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Abstract.  This paper presents a comparison of results obtained by a newly developed numerical model for 
predicting the behaviour of structures under fire with experimental study carried out on heated and simply 
supported steel beam elements. A newly developed numerical model consists of three submodels: 3D beam 
model designed for calculating the inner forces in the structure, 2D model designed for calculation of stress 
and strain distribution over the cross section, including the section stiffness, and 3D transient nonlinear heat 
transfer model that is capable of calculating the temperature distribution along the structure, and the 
distribution over the cross section as well. Predictions of the calculated temperatures and vertical deflections 
obtained by the numerical model are compared with the results of the inhouse experiment in which steel 
beam element under load was heated for 90 minutes. 
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1. Introduction 

 
Behaviour of structures exposed to fire has been extensively studied through experimental 

research focused on the material behaviour (ECCS 1983, Anderberg 1983, Terro 1998, Youssef 
and Moftah 2007) and mechanical response of the structure under different types of boundary 
conditions and load levels (Wang et al. 1995, Elghazouli and Izzuddin 2000, El-Fitiany and 
Youssef 2009). Research regarding structure behaviour was mainly focused on the study of the 
behaviour of single span structures comprised of a single beam, or column, or combination of both. 
Studies have shown that the behaviour of building materials at high temperatures can be 
represented with elasto-plastic material model, with temperature dependent ultimate strength limit 
and modulus of elasticity. However, after reaching certain temperature extensive transient/creep 
deformations occur in material which affect the response of structures under fire, depending on the 
type of boundary conditions of the structure (Dwaikat and Kodur 2008, Wu and Lu 2009, Kodur 
and Dwaikat 2009). Conducted experimental studies enabled the development of different types of 
hybrid thermo-mechanical numerical models for predicting the behaviour of structures under fire. 
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Hybrid models were designed with various built-in formulations of the mechanical model of 
the structure, based on 1D/2D elements, to describe the geometry of the structure/cross-section, in 
combination with a 2D heat transfer model that gave predictions of temperature distribution over 
the cross-section during fire. A particular problem in experimental research that remained to define 
is a constitutive law of material’s behaviour at high temperatures in multiaxial stress. This problem 
prevented the application of the full 3D mechanical model of the structure. The object of this paper 
is to demonstrate the capabilities of a newly developed hybrid thermo-mechanical model which 
incorporates 3D heat transfer model capable of taking into account the distribution of temperature 
along the element length and various types of boundary conditions on the structure surface. 
 
 
2. The numerical model 

 
2.1 Introduction 
 
As it was previously noted, a numerical model that describes the behaviour of structures under 

fire must be able to describe, besides the nonlinear behaviour of structures under load, the 
development of temperature inside the structure and changes of the material parameters at high 
temperatures. A complete non-linear calculation must include the geometry of the cross-sections, 
the type and the distribution of the reinforcement (for reinforced concrete structures) and loading 
conditions, as well as the non-linear constitutive law of the materials’ behaviour. 

The results given by such a calculation can significantly change the image of the state of 
stresses and strains in a particular structural element, thus enabling the structural engineer to have 
a better insight into the behaviour, and possible failure of the load-bearing capacity of the 
structure. 

 
2.2 The linear elastic model for beam elements 
 
The common origin of almost all nonlinear analyses is linear analysis. The linear numerical 

model for frame structure analysis is well known and frequently described in literature 
(Prezeminiecki 1968, Bangash 1989), so we will only briefly note it here. 

In this paper, two-node straight, ideally flat, in parts prismatic finite elements are used. Each 
element has 6 degrees of freedom in an each node, and they are the same ones that were used in a 
series of articles (Liew et al. 2000, Yang et al. 2002, Sapountzakis and Mokos 2007, Trogrlić and 
Mihanović 2008). 

