J; c10, c11, ... c1J; cI0, cI1, ... cIJ]

T, and Kex is stiffness matrix which contain 
terms relative to potential energy of external force, Kt is stiffness matrix associated with strain 
energy and foundation’s potential energy, and M is mass matrix related to kinetic energy, and they 
are given in Appendix. In the Ritz method a complete set of approximated functions that satisfy 
the geometrical boundary conditions is sufficient. Also, the corresponding geometrical boundary 
conditions are given as 
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The natural boundary conditions will be satisfied (Reddy 2007) if the number of approximation 

functions approaches infinity. So, the assumed shape functions that satisfy essential boundary 
conditions, is expressed as (Nallim and Grossi 2008) 
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To satisfy the boundary conditions, α = 0 is adopted when the plate is free, α = 1 when it is 

simply supported which refers to soft simple support (Babuška and Pitkäranta 1990), α = 2 when it 
is clamped. Thus, the eigenvalue problem of laminated platecan be formulated as 
 

  ,0 2  CMKK Next                          (20) 
 
where it is a system of linear equations of (I + 1) · (J + 1) × (I + 1) · (J + 1) order. A nontrivial 
solution (C ≠ 0) to Eq. (20) exists only if the determinant of the coefficients matrix is zero, which 
is evaluating frequencies of laminate. Moreover, the analysis of critical buckling load is done by 
the same procedure described for the natural frequencies.For evaluating the critical buckling load, 
Ncr, one should omit the inertia terms in Eq. (20) to obtain 
 

  ,0  CKK Next                             (21) 
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This completes the necessary background required for analysis of the problem. Next we 
consider some numerical examples. 

 
 

3. Numerical results and discussion 
 

In order to calculate the natural frequency and critical buckling load of laminated composite 
circular plates and also evaluating the effect of various parameters on them, different numerical 
examples are presented here. A circular plate made of unidirectional carbon/epoxy (E1 = 138 GPa, 
E2 = 8.96 GPa, v12 = 0.3, E6 = 7.1 GP) with layup sequence of [(β / –β / β / –β)]s and [(0 / ± 45 / 90)]s 
under simply supported, clamped and free boundary conditions are considered. The radius of 
composite circular plate (a = 0.1 m), the thickness of each layer (hm = 125 μm) and the dimensionless 
stiffness of elastic foundation (K̄w = Kw a4/ D = 0, 10), in which D = E1h

3
 / 12 (1 – v12v21), are 

considered. 
The convergence analysis of first three non-dimensional natural frequencis, Ω = ωa2 Dph / , 

of laminated circular plates with stacking sequence of [(β / –β / β / –β)]s (β = 0, 45), and selected 
in-plane load parameters (N = 0, Ncr/2), under different edge conditions are performed and results 
to four decimal places are depicted in Table 1. The parameter of elastic foundation is considered to 
be zero (K̄w = 0) in this analysis. Here, it can clearly be seen that convergence rate reduces with 
increasing the mode number. Moreover, Table 2 tabulates the convergence analysis results of 

 
 
Table 1 Convergence study of the first three dimensionless natural frequencies of laminated circular plates 

with layup sequence of [(β / –β / β / –β)]s (β = 0, 45), under zero elastic foundation parameter for 
different edge conditions 

