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Abstract.  In this paper we consider a periodic solution for nonlinear free vibration of conservative systems 
for thick circular sector slabs. In Energy Balance Method (EBM) contrary to the conventional methods, only 
one iteration leads to high accuracy of the solutions. The excellent agreement of the approximate frequencies 
and periodic solutions with the exact ones could be established. Some patterns are given to illustrate the 
effectiveness and convenience of the methodology. Comparing with numerical solutions shows that the 
energy balance method can converge to the numerical solutions very rapidly which are valid for a wide 
range of vibration amplitudes as indicated in this paper. 
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1. Introduction 

 
Many engineering problems can be parted into linear or nonlinear according to the type of 

differential equations of motion. Nonlinear oscillators systems are used in many subjects of 
mechanical and civil engineering. In recent years many researchers have been focused on new 
approximate solution for nonlinear problems because of their advantages respect to numerical 
methods. In fact, it is too difficult to find and exact solution for nonlinear governing equations. 

Perturbation technique is one of the well-known analytical methods. They are not applicable for 
strongly nonlinear equations, and to eliminate the imperfections, novel techniques have been 
developed and are well documented in open literature, for instance, for instance; homotopy 
perturbation method (Shaban et al. 2010, Bayat et al. 2013), hamiltonian approach (Bayat 2011, 
2012, 2013a, Bayat et al. 2013, 2014a, b), energy balance method (He 2002, Bayat and Pakar 
2011b, Pakar et al. 2011, Mehdipour 2010), variational iteration method (Dehghan 2010, Pakar et 
al. 2012), amplitude frequency formulation (Bayat et al. 2011c, 2012, Pakar and Bayat 2013a, He 
2008), max-min approach (Shen et al. 2009, Zeng et al. 2009), variational approach method (He 
2007, Bayat and Pakar 2013b, Bayat et al. 2013, 2014c, Pakar et al. 2012), and the other analytical 
and numerical (Xu 2009, Alicia et al. 2010, Bor-Lih et al. 2009, Wu 2011, Odibat et al. 2008). 

In this paper, the basic idea of energy balance method is introduced and then its application for 
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solving nonlinear vibration of thick circular sector slab is studied. Some comparisons between 
analytical and numerical solutions are presented; eventually we show that EBM can meet to a 
precise periodic solution for nonlinear systems. It has been indicated that the numerical results of 
other methods are trigger same conclusion; while EBM is much easier, more convenient and more 
efficient than other approaches. 
 
 
2. Swinging oscillation of thick circular sector slab 

 
Consider a thick circular sector slab with angle α and radius R as shown in Fig. 1. The height of 

mass center obtained as below 
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The governing equation of the oscillation is as follow 
 

        
22

2
cos 2 sin sin 0,

d d
gy

dt dt

     
         

  
             (2) 

 

where 
 

2 2
2 1

2

3 1
,

2 2

2 .

R R

R y

    
 


                             (3) 

 

Eq. (2) becomes 
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And by introducing the dimensionless geometrical parameter 
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Eq. (4) becomes (Shaban et al. 2010) 
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Fig. 1 Geometric parameters of the homogeneous thick circular sector cylinder 

 
 
3. Basic idea of energy balance method 
 

In the present paper, we consider a general nonlinear oscillator in the Form (He 2008) 
 

 ( ) 0f t                                  (8) 
 

In which θ and t are generalized dimensionless displacement and time variables, respectively. 
Its variational principle can be easily obtained 
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Where T = 2π / ω is period of the nonlinear oscillator, F(θ) = ∫ f(θ)dθ. 
Its Hamiltonian, therefore, can be written in the form 
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Oscillatory systems contain two important physical parameters, i.e., 
The frequency ω and the amplitude of oscillation. A. So let us consider such initial conditions 
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We use the following trial function to determine the angular frequency ω 
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( ) cos( )t A t                               (13) 
 

Substituting (13) into θ term of (11), yield 
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If, by chance, the exact solution had been chosen as the trial function, then it would be possible 
to make  zero for all values of t by appropriate choice of ω. Since Eq. (13) is only an 
approximation to the exact solution,  cannot be made zero everywhere. Collocation at ωt = π / 4 
gives 
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Its period can be written in the form 
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4. Basic idea of Runge-Kutta’s Method (RKM) 
 

The Runge-Kutta method is an important iterative method for the approximation solutions of 
ordinary differential equations. These methods were developed by the German mathematician 
Runge and Kutta around 1900. For simplicity, we explain one of the important methods of 
Runge-Kutta methods, called forth-order Runge-Kutta method. 

Consider an initial value problem be specified as follows 
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θ is an unknown function of time t which we would like to approximate. Then RK4 method is 
given for this problem as below 
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for n = 0, 1, 2, 3, . . . , using 
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Where θn+1 is the RK4 approximation of θ(tn+1). The fourth-order Runge-Kutta method requires 
four evaluations of the right hand side per step h. 
 
