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Abstract.  The strength and buckling problem of a five layer sandwich beam under axial compression or 
bending is presented. Two faces of the beam are thin aluminium sheets and the core is made of aluminium 
foam. Between the faces and the core there are two thin binding glue layers. In the paper a mathematical 
model of the field of displacements, which includes a share effect and a bending moment, is presented. The 
system of partial differential equations of equilibrium for the five layer sandwich beam is derived on the 
basis of the principle of stationary total potential energy. The equations are analytically solved and the 
critical load is obtained. For comparison reasons a finite element model of the beam is formulated. For the 
case of bended beam the static analysis has been performed to obtain the stress distribution across the height 
of the beam. For the axially compressed beam the buckling analysis was carried out to determine the 
buckling load and buckling shape. Moreover, experimental investigations are carried out for two beams. The 
comparison of the results obtained in the analytical and numerical (FEM) analysis is shown in graphs and 
figures. The main aim of the paper is to present an analytical model of the five layer beam and to compare 
the results of the theoretical, numerical and experimental analyses. 
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1. Introduction 

 
Sandwich structures with a metal foam core are a subject of contemporary studies. These 

structures are characterized by impact and heat resistance, acoustic and vibration reduction and 
easy assembly. Because of the above excellent properties these structures are widely used in 
aerospace, automotive, rail and shipbuilding industry. Plantema (1966) and Allen (1969) described 
the bases of the theory of sandwich structures. Noor et al. (1996) and Vinson (2001) presented 
strength and stability problems of sandwich structures. Grigolyuk and Chulkov (1973) provided 
the first hypothesis of cross section deformations of sandwich structures. Wang et al. (2000) 
discussed the higher order hypotheses including shearing of beams and plates. Carrera (2000) 
formulated the zig-zag hypotheses for multilayered plates. Jasion et al. (2012) studied analytically, 
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numerically and experimentally the global and local buckling-wrinkling of the face sheets of 
sandwich beams. Jasion and Magnucki (2013) investigated the global buckling phenomenon of an 
axially loaded sandwich beam-column with a metal foam core. Jasion and Magnucki (2012) 
analysed the local buckling problem of sandwich beams under pure bending. Kasprzak and 
Ostwald (2006) presented a generalization of the hypotheses of deformations. Chakrabarti et al. 
(2011) developed a new FE model based on higher order zig-zag theory for the static analysis of 
laminated sandwich beams with a soft core. Magnucka-Blandzi (2008 and 2009) presented a 
theoretical study on dynamic stability of a metal foam circular plates. Magnucka-Blandzi (2011) 
compared the results of vibration problem of a sandwich beams for the three different Timoshenko 
hypotheses of deformation. Vlasov and Leont’ev (1960) discussed in detail the theory of elastic 
foundation and stability problems of beams, plates and shells on elastic foundations. Magnucki et 
al. (2006) carried out analytical investigations of bending and buckling of a rectangular plate made 
of a porous material. Chen and Yu (2000) presented the numerical simulation and analysis of the 
elastic-plastic beam-on-foundation. Kesler and Gibson (2002), Steeves and Fleck (2004) and Qin 
and Wang (2009) presented analytical models of collapse mechanisms of sandwich beams under 
transverse force. Rakow and Wass (2005) presented mechanical properties of an aluminium foam 
under shear. Magnucka-Blandzi and Magnucki (2007) and Magnucki et al. (2011) described 
strength and buckling problems of sandwich beams with a metal foam core. Magnucki et al. 
(2013a and 2013b) presented the strength analysis of a simply supported five layer sandwich 
beams with metal foam core and a beams with corrugated main core. Zenkert (1991) presented 
strength of sandwich beams with debondings in the interface between the face and the core. 
Burlayenko and Sadowski (2009, 2010) studied influence of skin/core debonding on free vibration 
behaviour of foam cored sandwich plates. Jakobsen et al. (2008) and Zhang and Wang (2011) 
presented delamination of interface layered structures on an elastic foundation. 

This paper is devoted to the buckling and strength analysis of a five layer sandwich beam. The 
goal is to elaborate a mathematical model of this beam and to check the influence of the binding 
glue layers on the strength of this structure. 

A simply supported sandwich beam consists of five layers: two thin faces (aluminium sheets) 
of a thin tf, one core (aluminium foam) of a thin tc and two thin binding layers (glue) of a thin tb. 
The beam of the length L and the width b carries a compressive axial force F0 or concentrated 
force F1 as shown in Fig. 1. The force F1 is located in the middle of the beam. 