The problem can generally be described with a linear differential equation in the form 

00  fpLQpLDL                          (1) 

where: Q is the vector of the internal forces, Q0 is the couple force vector, f is the load vector, D is 
cross-section stiffness matrix which includes material and geometrical properties of the section 
and L is the differential operator. 

One of the procedures most often used and most recognised for solving this differential 
equation is the Finite Element Method. The essence of this method is in replacing (simulating) the 
system with an unlimited number of degrees of freedom with a system that has a limited number 
of degrees of freedom. In order to achieve that, we presuppose (program) the behaviour of a 
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(unlimited) number of nodes of the system on one finite element, with the behaviour of a particular 
number of previously defined nodes on that same element. 

The approximate solution for the displacements in one element assumes the form (Bangash 
1989, Trogrlić et al. 2011) 

uHpp  
                                (2) 

where H is the matrix of base functions and u is the vector of unknown nodal displacements. The 
base (shape) functions are usually selected from the group Hermite’s polynomials (Bangash 1989). 
From the equality of external and internal forces follows 

dxσεdxfpsu ΤTT   ˆ                         (3) 

i.e. 

  dxuBDBudxfHusu TTTTT                         (4) 

and after multiplication of the left with uT 

  dxfHdxuBDBs TT                           (5) 

or abbreviated 

eee Fuks                                 (6) 

where 

se – the vector of internal forces at the ends of the finite element, 
ke – the element stiffness matrix, 
Fe – the vector of external forces, 
B – strain matrix which includes flexural and shear strain components 
 
The element stiffness matrix and the element load vector, which are in the local coordinate 

system, have to be transformed to the global coordinate system. The balance of the global system 
is established by arranging the transformed element stiffness matrix and the element load vector in 
the global stiffness matrix and the global load vector. 

FuKFFkK
e

e
gl

e

e
gl             ;                      (7) 

This is a well known expression, where K and F are the matrices of stiffness and loading, and u 
is the vector of global displacements. To solve the above equation it is necessary to introduce 
boundary conditions, which in the case of static problems are the given force and displacements at 
the edges of the system. The local stiffness matrix, before transformation, in explicit form can be 
written as 

249



 
 
 
 
 
 

Neno Torić, Alen Harapin and Ivica Boko 





































































































z

y

x

2
y

3
y

2
z

3
z

z
2

zz

y

2

yy

xx

2

y

3

y

2

y

3

y

2
z

3
z

2
z

3
z

e

EI4

0
EI4

00
GI

0
EI6

0
EI12

EI6
000

EI12

00000
EA

EI2
000

EI6
0

EI4

0
EI2

0
EI6

000
EI4

00
GI

00000
GI

0
EI6

0
EI12

000
EI6

0
EI12

EI6
000

EI12
0

EI6
000

EI12

00000
EA

00000
EA

k

 

(8)

and it is clear that the local stiffness matrix, apart from depending on the beam length  , also 
depends on the material parameters: E, G, and the geometrical parameters: A, Iy and Iz. On the real 
beam, on which load is applied, internal forces (moments) may cause changes of stress and strain 
distribution and changes in stiffness. By dividing the beam to sub-elements where each has its own 
real stiffness, materially nonlinear analysis can be easily implemented (Fig. 1). 
 

Therefore, it is necessary to establish a procedure for calculating the stiffness of the 
cross-section under different levels of stress. 

 
2.3 Non-linear analysis of the stress-strain state and stiffness of the cross-section 
 
2.3.1 Basic assumptions 
The model for determining the state of stress-strain and stiffness of the cross-section (Radnić 

and Harapin 1993) has the following basic assumptions. 
 the sections remain straight after the deformation, 
 there is no sliding at the connection of different materials after they are connected, 
 the stress-strain relationship (constitutive law) is known for all materials. 