 
N I = J 

Simply supported Clamped Free 

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

β = 0 

0 

4 4.4740 6.2631 11.7454 7.3124 9.7222 14.5174 3.7453 3.7725 6.3149

5 4.4616 6.2616 9.5116 7.3079 9.7220 13.4151 3.6368 3.7725 5.6627

6 4.4616 6.2024 9.5116 7.3079 9.7023 13.4151 3.6368 3.7691 5.5638

7 4.4616 6.2024 9.2911 7.3079 9.7023 13.3462 3.6318 3.7691 5.5627

8 4.4616 6.2018 9.2911 7.3079 9.7020 13.3462 3.6318 3.7691 5.4891

9 4.4615 6.2018 9.2860 7.3079 9.7020 13.3446 3.6318 3.7691 5.4891

10 4.4615 6.2018 9.2860 7.3079 9.7020 13.3446 3.6318 3.7691 5.4885

0.5 Ncr 

4 3.5391 4.4934 10.6294 5.9245 7.2291 12.0541 2.7078 3.0787 5.3386

5 3.5093 4.4925 7.3419 5.8687 7.2290 10.3547 2.6688 3.0787 4.7327

6 3.5093 4.3972 7.3419 5.8687 7.1399 10.3547 2.6688 3.0785 4.3269

7 3.5086 4.3972 7.0609 5.8660 7.1399 10.1951 2.6660 3.0785 4.3267

8 3.5086 4.3953 7.0609 5.8660 7.1367 10.1951 2.6660 3.0785 4.2893

9 3.5085 4.3953 7.0526 5.8659 7.1367 10.1889 2.6660 3.0785 4.2893

10 3.5085 4.3953 7.0526 5.8659 7.1367 10.1889 2.6660 3.0785 4.2891
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Table 1 Continued 

 
N I = J 

Simply supported Clamped Free 

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

β = 45 

0 

4 4.5071 8.5708 10.5786 7.4009 12.8340 15.5693 3.8614 5.1585 7.8356

5 4.5069 8.5674 10.5782 7.4003 12.8326 15.5690 3.8197 5.1060 6.7964

6 4.5068 8.5499 10.5242 7.4003 12.8272 15.5573 3.8197 5.0925 6.7890

7 4.5068 8.5498 10.5242 7.4003 12.8272 15.5573 3.8174 5.0869 6.7288

8 4.5068 8.5497 10.5237 7.4003 12.8271 15.5572 3.8174 5.0868 6.7288

9 4.5068 8.5497 10.5237 7.4003 12.8271 15.5572 3.8174 5.0868 6.7283

10 4.5068 8.5496 10.5237 7.4003 12.8271 15.5572 3.8174 5.0868 6.7283

0.5 Ncr 

4 3.1875 6.9008 9.2804 5.3020 10.0467 13.3433 2.7381 4.3752 6.9364

5 3.1875 6.8967 9.2798 5.2993 10.0439 13.3431 2.7227 4.2772 5.9536

6 3.1875 6.8800 9.2185 5.2993 10.0348 13.3222 2.7227 4.2716 5.9450

7 3.1875 6.8799 9.2185 5.2993 10.0348 13.3222 2.7220 4.2673 5.9039

8 3.1875 6.8798 9.2179 5.2993 10.0347 13.3219 2.7220 4.2673 5.9039

9 3.1875 6.8798 9.2171 5.2993 10.0347 13.3219 2.7220 4.2672 5.9035

10 3.1875 6.8798 9.2179 5.2993 10.0347 13.3219 2.7220 4.2672 5.9035

 
 
non-dimensional critical buckling load, N̄cr = |Ncr|a

2
 / D, of laminated composite circular plates 

with layup sequence of [(β / –β / β / –β)]s (β = 0, 15, 30 and 45), and selected foundation parameter 
(K̄w = 10) under various boundary conditions. Using a maximum truncation constant of I, J = 10 
was found to yield acceptable results for the first three natural frequencies and critical buckling 
loads. 

Before presenting the key results, we shall exhibit the overall validity of the formulation. To 
this end the results of proposed technique are compared with calculated results obtained from 
commercial finite element package (ABAQUS) for circular laminated composite plate. The 
present simulation is focused on laminated plate with stacking sequence of [(0 / ± 45 / 90)]s, under 
various boundary conditions (simply supported, clamped and free) and in-plane loading (N = 0, ± 
0.5 |Ncr|).The mesh element type used in the modeling of plate is “S8R5” (eight-node doubly 
curved thin shell, reduced integration) and the least number of elements required for 
globalconvergence of results is found to be 1500. Elastic foundation for this analysis is considered 
to be linear with two different magnitudes (K̄w = 0, 10). To model such a foundation, the “Elastic 
foundation” procedure in “Interaction” module of ABAQUS software is used. Well agreements 
between the present FEM numerical data and the calculated results using Ritz method is obtained 
in Table 3. The maximum percentage of error between the results is seen to be 0.44%. Also, Table 
4 shows the first three lowest non-dimensional natural frequencies, Ω = ωa2 Dph /  (D0 = Eh3 / 
12 (1 – v2), v = 0.3), calculated for an isotropic circular plate under different boundary conditions 
and zero elastic foundation parameter. Calculated results are compared with the exact results of 
Zhoua et al. (2011) as well as FEM data. Good agreements are obtained between different 
methods. 
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Table 2 Convergence study of dimensionless critical buckling load of laminated circular plates with layup 
sequence of [(β / –β / β / –β)]s (β = 0, 15, 30 and 45), under K̄w = 10 elastic foundation parameter for 
different edge conditions 

