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Abstract.  This paper presents an analytical solution to the thermomechanical bending analysis of 
functionally graded sandwich plates by using a new hyperbolic shear deformation theory in which the 
stretching effect is included. The modulus of elasticity of plates is assumed to vary according to a power law 
distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and 
made of an isotropic ceramic material. The effects of functionally graded material (FGM) layer thickness, 
volume fraction index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of 
functionally graded sandwich plates are investigated. 
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1. Introduction 

 
Functionally graded materials (FGMs) are microscopically inhomogeneous composites usually 

made of a mixture of metals and ceramics. By gradually varying the volume fraction of their 
constituents, it can be achieved that the effective properties of FGMs exhibit a smooth and 
continuous change from one surface to another, thus eliminating interface problems and mitigating 
thermal stress concentrations. Due to the high heat resistance, FGMs are used as structural 
components operating in ultrahigh-temperature environments and subjected to extremely high 
thermal gradients, such as aircraft, space vehicles, nuclear plants, and other engineering 
applications. Indeed, the thermo-mechanical deformation of functionally grade (FG) structures 
have attracted the attention of many researchers in the past few years in different engineering 
applications which include design of aerospace structures, heat engine components and nuclear 
power plants etc. 
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The assessment of thermo-mechanical deformation behavior of functionally graded plate 
structures considerably depends on the plate model kinematics. A number of plate theories are 
available to analyze the deformations of composite plates. The foremost constraint of using the 
classical Kirchhoff plate theory (CPT) is that it ignores transverse shear effects and consequently 
provides reasonable results for relatively thin plates. However, in thick and moderately thick plates, 
the transverse shear strains have to be taken into account. There are numerous plate theories that 
include these strains (Reissner 1945, Mindlin 1951). These theories are often called the first order 
shear deformation theory (FSDT) and a shear-correction factor is needed to eliminate the problem 
of a constant transverse shear stress distribution. Higher order shear deformation theories (HSDTs) 
were developed to improve the analysis of structure responses and extensively used by many 
researchers (Lo et al. 1977, Levinson 1980, Murthy 1981, Reddy 1984, Bert 1984, Matsunaga 
2000, Karama et al. 2003, Şimşek 2009, 2010, Zenkour and Alghamdi 2010, Atmane et al. 2010). 

Reddy (2000) presented the third-order shear deformation theory (TSDT) in which the 
transverse shear stresses are represented as quadratic through the thickness and consequently it 
requires no shear correction factors and developed the associated finite element model. Cheng and 
Batra (2000a) have related the deflections of a simply supported FG polygonal plate given by the 
first-order shear deformation theory and a third-order shear deformation theory to that of an 
equivalent homogeneous Kirchhoff plate. Cheng and Batra (2000b) have also presented results for 
the buckling and steady state vibrations of a simply supported FG polygonal plate based on 
Reddy’s plate theory. Analytical 3D solutions for plates are useful since they provide benchmark 
results to assess the accuracy of various 2D plate theories and finite element formulations. Cheng 
and Batra (2000c) have also used the method of asymptotic expansion to study the 3D 
thermoelastic deformations of an FG elliptic plate. Vel and Batra (2002) have presented an exact 
3D solution for the thermoelastic deformation of FG simply supported plates of finite dimensions. 
A generalized refined plate theory is used to investigate the cylindrical bending behavior of FG 
plates by Bian et al. (2005) and a laminate model is employed to approximate the FG plate by 
assuming material homogeneity within each thin layer. Lü et al. (2009a) presented a 
semi-analytical 3-D elasticity solutions for orthotropic multi-directional functionally graded plates 
using the differential quadrature method (DQM) based on the state-space formalism. Lü et al. 
(2009b) studied the free vibration of FG thick plates on Pasternak foundation using 3-D exact 
solutions. Ying et al. (2009) used a semi-analytical method to study thermal deformations of FG 
thick plates and the analysis is directly based on the 3-D theory of elasticity. A two-dimensional 
theory of elasticity is used together with the state space formulation by Lim et al. (2009) to 
investigate the temperature-dependent in-plane vibration of FG circular arches. Zhang et al. (2003) 
developed an exact solution for thermal stresses around a hole in a functionally graded plate. An 
asymptotic solution approach for free vibration of simply supported FG circular arches is 
developed in the framework of the two-dimensional theory of elasticity by Zeng et al. (2012). A 
two-dimensional global higher-order deformation theory has been employed by Matsunaga (2009) 
for thermal buckling of FG plates. Bouderba et al. (2013) studied the thermomechanical bending 
response of FG plates resting on elastic foundations using a refined trigonometric shear 
deformation theory. Yaghoobi and Yaghoobi (2013) proposed an analytical investigation on the 
buckling analysis of symmetric sandwich plates with FG face sheets resting on an elastic 
foundation based on the first-order shear deformation plate theory and subjected to mechanical, 
thermal and thermo-mechanical loads. Tounsi and his co-works (Hadji et al. 2011, Houari et al. 
2011, Abdelaziz et al. 2011, Merdaci et al. 2011, Bourada et al. 2012, Tounsi et al. 2013, Hamidi 
et al. 2013) developed new refined plate theories for bending response, buckling and free vibration 
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of simply supported FG sandwich plate with only four unknown functions was developed. 
In the present paper, an analytical solution to the thermomechanical bending analysis of 