 
2.3.2 The strain plane of the section 
The graphical representation of the possible strain plane, with respect to the previous 

equilibrium state, is presented in Fig. 2. The additional strain Δε of the section point is defined by 
the plane equation 

rρε T                               (9) 
where 

 yz
T ,ρ,ρερ 0                              (10) 

 zy,,rT  1                        (11) 
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Fig. 1 The stress-strain state and stiffness along the girder according to the applied load 

 
 

In the above expressions ρ represents the vector of unknown parameters of the additional strain 
plane, and y, z the coordinates of the point in the Y-Z plane. The strain plane is described by its 
intersection Δε0 with the X coordinate axis, and the components of relative rotations ρz, ρy about 
the Z and Y axis, respectively. 

If the considered section point has previous strain εp, its total strain ε is 

εεε p                         (12) 

Strain εp is known and determined by the previous equilibrium position ρp, i.e., analogous to Eq. 
(9) by 

 ypzpp
T
p

T
pp ,ρ,ρερrρε 0     ;                    (13) 

If Eqs. (9)-(13) are introduced into Eq. (12), it follows 

rρrρε TT
p                              (14) 
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Fig. 2 Graphical representation of the possible strain plane 

 
 
i.e. 

ρρr;     ρρε pu
T
u                             (15) 

where ρu denotes the parameters of the total deformation plane. 
 
2.3.3 The stress-strain relationship 
The starting point for the stress-strain calculation procedure is the known relationship between 

the uniaxial stress σ and strain ε for each material. For real materials this relationship is essentially 
curvilinear, and it is determined by an uniaxial test or by the respective national codes. From the 
numerical analysis standpoint, it is appropriate to define this relationship as linear for each sector 
(Fig. 3). Thus, the introduced controlled error is negligible with regard to other assumptions. The 
stress-strain relationship between any of the two nodes i, j in the constitutive diagram is defined by 

)( ii εεEσσ                       (16) 

If Eq. (14) is introduced into Eq. (16), and if substitution is introduced 

rEρ-Eεσσ T
pii                       (17) 

stress in the considered sector can be described by the following expression 

rEρσσ T                       (18) 

In the above expressions, E represents the modulus of elasticity (inclination of the line in the 
considered sector of σ – ε diagram), whereas the graphical interpretation of stress σʹ is presented in 
Fig. 3. For the known initial state, and the assumption of the current strain between nodes i, j is 
constant and determined. 
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Fig. 3 Possible stress-strain relationship for a material 

 
 

In the case of structure under fire, the stress-strain relationship of a material is temperature 
dependent. Because of that, the material behaviour under high temperatures is presented as a series 
of stress-strain curves determined at a specific temperature, with the linear interpolation of 
stress-strain values being used for temperatures in between. 

 
2.3.4 The equilibrium equation 
The vector of the internal resistance forces of the section Su is the function of the resulting 

strain plane, and the σ – ε relationship for a given material. If the resulting strain plane is known, 
Su can be calculated by integration of the stresses in the section area. Thus 

  
m Ω

yuzuuu σ rdΩ,M,MNS                  (19) 

where Nu represents the longitudinal internal force, Mzu and Myu represent the force moments 
around the respective coordinate axes, Ω is the area of the given material and 

m

summation 
across all materials. If Eq. (18) is introduced into Eq. (19), it follows 

I ρSS uu                                 (20) 

where 

 
m Ω

u  rdΩσS                      (21) 


m Ω

T dΩEr rI                      (22) 
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Fig. 4 Spatial discretization of the cross-section 

 
 

Sú represents one part of the vector of internal forces which is obtained by the integration of 
stresses σʹ. The elements of the matrix I represent the current mechanical characteristics of the 
section, i.e., stiffness parameters. Vector Sv includes the vector of external forces Svp which 
determines the initial strain plane ρp, and the vector of additional forces ΔSv which causes 
additional strain plane ρ i.e. 

vvpv SSS                        (23) 

In order to achieve the equilibrium, Sv should be equal to Su, i.e. 

0 uv SS                        (24) 

In the expanded form, Eq. (24) represents a system of three nonlinear equations with unknown 
ρT = [ΔεO, ρz, ρy]. 