I = J 
Simply supported Clamped Free 

β = 0 β = 15 β = 30 β = 45 β = 0 β = 15 β = 30 β = 45 β = 0 β = 15 β = 30 β = 45

4 2.6465 3.0878 3.4937 3.4994 4.8904 5.7284 7.2305 7.5573 0.8788 0.9232 1.0774 1.2425

5 2.6464 3.0862 3.4931 3.4991 4.7308 5.5961 7.1157 7.5382 0.8728 0.9184 1.0718 1.2424

6 2.5733 3.0338 3.4931 3.4991 4.6255 5.5023 7.1153 7.5381 0.8728 0.9183 1.0717 1.2424

7 2.5733 3.0337 3.4931 3.4991 4.6255 5.5019 7.1093 7.5379 0.8502 0.9002 1.0620 1.2356

8 2.5694 3.0315 3.4931 3.4991 4.6344 5.4839 7.1093 7.5379 0.8502 0.9002 1.0620 1.2356

9 2.5694 3.0315 3.4931 3.4991 4.6017 5.4839 7.1092 7.5379 0.8502 0.9002 1.0619 1.2356

10 2.5693 3.0315 3.4931 3.4991 4.6008 5.4833 7.1092 7.5379 0.8502 0.9002 1.0619 1.2356

 
 
 
Table 3 Comparisons of dimensionless natural frequencies of circular laminated plate with layup sequence 

of [(0 / ± 45 / 90)]s, for various edge conditions, foundation parameter and in-plane loads, with the 
FEM data 