 
 
 

 
 

Fig. 1 Scheme of the loaded beam 
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Fig. 2 Scheme of displacements – the hypothesis for the beam 

 
 
2. Analytical analysis 

 
The deformation of the flat cross section of the five layers beam is shown in Fig. 2. 
The field of displacements is formulated as follows 

 

1.  the upper face      121 2121 xxx    
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5.  the lower face   211 2/12/1 xxx    
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   



  x
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dw
txu c 1,  ,                         (5) 

 

where 
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Strains of the layers of the beam are defined by the geometric relationship in the following 
form 
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4.  the lower binding layer 
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5.  the lower face 
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The physical relationships, according to Hooke’s law, for individual layers are 
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The transverse force of any cross section of the beam 
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2.1 Equations of equilibrium 
 
The potential energy of the elastic strain of the beam is 
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The work of the external load is 
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The system of three partial differential equations obtained from the principle of stationary total 

potential energy δ(Uε ‒ W) = 0, after integrating over the thickness of the beam and integrating by 
parts over the length of the beam, takes the following form 
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The first Eq. (16) of the system is equivalent to the bending moment (12). Therefore, for further 
analysis purpose the system of three Eqs. (12), (17) and (18) is applied. 

 
2.2 The strength of the bended beam 
 
The simply supported sandwich beam is loaded by force F1 (F0 = 0, see Fig. 1). The three 

unknown functions are assumed in the following forms 
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where ξ = x / L is the dimensionless coordinate. 
Substituting the functions (19) into three Eqs. (12), (17) and (18) one obtains the unknown 
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Fig. 3 Distribution of normal σx and shear τxz stresses across the sandwich beam section 
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After transformations, stresses of each layer of the beam are 
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The example of numerical calculations for the sandwich beam is shown below (based on Eqs. 
(24-28)). The parameters of the beam are: thickness of the faces tf = 1 mm, thickness of the core tc 
= 17.8 mm, thickness of the binding layers tb = 0.1 mm, Young modulus of the faces Ef = 65600 
MPa, Young modulus of the core Ec = 1200 MPa, Young modulus of the binding layers Eb = 1500 
MPa, the length L = 800 mm, and the width b = 50 mm, Poison ratios vc = vb = 0.3, F1 = kN. In 
Fig. 3 the stress distribution across the section of the beam is shown. 

 
2.3 Buckling of the axially compressed beam 
 
The simply supported sandwich beam is compressed by axial force F0 (F1 = 0, see Fig.1). 

The system of equilibrium Eqs. (12), (17), and (18) is approximately solved. 
The next three unknown functions are assumed in the following forms 
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where wa, ψa1, ψa2 are parameters of the functions. 
The bending moment for this load case is written in the form 
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Substitution of functions (29) and (30) into Eqs. (12), (17) and (18) leads to the set of three 
homogeneous equations in relations to parameters wa, ψa1, ψa2. The nontrivial solution of this set 
exists on condition that the determinant of the set is equal to zero. Thus 
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The solution of the Eq. (31) gives the critical compressive axial force in the following form 
 

0
3

,0 fbtF cCR  ,                              (32) 

where 
 

     
33222332

332211122123123132111332212231
0 





f . 

 
The values of the critical loads obtained for the family of sandwich beams are shown in the 

following section, in which the comparison with the FEM analysis results is presented. 
 
 

3. FEM analysis 
 

The finite element model of the five layer sandwich beam has been elaborated. It consisted of 
the core modelled with the use of 3D brick elements, two binding layers for which the same 
elements have been used and two faces modelled with the use of 2D shell elements. The faces 
were offset from the glue layers about half of the thickness. Between particular layers the tie 
conditions have been imposed. Because of the symmetry of the problem only the quarter of the 
beam has been modelled. 

As to the bended beam the static analysis has been performed as a result of which the normal 
and shear stress distribution has been obtained. The buckling analysis has been carried out for 
axially compressed beams. The results of both analyses are shown in Fig. 4. 

