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Abstract.  In this paper, a new first-order shear deformation beam theory based on neutral surface position 
is developed for bending and free vibration analysis of functionally graded beams. The proposed theory is 
based on assumption that the in-plane and transverse displacements consist of bending and shear 
components, in which the bending components do not contribute toward shear forces and, likewise, the 
shear components do not contribute toward bending moments. The neutral surface position for a functionally 
graded beam which its material properties vary in the thickness direction is determined. Based on the present 
new first-order shear deformation beam theory and the neutral surface concept together with Hamilton’s 
principle, the motion equations are derived. To examine accuracy of the present formulation, several 
comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the 
bending and free vibration responses of functionally graded beam are discussed. 
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1. Introduction 

 
Functionally graded materials (FGM) structures are those in which the volume fractions of two 

or more materials are varied continuously as a function of position along certain dimension(s) of 
the structure to achieve a required function. Typically, FGMs are made from a mixture of ceramic 
and metal. The FGMs are widely used in mechanical, aerospace, nuclear, and civil engineering. 
Consequently, studies devoted to understand the static and dynamic behaviors of FGM beams, 
plates have being paid more and more attentions in recent years. 

Due to increasing of FGM applications in engineering structures, many beam theories have 
been developed to predict the response of functionally graded (FG) beams. The classical beam 
theory (CBT) known as Euler–Bernoulli beam theory is the simplest one and is applicable to 
slender FG beams only. For moderately deep FG beams, the CBT underestimates deflection and 
overestimates natural frequency due to ignoring the transverse shear deformation effect (Yang and 
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Chen 2008, Şimşek and Kocatürk 2009, Alshorbagy et al. 2011, Eltaher et al. 2012, Kaci et al. 
2012). The first-order shear deformation beam theory (FBT) known as Timoshenko beam theory 
has been proposed to overcome the limitations of the CBT by accounting for the transverse shear 
deformation effect. In FBT (Li 2008, Sina et al. 2009, Şimşek and Yurtçu 2012, Sanjay Anandrao 
et al. 2012), the distribution of the transverse shear stress with respect to the thickness coordinate 
is assumed constant. Thus, a shear correction factor is required to compensate for the error because 
of this assumption in FBT (Menaa et al. 2012). To avoid the use of a shear correction factor and 
have a better prediction of response of FG beams, higher-order shear deformation theories have 
been proposed, notable among them are the parabolic shear deformation beam theory (PSDBT) of 
Reddy (Reddy 1984, Yesilce and Catal 2009, 2011, Yesilce 2010), the trigonometric shear 
deformation beam theory (TSDBT) of Touratier (1991), the hyperbolic shear deformation beam 
theory (HSDBT) of Soldatos (1992), the exponential shear deformation beam theory (ESDBT) of 
Karama et al. (2003). Based on the assumption of a higher-order variation of axial displacement 
through the depth of the beam various higher- order shear deformation theories are also developed 
(Kadoli et al. 2008, Şimşek 2009, 2010, Sallai et al. 2009, Li et al. 2010). However, studies in the 
literature show that FBT gives satisfactory results and it is very effective to investigate behavior of 
beams. 

In this paper, a new first-order shear deformation beam theory (NFBT) for the bending and free 
vibration analysis of functionally graded beams is developed. This theory is based on assumption 
that the in-plane and transverse displacements consist of bending and shear components, in which 
the bending components do not contribute toward shear forces and, likewise, the shear components 
do not contribute toward bending moments. Since, the material properties of FG beam vary 
through the thickness direction, the neutral plane of such plate may not coincide with its geometric 
middle plane (Yahoobi and Feraidoon 2010, Asghari 2010, Eltaher et al. 2013). In addition, Zhang 
and Zhou (2008) and Larbi et al. (2013) show that the stretching – bending coupling in the 
constitutive equations of an FG beam does not exist when the coordinate system is located at the 
physical neutral surface of the plate. Therefore, the governing equations for the FG plate can be 
simplified. Based on the present theory and the exact position of neutral surface together with 
Hamilton’s principle, the motion equations of the functionally graded beams are obtained. 
Analytical solutions for bending and free vibration are obtained for a simply supported FG beam. 
Numerical examples are presented to show the validity and accuracy of the present NFBT. 
 