 
 
2.3.5 Reinforcement bar 
After determining the strain value of the considered reinforcement bar, it is used to determine 

between which nodal strains εi, εi+1 it lies in the given σ – ε diagram. Subsequently, it is possible to 
determine E and the contribution of the current mechanical characteristics of the bar materials, 
according to Eq. (22), by 
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
s

T
ss r rEAI                       (25) 

where As represents the area of the bar under consideration, and 
s

summation across all the 

sectional bars. The part of the internal forces vector to which this reinforcement contributes, 
according to Eq. (21), is determined by 

  
s

piisus  rEε-EεσAS                   (26) 

As for the bar material, it is more appropriate to define the bar’s initial strain by a discrete 
value εp, and not by ρp. 

 
2.3.6 Material with a large area 
Material, whose area is significant with regard to the whole cross-sectional area, is defined by 

convex polygonal elements without voids (FE). In the FE area there should be only one material 
(excluding the bar reinforcement). Each FE is defined by series of nodes and their coordinates, and 
by the material index. Consequently, the contours of each material are first approximated by a 
polygon, and then this area is divided into FE (Fig. 6). After determining the neutral axis position 
in the previous iteration, a set of lines is determined that are parallel to it. These lines connect FE 
points with strains equal to nodal strains εi of the σ – ε diagram. Then, the intersection of these 
lines with the sides of each FE is sought, so, sub-elements with the constant E are defined. Matrix 
Ie for each of these sub-elements, with the following form 

     
     
      


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













eyezyey

ezyezez

eyeze

e

IIQ
IIQ
QQA

I                       (27) 

is obtained by summation across all the sides of the sub-element, according to the following 
equations 

1132111    n...n ;    ,, ;     jy-zyzw jjjjj              (28) 
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where (zj, yj), (zj+1, yj+1) represent the boundary points coordinates of the considered sub-element 
side, and n the side number. 

The summation is performed across all sides of the sub-element. Part of the vector Sú to which 
this sub-element contributes, according to Eq. (20), is defined by 

      peeueueu ρISSS  21                   (30) 

where 

 
 
 
 

  
  
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The mechanical characteristics and one part of the internal force vector of one FE are obtained 
by summation of the respective characteristics of all sub-elements of that element. The same 
characteristics for each material are obtained by summation across all FE, which describe that 
material. Analogously, overall characteristics of the composite cross-section are obtained by 
performing summation across all materials. 

 
2.4 The transient nonlinear heat transfer model 
 
2.4.1 Differential equation 
Transient heat transfer is a time-dependent process where the temperature field, created by heat 

transference inside the observed space, changes with time. The model that was developed and 
implemented is based on a 3D model of transient nonlinear heat transfer. The differential equation 
that describes this process in the spatial domain is defined by the equation 

3,,1,          










jif
x

T
k

xt

T
C

j
ij

i

                    (33) 

where 
 = (x)  – material density (kg/m3), 
C = C(x,t)  – specific heat capacity (J/kgK), 
kij = CKij  – the tensor of thermal conductivity coefficients (W/mK), 
Kij   – the heat diffusion tensor (m2/s). 
 
By applying the weak formulation of the Eq. (33) and using Galerkin’s method for selecting the 

function of the approximate solution, the system of p ordinary differential equations is obtained. 
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pm,nQFTK
dt

dT
C nnmmn

m
mn ,1,       ;                  (34) 

where 




 dCC nmmn                           (35) 











 d
xx

kK
i

n

i

m

ij
mn


                        (36) 




 fdF nn                              (37) 




 qdQ nn                              (38) 

pm,nji ,1,       ; 3,2,1,   

 – the spatial domain,  – the border of the spatial domain, m, n – base functions of the 
approximate solution, p – the total number of nodes in the spatial discretization. 