functionally graded sandwich plates is developed using a new hyperbolic shear deformation theory 
including the so-called “stretching effect”. The sandwich plate faces are assumed to have isotropic, 
two-constituent (metal-ceramic) material distribution through the thickness, and the modulus of 
elasticity, Poisson’s ratio, and thermal expansion coefficient of the faces are assumed to vary 
according to a power law distribution in terms of the volume fractions of the constituents. The core 
layer is still homogeneous and made of an isotropic ceramic material. Numerical results for 
deflections and stresses are investigated. 
 
 
2. Theoretical formulation 

 
Consider a flat sandwich plate composed of three (metal-ceramic, ceramic, ceramic-metal) 

layers as shown in Fig. 1. Rectangular Cartesian coordinates (x, y, z) are used to describe 
infinitesimal deformations of a three-layer sandwich elastic plate occupying the region [0,a] × 
[0,b] × [–h / 2, h / 2] in the unstressed reference configuration. The mid-plane is defined by z = 0 
and its external bounding planes being defined by z = ± h / 2. The face layers of the sandwich plate 
are made of an isotropic material with material properties varying smoothly in the z (thickness) 
direction only. The core layer is made of an isotropic homogeneous material. The vertical 
positions of the bottom surface, the two interfaces between the core and faces layers, and the top 
surface are denoted, respectively, by h0 = –h / 2, h1, h2 and h3 = h / 2. The total thickness of the FG 
plate is h, where h = tc + tFGM and tc = h2 – h1. tc and tFGM are the layer thickness of the core and 
all-FGM layers, respectively. 

The effective material properties for each layer, like Young’s modulus, Poisson’s ratio and 
thermal expansion coefficient, can be expressed as 

  )()(  )( n
mcm

n VPPPzP                          (1) 

where P(n) is the effective material property of FGM of layer n. Pm and Pc denote the property of 
the bottom and top faces of layer 1 (h0 ≤ z ≤ h1), respectively, and vice versa for layer 3 (h2 ≤ z ≤ h3) 

 
 

 
Fig. 1 Geometry of the FGM sandwich plate 
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depending on the volume fraction V(n) (n = 1, 2, 3). Note that Pm and Pc are, respectively, the 
corresponding properties of the metal and ceramic of the FG sandwich plate. The volume fraction 
V(n) of the FGMs is assumed to obey a power-law function along the thickness direction (Houari et 
al. 2011). 
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where k is the volume fraction exponent, which takes values greater than or equals to zero. The 
core layer is independent of the value of k which is a fully ceramic layer. However, the value of k 
equal to zero represents a fully ceramic plate. The above power-law assumption given in Eqs. (2a) 
and (2c) reflects a simple rule of mixtures used to obtain the effective properties of the 
metal-ceramic and ceramic-metal plate faces (see Fig. 1). Note that the volume fraction of the 
metal is high near the bottom and top surfaces of the plate, and that of ceramic is high near the 
interfaces. 