 
2. Theoretical formulations 

 
A beam made of functionally graded materials with a uniform cross-section of area A, height h, 

and length L is considered here. The Cartesian coordinate system, (x, y, z), with the origin at the 
left end of the beam is used in this analysis. The xoy plane is taken to be the undeformed 
mid-plane of the beam, the x axis coincides with the centroidal axis of the beam, and the z axis is 
perpendicular to the x – y plane. Due to asymmetry of material properties of FG beams with 
respect to middle plane, the stretching and bending equations are coupled. But, if the origin of the 
coordinate system is suitably selected in the thickness direction of the FG beam so as to be the 
neutral surface, the properties of the FG beam being symmetric with respect to it. To specify the 
position of neutral surface of FG beams, two different planes are considered for the measurement 
of z, namely, zms and zns measured from the middle surface and the neutral surface of the beam, 
respectively, as depicted in Fig. 1. 
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Fig. 1 The position of middle surface and neutral surface for a functionally graded beam 

 
 

The volume-fraction of ceramic VC is expressed based on zms and zns coordinates as 
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where k is the power law index which takes the value greater or equal to zero and z0 is the distance 
of neutral surface from the mid-surface. Material non-homogeneous properties of a functionally 
graded material beam may be obtained by means of the Voigt rule of mixture (Suresh and 
Mortensen 1998). Thus, using Eq. (1), the material non-homogeneous properties of FG beam P, as 
a function of thickness coordinate, become 
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where PM and PC are the corresponding properties of the metal and ceramic, respectively. In the 
present work, we assume that the elasticity modules E and the mass density ρ are described by Eq. 
(2), while Poisson’s ratio v, is considered to be constant across the thickness (Sallai et al. 2009). 
Based on the physical neutral surface concept put forward by Larbi et al. (2013), the physical 
neutral surface of an FG beam is given by 
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It is clear that the parameter z0 is zero for homogeneous isotropic beams, as expected. 
 
2.1 The conventional first-order shear deformation beam theory (FBT) 
 
The displacements of a material point located at (x, z) in the beam according to the 

conventional first-order shear deformation theory is given by (Şimşek 2010) 
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),(),,( 0 txwtzxw                            (4b) 

where, u, w are displacements in the x, z directions, u0 and w0 are midplane displacements, θx is the 
transverse shear strain of any point on the neutral axis. 

 
2.2 Basic assumptions of the new first-order shear deformation beam theory (NFBT) 
 
The assumptions of the present theory (NFBT) are as follows 

 

(i) The origin of the Cartesian coordinate system is taken at the neutral surface of the FG 
beam. 

(ii) The displacements are small in comparison with the beam depth and, therefore, strains 
involved are infinitesimal. 

(iii) The transverse normal stress σz is negligible in comparison with axial stress σx. 
(iv) A line, which is normal to the mid-surface of plate before deformation, remains straight 

(i.e., may or may not be normal to the mid-surface of the plate) after deformation. 
Therefore, this theory assumes constant transverse shear stress and it needs a shear 
correction factor in order to satisfy the beam boundary conditions on the lower and upper 
surface. 

(v) The transverse displacement w includes two components of bending wb and shear ws. 
These components are functions of coordinate x, and time t only. 

 
2.2.1 Kinematics and constitutive equations 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained as follows 
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where, u, w are displacements in the x, z directions, u0, wb and ws are mid-plane displacements. 
The strains associated with the displacements in Eq. (5) are 
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By assuming that the material of FG beam obeys Hooke’s law, the stresses in the beam become 
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2.2.2 Equations of motion 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Reddy 2002) 
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where t is the time; t1 and t2 are the initial and end time, respectively; δU is the virtual variation of 
the strain energy; δV is the virtual variation of the potential energy; and δK is the virtual variation 
of the kinetic energy. The variation of the strain energy of the beam can be stated as 

 



 

















L
sb

b

L
z

h

z
h

nsxzxzxx

dx
dx

wd
Q

dx

wd
M

dx

ud
N

dxdzU

0
2

2
0

0

2

2

   
        

   

0

0




                  (9) 

where N, Mb, and Q are the stress resultants defined as 
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The variation of the potential energy by the applied transverse load q can be written as 
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The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
ρ(zns) is the mass density; and (I0, I1, I2) are the mass inertias defined as 
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Substituting the expressions for δU, δV, and δK from Eqs. (9), (11), and (12) into Eq. (8) and 
integrating by parts versus both space and time variables, and collecting the coefficients of δu0, 
δwb, and δws, the following equations of motion of the functionally graded beam are obtained 
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Eq. (14) can be expressed in terms of displacements (u0, wb, ws) by using Eqs. (5), (6), (7) and 
(10) as follows 
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where A11, D11, and As
55, are the beam stiffness, defined by 
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3. Analytical solution 
 