The matrix C is the capacitance matrix, the matrix K is the conductance matrix, vector F is the 
internal heat source vector and Q is the heat flux vector. Heat flux caused by fire action consists of 
convection and radiation. The expression used to calculate the heat flux on the surface of the 
element can be defined as 

)()( 44
mgresmgcq                       (39) 

where 
q – surface heat flux (W/m2), c – the convection coefficient (W/m2K),  – the configuration 

factor, res – the resultant emissivity factor between the element and the fire,  – the Stephan 
Boltzmann's constant (=5.67*10-8 W/m2K4), g – gas temperature in the vicinity of the element 
(°C), m – surface temperature of the element (°C). The spatial domain is approximated by a 
suitable number of finite elements, according to Fig. 5. In the developed heat transfer model 
8-node 3D finite elements are used. 

 
2.4.2 The integration of discrete systems’ equations 
Nonlinear ordinary differential Eq. (34) are usually solved by integrating the equations between 

time steps for a relatively small time interval t. The temperatures at the beginning of the time 
interval (t) are known and used to calculate the temperatures at the end of the time interval, i.e., at 
time t + t. With an explicit-implicit (mixed) integration of the system of Eq. (34) the following 
expression is obtained 

0)()()1()(   tt
n

tt
n

tt
mmn

t
n

t
n

t
mmn

T
m

tt
mmn QFTKtQFTKtTTC   (40) 

where 
T

t
m  – the vector of known temperature at the beginning of the time interval, 

Tm
t+Δt

  – the vector of unknown temperature at the end of the time interval 
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Θ  – the interpolation parameter, 
Fn

t+Δt
  – the vector of heat source on the element at the end of the time interval, 

Qn

t+Δt
  – the vector of boundary heat flow at the end of the time interval, 

Δt  – the incremental time step. 

 
 

Fig. 5 (a) Global discretization of the space frame; (b) The beam-column element; (c) The 
element’s cross-section discretization; (d) The comparative body model for heat transfer 
analysis; (e) The stress-strain constitutive law of the element’s cross-section 
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The iterative procedure for determining the value Tm
t+Δt

 starts with assuming the equation Tm
t+Δt

 = 
T

t
m for the first iterative step within the time increment t. Then, for each iterative step, a new 

value for temperature at the end of the time interval is calculated, until the following condition is 
satisfied 

pm
T

TT
ptt

m

t
m

tt
m

,,1     ; 





                        (41) 

where: μp – the standard deviation. 

 
2.5 The complete nonlinear elastic model for predicting the behaviour of structures 

under fire 
 

Previously defined models: the model for analysis of linear-elastic beam systems, the model for 
transient nonlinear heat transfer and the model for dimensioning composite cross-sections have 
been combined into one integral model for analysis of materially nonlinear spatial beam systems 
under fire. The model was incorporated into the computer programme. Fig. 5 shows the 
discretization of one simple structure, on which the connection between the nodes that belong to 
the 2D mesh (used for discretization of the structure’s cross-section) and the nodes that belong to 
the 3D mesh (used for spatial discretization of the structure’s model for heat transfer) are 
presented. 

It is necessary to define beginning and end points for each beam/column, as well as the 
cross-section with the constitutive law (the corresponding σ – ε diagram) for every used material. 
The 3D spatial finite element mesh is then automatically generated along the beam/column. Before 
calculating the stress and stiffness on the cross section’s finite element, the mean (average) 
temperature of the corresponding 3D finite element used in heat transfer model is calculated. 
Constitutive law of the material is then modified in accordance with the mean temperature, and the 
state of stress and stiffness of the section is determined. 

It starts from the cross-section’s zero-state level by calculating the real stiffness of the 
cross-section, according to Eq. (22), i.e., Eqs. (25)-(27). The calculated parameters present 
members of the starting stiffness matrix (8). It is important to say that the integration on the 
sectional level helps adjust/correct the axial, shear and bending sectional characteristics, while the 
torsion features remain unchanged. What follows is the usual procedure of arranging the global 
stiffness matrix and the global load vector (7). 