This paper presents a new hyperbolic shear deformation theory for FG sandwich plates, 
including the stretching of the thickness. The new displacement field is described in the following 
equations 
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where, u, v, w are displacements in the x, y, z directions, u0, v0 and w0 are midplane displacements, 
θx, θy and θz rotations of the yz, xz, and xy planes due to bending, respectively. f  (z) represents 
shape function determining the distribution of the transverse shear strains and stresses along the 
thickness and f ′(z) = ∂f(z) / ∂z. 

The displacement field of the classical thin plate theory (CPT) is obtained easily by setting f(z) 

= 0 and θz = 0. The displacement of the first shear deformation theory (FSDT) is obtained by 
setting f(z) = 0 and θz = 0. Also, the displacement of third shear deformation theory (TSDT) of 
Reddy (1984) is obtained by setting 

0   and   
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The sinusoidal shear deformation theory (SSDT) of Zenkour and Alghamdi (2010) is obtained 
by setting 

0    and   
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In addition, the exponential shear deformation theory (ESDT) of Karama et al. (2003) is 
obtained by setting 
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In addition, the displacement field of the hyperbolic shear deformation plate theory (HSDT) of 
Atmane et al. (2010) is obtained by setting 
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The displacement field of the present refined hyperbolic shear deformation theory (RHSDT) 
which includes the stretching of the thickness with θz ≠ 0 is simplified by enforcing traction-free 
boundary conditions at the plate faces. It contains one dependent unknown more than that in the 
first-, third-, exponential- and sinusoidal shear deformation theories. No transverse shear 
correction factors are needed for TSDT, SSDT, ESDPT, HSDT and RHSDT because a correct 
representation of the transverse shearing strain is given. In addition, the effect of normal 
deformation is included in the present theory. 

In the derivation of the necessary equations, small strains are assumed (i.e., displacements and 
rotations are small, and obey Hooke’s law). The linear strain expressions derived from the 
displacement model of Eqs. (3a-c), valid for thin, moderately thick and thick plate under 
consideration are as follows 
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The linear constitutive relations are given as 
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where (σx, σy, σz, τyz, τxz, τxy) and (εx, εy, εz, γyz, γxz, γxy) are the stress and strain components, 
respectively. Using the material properties defined in Eq. (1), stiffness coefficients, Qij, can be 
expressed as 
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Considering the static version of the principle of virtual work, the following expressions can be 
obtained 
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where Ω is the top surface and q is the distributed transverse load. 
Substituting Eqs. (3), (5) and (7) into Eq. (9) and integrating through the thickness of the plate, 

Eq. (9) can be rewritten as 
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where hn+1 and hn are the top and bottom z-coordinates of the nth layer. 
The governing equations of equilibrium can be derived from Eq. (10) by integrating the 

displacement gradients by parts and setting the coefficients δu0, δv0, δw0, δθx, δθy and δθz to zero 
separately. Thus one can obtain the equilibrium equations associated with the present unified shear 
deformation theory 
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Using Eq. (7) in Eq. (11), the stress resultants of a sandwich plate made up of three layers can 
be related to the total strains by 
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where δxy is the Kronecker’s delta, and 
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where N and M are the basic components of stress resultants and stress couples, S are additional 
stress couples associated with the transverse shear effects, Q and Nz are transverse and normal 
shear stress resultants. Note that the superscript t denotes the transpose of the given vector. The 
stiffness coefficients Aij and Bij, … etc., are defined as 
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The stress and moment resultants, NT
x = NT

y, M
T
x = MT

y, S
T
x = ST

y and NT
z due to thermal loading 

are defined by 
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The temperature field variation through the thickness is assumed to be 
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where T1, T2 and T3 are thermal loads. 
Substituting from Eq. (13) into Eq. (12), we obtain the following equation 
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where {p} = {p1, p2, p3, p4, p5, p6}
t is a generalized force vector, dij, dijl and dijlm are the following 

differential operators 
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The components of the generalized force vector {p} are given by 
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3. Solution procedure 