The equations of motion admit the Navier solutions for simply supported beams. The variables 

u0, wb, ws can be written by assuming the following variations 
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where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with m th eigenmode, and λ = mπ / L. The transverse load q is also expanded in Fourier 
series as 
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The coefficients Qm are given below for some typical loads. For the case of a sinusoidally 
distributed load, we have 
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and for the case of uniform distributed load, we have 
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Substituting the expansions of u0, wb, ws, and q from Eqs. (17) and (18) into Eq. (15), the 
analytical solutions can be obtained from the following equations 
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4. Results and discussion 

 
In this study, bending and free vibration analysis of simply supported FG beams by the present 

method is suggested for investigation. 
The FG beam is taken to be made of aluminum and alumina with the following material 

properties 
Ceramic (PC: Alumina, Al2O3): Ec = 380 GPa; v = 0.3; ρc = 3960 kg/m3. 
Metal (PM: Aluminium, Al): Em = 70 GPa; v = 0.3; ρm = 2707 kg/m3. 
We take the shear correction factor K = 5/6 in both FBT and NFBT. For convenience, the 

following dimensionless forms are used 
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4.1 Bending analysis 
 
The non-dimensional displacements and stresses obtained using the present new first-order 

shear deformation beam theory (NFBT) for FG beams with different values of power law index k 
and length-to-depth ratio L / h are compared with CBT, FBT and the analytical solutions given by 
Li et al. (2010) in Table 1. As can be seen the results of NFBT are in good agreement with those 
of FBT and Li et al. (2010). 

In Figs. 2 and 3 we present the evolution of the axial displacement u and the axial stresses σx 
across the depth of the FG beam under uniform load. A comparison with FBT is also shown in 
these figures using different values of the power law index k. It is seen that both NFBT and FBT 
give identical results. It can be seen from Fig. 2 that the increase of the power law index k leads to 
an increase of the axial displacement u and especially at the top and bottom of the beam. In Fig. 3, 

 
 

Table 1 Nondimensional deflections and stresses of FG beams under uniform load q0 

k Method 
L / h = 5 L / h = 20 

w̄ ū σ̄x τ̄ xz w̄ ū σ̄x τ̄ xz 

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500

NFBT 3.1657 0.9209 3.7500 0.5990 2.8963 0.2303 15.0000 0.5993

FBT 3.1657 0.9209 3.7500 0.5990 2.8963 0.2303 15.0000 0.5993

CBT 2.8783 0.9211 3.7500 – 2.8783 0.2303 15.0000 – 

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676

NFBT 4.8347 1.6331 4.9206 0.6270 4.4648 0.4083 19.6825 0.6266

FBT 4.8347 1.6331 4.9206 0.6270 4.4648 0.4083 19.6825 0.6266

CBT 4.4401 1.6331 4.9206 – 4.4401 0.4083 19.6825 – 

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500

NFBT 6.2600 2.2722 5.7959 0.5988 5.8050 0.5681 23.1834 0.5995

FBT 6.2600 2.2722 5.7959 0.5988 5.8050 0.5681 23.1834 0.5995

CBT 5.7746 2.2722 5.7959 – 5.7746 0.5680 23.1834 – 

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787

NFBT 8.0307 3.0741 6.7678 0.5101 7.4400 0.7686 27.0704 0.5102

FBT 8.0307 3.0741 6.7678 0.5101 7.4400 0.7686 27.0704 0.5102

CBT 7.4003 3.0740 6.7676 – 7.4003 0.7685 27.0704 – 

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790

NFBT 9.6484 3.6496 7.9427 0.3926 8.8068 0.9120 31.7710 0.3927

FBT 9.6484 3.6496 7.9427 0.3926 8.8068 0.9120 31.7710 0.3927

CBT 8.7508 3.6496 7.9428 – 8.7508 0.9124 31.7711 – 

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436

NFBT 10.7194 3.8098 9.5231 0.4288 9.6770 0.9524 38.0915 0.4292

FBT 10.7194 3.8098 9.5231 0.4288 9.6770 0.9524 38.0915 0.4292

CBT 9.6072 3.8097 9.5228 – 9.6072 0.9524 38.0913 – 

474



 
 
 
 
 
 

A new first shear deformation beam theory based on neutral surface position 

 

 

Fig. 2 The variation of the axial displacement ū through-the-thickness of a FG beam (L = 10h) 

 

 
Fig. 3 The variation of the axial stress σ̄x through-the-thickness of a FG beam (L = 10h). 