 

After calculating the internal forces at the ends of the beam, the new strain plane position and 
the new stiffness of the section are determined. Generally, two cases are possible: 

(1) It is possible to determine the strain plane position of the section. In this case the section is 
strong enough to withstand the external force influence (i.e. force resulting from the linear 
analysis of the beam system). 

(2) It is not possible to determine the strain plane position of the section, i.e. the procedure 
shown in part 2.2 diverges. In this case, it is stated that what happened is the break of the 
section, i.e., the local break in the system, as well as the possible global break of the 
system. 

The procedure continues as long as the build-up displacement vector falls under the optionally 
chosen small value, i.e. 
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Table 1 The numerical model of the incremental procedure 

[1] 

Defining the null force vector (F = 0); from it defining the starting parameters of the local stiffness
matrix for every beam/column (25) and (27) and from them the local matrices of stiffness (8) as well 
as the starting global matrix of stiffness K0 (7) 


e

e
glkK 0,0  

This is the null-stiffness, the stiffness of the system on which no forces are applied. 

[2] 

From the given external load on the beams/columns, defining the forces on elements, and the vector 
of the applied forces 

 
e

e
gl

ee
gl

Te FFFTFdxfHF      ;      ;  

[3] The time loop (first time step j=1) is set. 

[4] 

The calculation of the temperature field in the 3D element (Fig. 5). Follow the calculation of the
mean temperature and the correction of the material characteristics according to the calculated mean
temperature for each cross section. 

3,,1,          
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[5] The incremental loop (first incremental step i = 1) is set. 

[6] 

The calculation of the nodes’ displacements, and internal forces in elements: 

 
eee

sisiipipiiiiiii

Fuks
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[7] 

Convergence control: 

p
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i
iii u

u
uuu 


            1  

If the convergence is satisfied, the procedure is finished and the results are printed. Procedure
continues with new time step: j = j + 1. If the convergence is not satisfied, the procedure continues –
step [8]. 
The value μp is an optionally chosen small value, usually 0.001. 

[8] 

The calculation of the new stiffness in 2D elements, according to corrected material characteristics
and the corrected internal forces. 



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Procedure continues on step [6]. 
 
 

p
i

i

u

u



                                (42) 

In all practical cases, the value μp can be chosen as 0.001. Incremental calculation procedure as 
well as the flowchart of the computer program is presented in Table 1 and Fig. 6. 
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Fig. 6 Flowchart of the computer programme 

 
 
3. Example of numerical modelling of steel beam under high temperatures 

 
This chapter describes a comparison of results made between the predictions of the model and 

the results obtained by inhouse experiment (Boko et al. 2007). A simply supported welded steel 
beam I 212/180, steel grade S355J2G3 with a total length of 2.5 m was previously loaded by a 
concentrated force of 200 kN at midspan. Afterwards, the beam was heated by increased 
temperature gradient of 5°C/min for 90 minutes, while only a part of the beam was positioned 
inside the furnace. During the experiment, surface temperatures and midspan deflection were 
measured in discrete points on the element surface. Fig. 7 presents the experimental setup along 
with the disposition of the measuring points on the element. 
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Fig. 7 The experimental specimen (Boko et al. 2007) with the disposition of the 
temperature measuring points 

 
Table 2 Section dimensions and characteristics 

Depth 
(mm) 

Width 
(mm) 

Web thick 
(mm) 

Flange thick 
(mm) 

Moment of inertia (cm4) Area
(cm2)Axis xx Axis yy 

212.0 180.0 16.0 16.0 5929.0 1460.0 84.5 

 
Table 3 Basic heat transfer input parameters 

Thermal conductivity  Specific heat capacity C a (kg/m3) c (W/m2K)  res t (s)

EN1993-1-2 EN1993-1-2 7850.0 25.0 1.0 0.7 0.5 

 

 
Fig. 8 Temperature dependent stress-strain curves obtained by the experiment and taken from 

EN1993-1-2 
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The dimensions and the geometrical characteristics of the analyzed cross-section are given in 
Table 2. 