 K̄w  
N̄cr = – 0.5 |Ncr| N = 0 Ncr = 0.5 |Ncr| 

present FEM Error% present FEM Error% present FEM Error%

C
la

m
pe

d 

0 

Ω1 4.7916 4.8035 0.24 6.6577 6.6753 0.26 8.0594 8.0808 0.26 

Ω2 8.8172 8.8561 0.44 11.3594 11.4027 0.38 13.3907 13.4385 0.36 

Ω3 14.2214 14.2685 0.33 15.9103 15.9612 0.32 17.4201 17.4754 0.32 

10 

Ω1 5.3508 5.3608 0.19 7.3708 7.3865 0.21 8.8851 8.9045 0.22 

Ω2 8.8040 8.8423 0.43 11.7917 11.8331 0.35 14.1095 14.1554 0.32 

Ω3 14.2195 14.2660 0.32 16.2213 16.2716 0.31 17.9800 18.0340 0.30 

S
im

pl
y-

su
pp

or
te

d 

0 

Ω1 2.2670 2.2682 0.05 3.2057 3.2076 0.05 3.9264 3.9282 0.05 

Ω2 6.1852 6.1952 0.17 7.1628 7.1729 0.14 8.0224 8.0324 0.12 

Ω3 9.8872 9.9029 0.16 10.5281 10.5432 0.14 11.1313 11.1464 0.13 

10 

Ω1 3.1900 3.1856 0.14 4.5032 4.5044 0.03 5.5116 5.5160 0.08 

Ω2 5.9697 5.9734 0.06 7.8301 7.8389 0.12 9.3255 9.3387 0.14 

Ω3 9.7528 16.0479 0.12 10.9924 11.0075 0.13 12.1052 12.1221 0.14 

F
re

e 

0 

Ω1 1.8523 1.8542 0.08 2.5987 2.6006 0.08 3.1598 3.1623 0.08 

Ω2 2.8852 2.8903 0.18 3.3439 3.3489 0.15 3.7442 3.7492 0.13 

Ω3 5.9640 5.9684 0.07 6.3265 6.3309 0.07 6.6690 6.6740 0.07 

10 

Ω1 2.9600 2.9613 0.04 4.0929 4.0948 0.04 4.9222 4.9241 0.03 

Ω2 3.7982 3.8026 0.11 4.6024 4.6062 0.08 5.2754 5.2785 0.06 

Ω3 6.0934 6.1029 0.16 7.0724 7.0768 0.06 7.7780 7.7824 0.06 
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Table 4 Comparisons of first three calculated dimensionless natural frequencies of isotropic circular plate (v 
= 0.3), under zero elastic foundation parameter for different edge conditions with the results of 
Zhoua et al. (2011) as well as FEM data 

 Clamped  Simply supported Free 

 
Zhoua et al. 

(2011) 
FEM present  

Zhoua et al. 
(2011) 

FEM present
Zhoua et al. 

(2011) 
FEM present

Ω1 10.216 10.213 10.216  4.9352 4.9348 4.9351 5.3583 5.3563 5.3584

Ω2 21.260 21.249 21.260  13.898 13.892 13.898 9.0031 9.0020 9.0031

Ω3 34.877 34.850 34.877  25.615 25.592 25.613 12.439 12.431 12.439

 
Table 5 Comparisons of normalized critical buckling load of an isotropic circular plate (v = 0.3), under zero 

elastic foundation parameter for different edge conditions with the results of Reddy (2007) as well 
as FEM data 

 Reddy (2007) present FEM 

Clamped 14.6820 14.6820 14.6774 

Simply supports 4.1978 4.1978 4.1976 

Free - 2.6026 2.5978 

 
 

Based on the authors’ knowledge, there isno published data regarding the critical buckling load 
of laminated circular composite plates with general fiber orientations in Cartesian coordinate 
system. Hence, the validity of the critical buckling load (N̄cr = |Ncr|a

2 / D0) calculated by the current 
research are compared with exact results of Reddy (2007) and FEM for an isotropic circular plate 
(v = 0.3), under simply supported and clamped boundary edges in Table 5. For free boundary 
condition, results are just compared with FEM and effect of elastic foundation is ignored in this 
example.There is a good correlation between present and exact results. 

Fig. 2 displays the variation of first three lowest natural frequencies of composite laminated 
circular plates [(β / –β / β / –β)]s (β → 0, 45), with selected foundation parameters (K̄w = 0, 10) 
under simply supported, clamped and free edge conditions. The variation of fiber direction has less 
increasing effect on first natural frequency but it has considerable increasing effect on the second 
natural frequency. Also, third natural frequency increased up to a certain fiber orientation and then 
decreased. Elastic foundation in all curves showed an increasing effect on natural frequencies, 
which is related to increasing in stiffness of structural system. Furthermore elastic foundation has 
more increasing effect on plates with free edge conditions since free plates are generally softer 
than plates with simply supported and clamped boundary conditions. The variation of critical 
buckling load of laminated circular plates [(β / –β / β / –β)]s, with various fiber directions and 
boundary conditions are represented in Fig. 3. There is an increase of critical buckling load with 
increasing the angle of fibers (β → 0, 45) for clamed and free boundary conditions. On the other 
hand, critical buckling loads of simply supported plates increased up to 25 degree and then didn’t 
changed. Elastic foundation (K̄w = 0, 1 and 10), in all curves showed an increasing effect on 
critical buckling load, nearly regardless of the edge condition. Moreover, Fig. 4 shows some 
representative three dimensional transverse displacement mode shapes in conjunction with nodal 
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Fig. 2 Variation of first three calculated normalized natural frequencies of angle-ply circular plate of [(β / –β /
β / –β)]s, with fiber orientation angle for various boundary conditions and elastic foundation parameter 
(K̄w = 0, 10) 