 

 
Fig. 4 Variation of the nondimensional deflection w̄ of FG beam with power law index k 

and length-to-height ratio L / h 
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the axial stress σx is tensile at the top surface and compressive at the bottom surface. The 
homogeneous ceramic beam (k = 0) yields the maximum compressive stresses at the bottom 
surface and the minimum tensile stresses at the top surface of the beam. The effect of the power 
law index k on the dimensionless deflection w is presented in Fig. 4 for several different values of 
the length-to-depth ratio. When k is increased, the deflection w rises monotonically. The reason is 
that the larger k is, the more the volume fraction of aluminium is or the richer aluminium is, so that 
such an FG beam is more compliant and more flexible. As is shown in Figs. 2 and 3, both NFBT 
and FBT give identical results for the deflection w. 
 

4.2 Free vibration 
 
For the verification purpose, the nondimensional fundamental frequencies ω of FG beams 

obtained by the present theory (NFBT) are compared with those given by Şimşek (2010) and FBT 
for different values of power law index k and length-to-depth ratio L / h and the results are 
presented in Table 2. It can be observed that present results obtained using NFBT are in an 
excellent agreement to those predicted using the various theories used by Şimşek (2010). In 
addition, both the present NFBT and FBT (Şimşek 2010) give identical results for the 
nondimensional fundamental frequencies ω. 

Figs. 5 and 6 show the variation of the fundamental frequency of simply supported FG beam 
with length-to-height ratio and the power-law exponent, respectively by using CBT and different 
shear deformation beam theories (NFBT, FBT, PSDBT and TSDBT). It can be seen that the 
agreement between the present results (NFBT) and those obtained using other shear deformation 

 
 
Table 2 Variation of fundamental frequency ω̄ with the power-law index for FG beam 

L / h Theory 
k 

0 0.5 1 2 5 10 

5 

PSDBT(a) 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816 

TSDBT(a) 5.1531 4.4114 3.9907 3.6263 3.3998 3.2811 

HSDBT(a) 5.1527 4.4111 3.9904 3.6265 3.4014 3.2817 

ESDBT(a) 5.1542 4.4122 3.9914 3.6267 3.3991 3.2813 

FBT(a) 5.1525 4.4083 3.9902 3.6344 3.4312 3.3134 

NFBT 5.1525 4.4079 3.9902 3.6344 3.4312 3.3134 

CBT(a) 5.3953 4.5936 4.1484 3.7793 3.5949 3.4921 

20 

PSDBT(a) 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390 

TSDBT(a) 5.4604 4.6516 4.2051 3.8361 3.6484 3.5390 

HSDBT(a) 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390 

ESDBT(a) 5.4604 4.6517 4.2052 3.8362 3.6483 3.5390 

FBT(a) 5.4603 4.6514 4.2051 3.8368 3.6509 3.5416 

NFBT 5.4603 4.6509 4.2051 3.8368 3.6509 3.5416 

CBT(a) 5.4777 4.6646 4.2163 3.8472 3.6628 3.5547 
(a) Taken from Şimşek (2010) 
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Fig. 5 Variation of the nondimensional fundamental frequency ω̄ of FG beam with 

length-to-height ratio L / h and power law index k 
 
 

 
Fig. 6 Variation of the nondimensional fundamental frequency ω̄ of FG beam versus power 

law index k (L = 10h) 

 
 
theories is satisfactory. From these figures, it can be observed also that there is a remarkable 
difference between the frequencies of CBT and those of shear deformable beam theories when the 
slenderness ratio of the FG beam is less than L / h = 20. 
 
 
5. Conclusions 

 
A new first-order shear deformation beam theory (NFBT) was proposed to analyse static and 

dynamic behaviour of functionally graded beams. Based on the present beam theory and the 
neutral surface concept, the equations of motion are derived from Hamilton’s principle. The 

477



 
 
 
 
 
 

Mohammed Bouremana et al. 

effectiveness of the theory is brought out by applying them for static as well as dynamic analysis. 
The results obtained using this new theory, are found to be in excellent agreement with previous 
studies. Unlike the conventional first shear deformation theory, the proposed first shear 
deformation theory contains only four unknowns. In conclusion, it can be said that the proposed 
theory NFBT is not only accurate but also efficient in predicting the static and dynamic behaviour 
of functionally graded beams. 
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