 
5. Application of EBM to thick circular sector slab 

 
Variational formulation can be readily obtained from Eq. (7) as follows 
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Its Hamiltonian, therefore, can be written in the form 
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We will use the trial function to determine the angular frequency ω, i.e., 
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If we collocate at ωt = π / 4 we obtain 
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This leads to the following result 
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Table 1 Comparison of frequency corresponding to various parameters of system 

A α R2 R1 g Energy balance method Runge-Kutta Error % 

π/12 π/6 5 3 10 2.2940 2.2989 0.2125 

π/6 π/3 2 1.5 10 2.0398 2.0474 0.3699 

π/4 π/3 4 3 10 1.2452 1.2594 1.1329 

π/3 π/4 5 1 10 0.9441 0.9642 2.0802 

π/2 π/2 4 2 10 0.6131 0.6230 1.5925 

2π/3 π/2 5 2.5 10 0.4163 0.4254 2.1341 

 
 

According to Eqs. (24) and (27), we can obtain the following approximate solution 
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6. Results and discussions 

 
To illustrate and verify the accuracy of this new approximate analytical approach, some 

comparisons between energy balance method and numerical method (Runge-kutta algorithm) are 
presented in a table and some figures. 

Table 1 is the comparison of obtained results with those obtained by Runge-Kutta algorithm for 
different values of A, α, R1, R2, g. The maximum relative error between the energy balance method 
results and numerical results is 2.1341%. 

Figs. 2 to 4 represent comparison of analytical solution of time history response with the 
numerical solution and also the phase plan of the problem for three cases as follow 

 

Case 1 :  A = π/6,  α = π/3,  R2 = 2,  R1 = 1.5,  g = 10 
Case 2 :  A = π/2,  α = π/2,  R2 = 4,  R1 = 2,  g = 10 
Case 3 :  A = 2π/3, α = π/2,  R2 = 5,  R1 = 2.5,  g = 10 
 

It is obvious from the figures the EBM has an excellent agreement with the numerical solution 
and quickly convergent and valid for a wide range of vibration amplitudes and initial conditions.  
Figs. 5(a) to 5(c) show the effect of various parameters of amplitude and angle on the nonlinear 
frequency of the problem. 

It can be observed form Fig. 5(a) that by increasing R1 the frequency of the oscillation is 
increased and opposite result is obtained by increasing R2 in Fig. 5(b). From Fig. 5(c), the 
nonlinear frequency is decreased by decreasing of the amplitude for R2 = 5, R1 = 2, g = 10. 

The Fig. 6 is sensitivity analysis of nonlinear frequency for three cases 
 

(a) respect to R1 and amplitude, 
(b) respect to R2 and amplitude, 
(c) respect to α and amplitude. 
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The accuracy of the results shows that the EBM can be potentiality used for the analysis of 
strongly nonlinear oscillation problems accurately. 
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Fig. 2 Comparison of the analytical solution and numerical solution for A = π/6, α = π/3, R2 = 2, 
R1 = 1.5, g = 10: (a) time history response; (b) phase curve 
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Fig. 3 Comparison of the analytical solution and numerical solution for A = π/2, α = π/2, R2 = 4, 
R1 = 2, g = 10: (a) time history response; (b) phase curve 

 

527



 
 
 
 
 
 

Iman Pakar, Mahmoud Bayat and Mahdi Bayat 

0 3 6 9 12 15

-2

-1

0

1

2

 
(t

)

Time

 Energy Balance 
 Runge-Kutta 

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

d
(t

)/
dt

(t)

 Energy Balance 
 Runge-Kutta 

(a) (b) 
 

Fig. 4 Comparison of the analytical solution and numerical solution for A = 2π/3, α = π/2, R2 = 5, 
R1 = 2.5, g = 10; (a) time history response; (b) phase curve 
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Fig. 5 The effects of radius and amplitude on the nonlinear frequency for: (a) R2 = 6, α = π/3, g = 
10; (b) R1 = 1, α = π/3, g = 10; (c): R2 = 6, α = π/3, g = 10 
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(a) (b) 
 

(c) 
 
 

Fig. 6 Sensitivity analysis of nonlinear frequency: (a) respect to R1 and amplitude; (b) respect to 
R2 and amplitude; (c) respect to α and amplitude 

 
 
7. Conclusions 

 
It has been used a quite uncomplicated but productive new method for non-natural oscillator 

called He’s energy balance method. Energy balance method has been utilized on the thick circular 
cylinder. It has been indicated that the Energy balance method is clearly effective, comfortable and 
sufficiently exact in engineering problems and does not require any linearization or small 
perturbation, and adequately accurate to both linear and nonlinear problems in physics and 
engineering. The results indicated that energy balance method is extremely speedy, light, with high 
accuracy. The method can be easily extended to any nonlinear oscillator without any difficulty. 
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