 
 
lines of corresponding mode shapes related to first three natural frequencies of angle-ply laminated 
circular plates of [(β / –β / β / –β)]s (β = 0, 45), and zero Winkler foundation parameter under 
different edge conditions. By variation of fiber orientation the nodal lines of composite plates are 
changed. It can be seen that first mode shapes of simply supported and clamped boundary 
conditions are approximately axisymmetric and variation of fiber orientation doesn’t have much 
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Fig. 3 Variation of calculated normalized critical buckling load of angle-ply circular plate of [(β / –β / β / –β)]s , 

with fiber orientation angle for various boundary conditions and elastic foundation parameter (K̄w = 0, 1 
and 10) 

 
 
effect on them. This could be related to the less increasing effect on first natural frequency verse 
the variation of fiber angle in Fig. 2. Furthermore, for the second modes of simply supported and 
clamped edge conditions, the nodal lines aligned at the same direction as fibers, however, for the 
third modes the two nodal lines aligned at the same as fiber direction up to nearly 25 degree and 
then number of nodal lines decreased to one. This may be linked to trend of variation in second 
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and third natural frequencies shown in Fig. 2. 
Fig. 5 displays the variation of first three natural frequencies of circular composite laminates 

with stacking sequence of [(0 / ± 45 / 90)]s with a wide range of initial in-plane stresses for selected 
foundation parameter (K̄w = 1, 10) under different edge conditions. As depicted in this figure, 
compressive in-plane loading reduced the natural frequencies and made them zero at critical 
buckling loads, while tensile loading increased the frequencies. Also, elastic foundation had an 
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Fig. 4 The transverse displacement mode shapes corresponding to the first three calculated natural 
frequencies of angle-ply laminated circular plate of [(β / –β / β / –β)]s, for (β = 0, 45) under zero 
elastic foundation parameter various edge conditions 
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Fig. 4 Continued 
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Fig. 5 Variation of first three calculated normalized natural frequencies of circular laminated plate of [(0 / ±

45 / 90)]s, with initial in-plane stresses for various boundary conditions and elastic foundation
parameter (K̄w = 0, 1 and 10) 
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Fig. 5 Continued 

 
 
increasing effect on natural frequencies in all curves. The critical buckling load N̄cr (Ω1 = 0) of 
plate with clamped (simply supported) edge condition is always greater than critical buckling load 
of simply supported (free) plate. 

 
 

4. Conclusions 
 
In this paper the total potential energy functional in conjunction with the Ritz energy method is 

used to extract the transverse natural frequencies and critical buckling load along with selected 
deformed mode shapes for composite symmetrically laminated thin circular plates under radial 
membrane force and resting on the Winkler-type elastic foundation, based on the classical 
laminate plate theory. The general approximated solutions are presented and the related buckling 
load and frequency determinants are achieved and solved for different classical boundary 
conditions (free, clamped and simply supported). The presented results show that the dynamic and 
static characteristics of laminate are significantly influenced by the fiber orientation of plies, 
stacking sequence and foundation parameter. In particular, it is observed that: 

 

• The variation of fiber orientation (β → 0, 45) for angle-ply laminate [(β / –β / β / –β)]s, has an 
increasing effect on first and second natural frequencies but for third natural frequency it has 
decreasing effect after a distinct peak in the certain fiber orientation angle. Also, elastic 
foundation parameter has an increasing effect on the frequencies. 

• There is an overall increase of critical buckling load for laminated circular plate [(β / –β / β / 

–β)]s, with variation of fiber direction (β → 0, 45) and elastic foundation stiffness, regardless 
of boundary condition. 

• There is a raise in the frequencies of circular laminated plate with applying the in-plane 
tensile force, while compressive force decrease the frequencies and made them zero at 
structural buckling loads. 

• Variation of fiber direction changes the nodal lines of composite circular plates [(β / –β / β / 

–β)]s, especially for the 2nd mode shapes the nodal lines align at the same as fiber direction 
for the simply supported and clamped edge conditions. 
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Appendix 
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