 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (18a-f) for a simply supported FGM plate. The 
following boundary conditions are imposed at the side edges for the present RHSDT 

axSMNwv xxxzy  ,0at          00                 (21a) 

bySMNwu yyyzx  ,0at          00                 (21b) 

For TSDT, SSDT, ESDT, HSDT and FSDT, the boundary conditions are 
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axSMNwv xxxy  ,0at          00                   (21c) 

bySMNwu yyyx  ,0at          00                   (21d) 

For CPT, the boundary conditions are 

axMNwv xx  ,0at          00                      (21e) 

byMNwu yy  ,0at          00                      (21f) 

To solve this problem, Navier presented the transverse mechanical and temperature loads q, T1, 
T2, and T3 in the form of a double trigonometric series as 
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where q0, t1, t2 and t3 are constants, λ = π / a, μ = π / b. 
Following the Navier solution procedure, we assume the following solution form for u0, v0, w0, 

θx, θy and θz that satisfies the boundary conditions 
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where U, V, W, X, Y, and Z are arbitrary parameters to be determined subjected to the condition 
that the solution in Eq. (23) satisfies governing Eqs. (18). One obtains the following operator 
equation, One obtains the following operator equation 

    ,FC                                 (24) 

where {∆} = { U, V, W, X, Y, Z}t and [C] is the symmetric matrix given in Appendix. 
In the case of FG plates with various boundary conditions, the present problem can be solved 

using Ritz method (Uymaz and Aydogdu 2013) or Lévy-type solutions (Ying et al. 2009). 
 
 
4. Numerical results and discussion 
 

The thermomechanical bending analysis is conducted for combinations of metal and ceramic. 
The set of materials chosen is Titanium and Zirconia. For simplicity, Poisson’s ratio of the two 
materials is assigned the same value (Delale and Erdogan 1983, Bouderba et al. 2013). Typical 
values for metal and ceramics used in the FG sandwich plate are listed in Table 1. 
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Table 1 Material properties used in the FG sandwich plate 

Metal: Ti–6A1–4V Ceramic: ZrO2 

Em = 66.2 GPa Ec = 117.0 GPa 

v = 1 / 3 v = 1 / 3 

αm = 10.3 (10-6/K) αc = 7.11 (10-6/K) 

 
Table 2 Comparison of dimensionless center deflections w̅ for different FG sandwich square plates (q0 = t1 = 

t3 = 0, t2 = 100 and a / h = 10) 

k Theory 
w̅ 

tFGM / h = 1 tFGM / h = 2 / 3 tFGM / h = 1 / 2 tFGM / h = 4 / 5

0 
Present 0.449863 0.449863 0.449863 0.449863 

Zenkour and Alghamdi (2008) 0.461634 0.461634 0.461634 0.461634 

1 
Present 0.594840 0.565276 0.542436 0.579538 

Zenkour and Alghamdi (2008) 0.614565 0.586124 0.563416 0.599933 

2 
Present 0.627934 0.596416 0.567938 0.612832 

Zenkour and Alghamdi (2008) 0.647135 0.618046 0.590491 0.633340 

3 
Present 0.639690 0.610125 0.579769 0.626505 

Zenkour and Alghamdi (2008) 0.658153 0.631600 0.602744 0.646475 

4 
Present 0.644833 0.617502 0.586469 0.633395 

Zenkour and Alghamdi (2008) 0.662811 0.638705 0.609560 0.652890 

5 
Present 0.647421 0.621990 0.590728 0.637353 

Zenkour and Alghamdi (2008) 0.665096 0.642948 0.613842 0.656490 

 
 