An example of modelling the behaviour of a simply supported steel beam under fire was 
analyzed for two different types of input stress-strain mechanical characteristics: experimentally 

 
 

 
Fig. 9 The comparison of the results of the developed temperatures between the experiment and 

model predictions – lower flange and web (1.25 m) 

 

 
Fig. 10 The comparison of the results of the developed temperatures between the experiment and 

model predictions – web (1.85 m) 
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Fig. 11 The evolution of the temperature field in discrete time intervals across the steel element 

 

 
Fig. 12 The comparison of the results of vertical deflections between the experiment and the 

model predictions for two different types of stress-strain curves 

 
 
determined stress-strain curves (Boko et al. 2007) which were determined by testing stationary 
heated specimens of steel that was used in the steel beam itself and the stress-strain curves 
proposed by EN1993-1-2 2005, generally used for engineering analysis of the behaviour of steel 
structures under fire. Steady-state heating method was used for heating the specimens in series of 
two specimens for each temperature level. In the steady-state heating method, after having been 
heated to a predetermined temperature level, the specimen was loaded with a strain increase of 
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0.02%/sec. The strain increase in the specimen was measured with the help of video-extensometer. 
The stress-strain curves used in the example are plotted in Fig. 8. 

Figs. 9, 10 and 11 show the comparison between the results of the measured temperatures taken 
from the experiment and the temperatures calculated by the proposed model in the discrete points 
of the beam element. Additionally, the heat transfer analysis over the cross-section has been 
performed by using 2D heat transfer model TASEF (Sterner and Wickstrőm 1990) for comparison. 

Fig. 12 shows the comparison between the results of measured vertical deflections at midspan 
taken from the experimental data and the predictions of the model for two different types of input 
stress-strain curves. 

 
3.1 Discussion of results 

 
• Fig. 9 proves that the predictions of temperatures calculated by the 3D heat transfer model 

are fairly accurate, with some discrepancy in the temperature prediction occurring at the end 
of the furnace (Fig. 10), 

• The usage of 3D model, rather than TASEF, yields better results in the prediction of the 
temperature spread after 40 minutes, as it is shown by the Fig. 10. 

• Fig. 12 shows that the prediction of vertical deflections calculated by the model in the first 
85 minutes was quite correct. A large discrepancy that occurs afterwards, at temperatures 
above 450°C, is accounted for by the phenomenon of steel creep. The phenomenon can 
highly affect steel deformation, however, it was not taken into account by the proposed 
model, 

• Fig. 12 also shows a small discrepancy observed with respect to vertical deflections between 
two different sets of stress-strain curves, with the predictions of deflections using EC3 
curves on the unsafe side. 

 
 
4. Conclusions 

 
Verification of a newly developed hybrid thermo-mechanical model has shown the ability of 

the model to accurately predict the temperature field and the stiffness reduction of partially heated 
steel elements, which is possible only by coupling 3D heat transfer model with the structural 
analysis model. The main benefits of the proposed model combination is the accurate prediction of 
temperature field and stiffness reduction in case when structural parts are not heated uniformly, 
which is a common property for steel columns in fires or for steel beams in case of a localized fire. 
The major limitation of the proposed model is the fact that, in case of analyizing the whole 
structure behaviour, large number of finite elements for heat transfer analysis has to be employed. 
 
 
5. Further research 
 

• Further research will be based on the implementation of implicit and explicit steel creep 
models in order to improve predictions of the proposed model with regard to vertical 
deflections. 

• Abilities of the heat transfer model with regards to various boundary conditions on the 
structure surface will be tested in future experimental research. 

• Future work will also focus on the enhancement of capabilities of the proposed model to 
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predict the behaviour of statically indeterminate structures under fire. 
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