The dimensions of the beam as well as the material properties were the same as in the example 
considered in the Subsection 2.2. Additionally, for axially compressed beams, different values of 
the Young modulus for the core were considered, that is 50, 300, 600 and 1200 MPa. Good 
agreement can be seen between the stress distributions shown in Figs. 3 and 4(a). Maximum 
normal stresses are: for the faces MPa 211)(

max AnalFace and MPa, 214)(
max FEMFace for the 

binding layers MPa 3.4)(
max  AnalLB and MPa, 17.4)(

max  FEMLB for the core )(
max

AnalCore = 3.4 
MPa and MPa. 05.3)(

max AnalCore  Maximum shear stresses are: for the binding layers )(
max

AnalLB   

 
 

 
 

Fig. 4 (a) Distribution of normal σx and shear τxz stresses across the bended sandwich beam; (b) 
critical loads for the compressed sandwich beam 
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Fig. 5 Scheme of the FEM model of the sandwich beam 

 
 

MPa 5.0  and MPa, 48.0)(
max  FEMLB for the core MPa 53.0)(

max AnalCore  and )(
max

AnalCore = 
MPa. 52.0 Similarly, the difference between the buckling load obtained from Eq. (32) and that 

from FEM analysis is small – less than 1%. In Fig. 5 the buckling mode as well as the details of 
the FEM model are given. 

 
 

4. Experimental investigations 
 
In the experimental investigations a two sandwich beams with a metal foam core were axially 

compressed on the universal testing machine Zwick Z100/TL3S. The test stand is shown in Fig. 
6(a). The dimensions of a cross-section of two beams are as follows: the width b = 50 mm, the 

 
 

 

 

(a) (b) (c) 
 

Fig. 6 (a) Test stand; (b) buckled beam; (c) support and results 
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total thickness h = 20 mm, thickness of the faces tf = 1 mm. The faces were made of aluminium 
and the core was aluminium foam. Particular layers of the beam was glued together – thickness of 
the binding layers tb = 0.1 mm. To both ends of the beam the steel elements have been added to 
provide a proper support conditions, what is shown in Fig. 6(b). The distance between supported 
ends of the beams was 892 mm for the first beam (B1) and 860 mm for the second one (B2). The 
material constants for the aluminium alloy of the faces was Ef = 65600 MPa, and for the binding 
glue layers: Eb = 1500 MPa. The Young modulus for the aluminium foam core, based on the 
experimental tests described in details in the monograph by Magnucki and Szyc (2012), is Ec = 
216 MPa. 

Beam compression process was recorded – the axial displacement-shortening and the axial 
force F0 have been measured. The obtained results are given in Fig. 6(c) in the form of curves 
showing the relation between the axial load and the shortening of the beam. Since in the initial 
stage of the test of the sample B2 some substantial slip occurred, the corresponding curve given in 
Fig. 6(c) has been moved to the left to coincide with the other curve. 

The critical load for both beams were almost the same and had a value about )(
,0
Exp
CRF = 6.58 kN. 

Including Young’s modulus Ec = 216 MPa and the length L = 892 mm of the beam, the critical 
force obtained analytically is )(

,0
Anal
CRF = 6.83 kN. A good agreement can be seen between the 

critical loads obtained from these methods – the difference is about 4%. 

 
 
5. Conclusions 

 
In the paper the strength and stability of a sandwich beam has been analysed. The beam 

consists of a light core made of aluminium foam and two thin aluminium faces. The faces are 
glued to the core with thin binding layers. The glue is treated as a separate layer. The beam is 
considered then as a five layer sandwich beam. 

Two load cases have been taken into consideration. The first one is a beam simply supported 
and loaded with a concentrated force placed in the mid-length of the beam. For this case the 
strength of the beam has been analysed. From the analytical model the normal and share stress 
distribution can be obtained for individual layers of the sandwich beam (see Figs. 3 and 4(a)). 

In the second load case the beam is loaded with an axial force. For this case the equations of 
equilibrium have been derived on the basis of the principle of stationary total potential energy. 
These equations enable to obtain the value of the critical load (see Fig. 4(b)). 

Additionally the finite element model has been formulated. The core and the binding layers 
have been modelled with the use of 3D brick elements. For the faces 2D shell elements has been 
chosen. The strength and buckling analyses have been conducted for a family of sandwich beams. 
The results obtained from the FEM analysis have been compared with these given by the 
analytical model proposed in the paper. The parameters of the beam taken as an example are given 
in Subsection 2.2 and Section 3. A good agreement can be seen between the buckling loads 
obtained from both models – the difference is less than 1%. As to the strength analysis the 
maximum normal stresses in the upper face are 211 MPa, according to the analytical model, and 
214 MPa according to the FEM model. The maximum shear stresses are: 0.53 MPa and 0.52 MPa, 
respectively. Furthermore, experimental tests have been carried out for axially compressed beams. 
The values of the critical loads obtained from each method correspond to each other very well. The 
discrepancies are smaller than 4%. 
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