Different dimensionless quantities are used for thermomechanical loading as center deflection 
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where the reference values are taken as E0 = 1 GPa and α0 = 10-6/K. 
In order to prove the validity of the present theory, the dimensionless center deflection w̅ 

presented in Table 2 is compared to that obtained using the method developed by Zenkour and 
Alghamdi (2008) in the case of thermoelastic loading (q0 = 0). The present results are in good 
agreement with other results for all values of the power law index k. Numerical results are 
tabulated in Tables 3-6 using different plate theories. Additional results are plotted in Figs. 2-8 
using the present refined hyperbolic shear deformation theory (RHSDT) with stretching effect (εz ≠ 
0). It is assumed, unless otherwise stated, that a / h = 10, a / b = 1, t1 = 0, and q0 = t2 = t3 = 100. The 
shear correction factor of FSDT is fixed to be K = 5 / 6. 
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Table 3 Dimensionless center deflections w̅ of the different FG sandwich square plates 

k Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 10.8 tFGM / h = 1 

0 

RHSDT 0.771340 0.771340 0.771340 0.771340 0.771340 0.771340 

HSDT 0.817556 0.817556 0.817556 0.817556 0.817556 0.817556 

SSDT 0.796783 0.796783 0.796783 0.796783 0.796783 0.796783 

TSDT 0.808168 0.808168 0.808168 0.808168 0.808168 0.808168 

FSDT 0.895735 0.895735 0.895735 0.895735 0.895735 0.895735 

CPT 0.457873 0.457873 0.457873 0.457873 0.457873 0.457873 

1 

RHSDT 0.771340 0.841759 0.906271 0.959745 0.999391 1.026070 

HSDT 0.817556 0.896222 0.965660 1.021683 1.062586 1.089928 

SSDT 0.796783 0.873745 0.941636 0.996334 1.036213 1.062840 

TSDT 0.808168 0.886067 0.954808 1.010231 1.050672 1.077690 

FSDT 0.895735 0.979641 1.054630 1.115684 1.160568 1.190728 

CPT 0.457873 0.501163 0.539886 0.571450 0.594688 0.610331 

2 

RHSDT 0.771340 0.860395 0.943946 1.011993 1.058388 1.084456 

HSDT 0.817556 0.916849 1.006253 1.076785 1.123928 1.150231 

SSDT 0.796783 0.894003 0.981434 1.050237 1.096095 1.121608 

TSDT 0.808168 0.906529 0.995042 1.064791 1.111352 1.137297 

FSDT 0.895735 1.001204 1.097973 1.175402 1.227765 1.257304 

CPT 0.457873 0.512431 0.562536 0.602673 0.629859 0.645223 

3 

RHSDT 0.771340 0.869136 0.961579 1.035332 1.082231 1.104836 

HSDT 0.817556 0.926476 1.025027 1.101003 1.148302 1.170917 

SSDT 0.796783 0.903467 0.999831 1.073875 1.119794 1.141655 

TSDT 0.808168 0.916083 1.013647 1.088747 1.135420 1.157693 

FSDT 0.895735 1.011279 1.118224 1.202080 1.255041 1.280741 

CPT 0.457873 0.517716 0.573152 0.616662 0.644176 0.657539 

4 

RHSDT 0.771340 0.874209 0.971671 1.048073 1.094108 1.113637 

HSDT 0.817556 0.932037 1.035690 1.114096 1.160313 1.179771 

SSDT 0.796783 0.908934 1.010269 1.086624 1.131429 1.150192 

TSDT 0.808168 0.921602 1.024208 1.101684 1.147260 1.166403 

FSDT 0.895735 1.017115 1.129824 1.216678 1.268689 1.290961 

CPT 0.457873 0.520783 0.579240 0.624324 0.651345 0.662909 

5 

RHSDT 0.771340 0.877515 0.978164 1.055935 1.100868 1.118027 

HSDT 0.817556 0.935651 1.042508 1.122124 1.167111 1.184168 

SSDT 0.796783 0.912488 1.016938 1.094427 1.137993 1.154412 

TSDT 0.808168 0.925190 1.030958 1.109609 1.153952 1.170720 

FSDT 0.895735 1.020919 1.137289 1.225706 1.276497 1.296101 

CPT 0.457873 0.522783 0.583160 0.629064 0.655445 0.665606 
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Table 3 contains the dimensionless center deflection w̅ for an FG sandwich plate subjected to 
mechanical and thermal loads. The deflections are considered for k = 0, 1, 2, 3, 4 and 5 and 
different FG layer thickness (tFGM). By comparing the results to those obtained by CPT, it can be 
shown that the effect of shear deformation is to increase the deflection. It can be observed also that 
the HSDP overestimates the deflections comparatively to RHSDT and this, is due to the thickness 
stretching effect which is omitted in the theory developed by Atmane et al. (2010). For a sandwich 
plate, the deflections increase with FG layer thickness tFGM and the power law index k. 

Table 4 shows the influence of FG layer thickness tFGM on the deflections of FG sandwich 
plates (k = 3) with different aspect ratio a / b. It can be observed that the deflection increases with 
the increasing thickness of an FG layer (tFGM) and it is reduced with increasing the aspect ratio a / b. 
Once again the deflection is increased with including the effect of shear deformation and it is 
reduced when the thickness stretching effect is taken into consideration (εz ≠ 0). Tables 5 and 6 list, 
respectively, the axial stress σ̄x and transverse shear stress τ̄ xz for k = 0, 1, 2, 3, 4 and 5 and 
different FG layer thickness (tFGM). It can be observed the axial stress σ̄x and transverse shear 
stress τ̄ xz are very sensitive to the variation of power law index and FG layer thickness. As is 
observed in the case of deflections, the thickness stretching effect leads also to a reduction of 
stresses. It can be concluded from Tables 3-6 that the inclusion of thickness stretching effect 
makes a plate stiffer, and hence, leads to a reduction of deflection and stresses. 

 
 
Table 4 Effect of aspect ratio a / b on the dimensionless deflection w̅ of the FG sandwich plates (k = 3) 

tFGM / h Theory a / b = 1 a / b = 2 a / b = 3 a / b = 4 a / b = 5 

0 

RHSDT 0.771340 0.300716 0.147654 0.085168 0.054373 

HSDT 0.817556 0.321791 0.159940 0.093790 0.061185 

SSDT 0.796783 0.313432 0.155719 0.091273 0.059512 

TSDT 0.808168 0.318014 0.158033 0.092654 0.060430 

FSDT 0.895735 0.353189 0.175744 0.103172 0.067392 

CPT 0.457873 0.178044 0.088171 0.051659 0.033711 

0.2 

RHSDT 0.869136 0.338962 0.168161 0.097398 0.062531 

HSDT 0.926476 0.364706 0.181529 0.106696 0.069818 

SSDT 0.903467 0.355510 0.176937 0.104000 0.068059 

TSDT 0.916083 0.360554 0.179457 0.105480 0.069026 

FSDT 1.011279 0.398391 0.198176 0.116327 0.075980 

CPT 0.517716 0.200966 0.099463 0.058261 0.038014 

0.4 

RHSDT 0.961579 0.374694 0.184359 0.106737 0.068499 

HSDT 1.025027 0.403196 0.200642 0.117924 0.077167 

SSDT 0.999831 0.393146 0.195642 0.115002 0.075273 

TSDT 1.013647 0.398658 0.198386 0.116606 0.076314 

FSDT 1.118224 0.440203 0.218920 0.128491 0.083921 

CPT 0.573152 0.222174 0.109906 0.064364 0.041992 
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Table 4 Continued 

tFGM / h Theory a / b = 1 a / b = 2 a / b = 3 a / b = 4 a / b = 5 

0.6 

RHSDT 1.035332 0.402987 0.198087 0.114556 0.073414 

HSDT 1.101003 0.432682 0.215157 0.126351 0.082600 

SSDT 1.073875 0.421843 0.209748 0.123178 0.080532 

TSDT 1.088747 0.427786 0.212715 0.124919 0.081668 

FSDT 1.202080 0.472957 0.235166 0.138015 0.090138 

CPT 0.616662 0.238790 0.118083 0.069142 0.045106 

0.8 

RHSDT 1.082229 0.420861 0.206684 0.119392 0.076404 

HSDT 1.148302 0.450940 0.224088 0.131493 0.085879 

SSDT 1.119794 0.439521 0.218366 0.128116 0.083662 

TSDT 1.135420 0.445781 0.221504 0.129968 0.084879 

FSDT 1.255041 0.493613 0.245406 0.144017 0.094055 

CPT 0.644176 0.249267 0.123233 0.072151 0.047066 

1 

RHSDT 1.104836 0.429399 0.210747 0.121649 0.077765 

HSDT 1.170917 0.459613 0.228305 0.133902 0.087401 

SSDT 1.141655 0.447872 0.222403 0.130406 0.085094 

TSDT 1.157693 0.454308 0.225639 0.132324 0.086360 

FSDT 1.280741 0.503607 0.250355 0.146917 0.095948 

CPT 0.657539 0.254326 0.125715 0.073599 0.048009 

 
 
Table 5 Dimensionless axial stresses σ̄x of different sandwich square plates 

k Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1 

0 

RHSDT -1.650736 -1.650736 -1.650736 -1.650736 -1.650736 -1.650736 

HSDT -2.523043 -2.523043 -2.523043 -2.523043 -2.523043 -2.523043 

SSDT -2.388919 -2.388919 -2.388919 -2.388919 -2.388919 -2.388919 

TSDT -2.461177 -2.461177 -2.461177 -2.461177 -2.461177 -2.461177 

FSDT -3.597007 -3.597007 -3.597007 -3.597007 -3.597007 -3.597007 

CPT -1.706393 -1.706393 -1.706393 -1.706393 -1.706393 -1.706393 

1 

RHSDT -1.650736 -3.372080 -2.859305 -2.461461 -2.179138 -1.993540 

HSDT -2.523050 -3.480127 -3.140399 -2.865768 -2.665136 -2.531150 

SSDT -2.388919 -3.333300 -3.001265 -2.733086 -2.537374 -2.406806 

TSDT -2.461177 -3.412724 -3.076466 -2.804750 -2.606343 -2.473903 

FSDT -3.597007 -4.504051 -4.136892 -3.838047 -3.618476 -3.471099 

CPT -1.706393 -2.193219 -2.003463 -1.848793 -1.734921 -1.658265 

2 
RHSDT -1.650736 -3.211762 -2.556774 -2.066031 -1.751165 -1.580468 

HSDT -2.523050 -3.379455 -2.941822 -2.595856 -2.364496 -2.235677 
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Table 5 Continued 

k Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1 

2 

SSDT -2.388919 -3.234499 -2.806645 -2.469045 -2.243809 -2.118730 

TSDT -2.461177 -3.312889 -2.879670 -2.537489 -2.308903 -2.181780 

FSDT -3.597007 -4.398484 -3.924721 -3.545789 -3.289757 -3.145662 

CPT -1.706393 -2.137999 -1.892474 -1.695789 -1.562571 -1.487285 

3 

RHSDT -1.650736 -3.137344 -2.419727 -1.898185 -1.588667 -1.446122 

HSDT -2.523050 -3.332439 -2.849905 -2.477118 -2.244947 -2.134330 

SSDT -2.388919 -3.188312 -2.716593 -2.353122 -2.127496 -2.020425 

TSDT -2.461177 -3.266245 -2.788595 -2.420027 -2.190823 -2.081815 

FSDT -3.597007 -4.349165 -3.825600 -3.415261 -3.156414 -3.031283 

CPT -1.706393 -2.112102 -1.840454 -1.627241 -1.492417 -1.426935 

4 

RHSDT -1.650736 -3.094600 -2.343139 -1.809688 -1.511078 -1.390767 

HSDT -2.523050 -3.305276 -2.797679 -2.412894 -2.186019 -2.091004 

SSDT -2.388919 -3.161620 -2.665468 -2.290552 -2.070361 -1.978602 

TSDT -2.461177 -3.239292 -2.736867 -2.356554 -2.132710 -2.039172 

FSDT -3.597007 -4.320597 -3.768831 -3.343853 -3.089733 -2.981507 

CPT -1.706393 -2.097076 -1.810621 -1.589696 -1.457288 -1.400620 

5 

RHSDT -1.650736 -3.066950 -2.294758 -1.756372 -1.468147 -1.446122 

HSDT -2.523050 -3.287616 -2.764272 -2.373503 -2.152668 -2.069541 

SSDT -2.388919 -3.144264 -2.632792 -2.252244 -2.038118 -1.957968 

TSDT -2.461177 -3.221769 -2.703791 -2.317655 -2.099863 -2.018086 

FSDT -3.597007 -4.301976 -3.732298 -3.299697 -3.051612 -2.956534 

CPT -1.706393 -2.087272 -1.791409 -1.566468 -1.437193 -1.387402 
 
 
Table 6 Dimensionless transverse shear stresses τ̄ xz of different sandwich square plates 

k Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1 

0 

RHSDT 0.142427 0.142427 0.142427 0.142427 0.142427 0.142427 

HSDT 0.175814 0.175814 0.175814 0.175814 0.175814 0.175814 

SSDT 0.171604 0.171604 0.171604 0.171604 0.171604 0.171604 

TSDT 0.174481 0.174481 0.174481 0.174481 0.174481 0.174481 

FSDT 0.173624 0.173624 0.173624 0.173624 0.173624 0.173624 

1 

RHSDT 0.142427 0.245892 0.271139 0.263095 0.250022 0.245207 

HSDT 0.175814 0.258120 0.280007 0.275689 0.267830 0.267638 

SSDT 0.171604 0.271618 0.300347 0.293865 0.280890 0.277019 

TSDT 0.174481 0.264677 0.289538 0.284236 0.274133 0.272347 

FSDT 0.173624 0.181504 0.190134 0.199626 0.210115 0.221768 
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Table 6 Continued 

k Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1 

2 

RHSDT 0.142427 0.266548 0.287198 0.265886 0.243455 0.239333 

HSDT 0.175814 0.274559 0.293708 0.279786 0.265773 0.268627 

SSDT 0.171604 0.292205 0.317892 0.298078 0.275130 0.272583 

TSDT 0.174481 0.282950 0.304910 0.288355 0.270427 0.270952 

FSDT 0.173624 0.184293 0.196359 0.210115 0.225945 0.244354 

3 

RHSDT 0.142427 0.274786 0.290668 0.261357 0.235362 0.235593 

HSDT 0.175814 0.281176 0.297080 0.277265 0.261228 0.269434 

SSDT 0.171604 0.300600 0.322239 0.294047 0.267073 0.269608 

TSDT 0.174481 0.290349 0.308697 0.285154 0.264327 0.270110 

FSDT 0.173624 0.185719 0.199626 0.215785 0.234789 0.257465 

4 

RHSDT 0.142427 0.279028 0.291316 0.257131 0.230171 0.235324 

HSDT 0.175814 0.284630 0.298000 0.274576 0.258355 0.272013 

SSDT 0.171604 0.305016 0.323396 0.289951 0.261729 0.270017 

TSDT 0.174481 0.294226 0.309711 0.281837 0.260366 0.271755 

FSDT 0.173624 0.186586 0.201639 0.219335 0.240436 0.266029 

5 

RHSDT 0.142427 0.281670 0.291163 0.253889 0.227025 0.236707 

HSDT 0.175814 0.286716 0.298171 0.272440 0.256771 0.275287 

SSDT 0.171604 0.307694 0.323573 0.286687 0.258433 0.272071 

TSDT 0.174481 0.296571 0.309879 0.279200 0.258029 0.274512 

FSDT 0.173624 0.187168 0.203004 0.221768 0.244354 0.272062 

 

 
Fig. 2 Dimensionless center deflection w̅  as a function of side-to-thickness ratio a / h for two 

types of sandwich plates: (a) tFGM = 0.4h; (b) tFGM = 0.8 
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Fig. 2 Continued 

 
 

Fig. 2 shows the variation of the center deflection w̅ with side-to-thickness ratio a / h for two 
types of sandwich plates with different FGM layer thickness (tFGM). The deflection of the metallic 
plate is found to be the largest magnitude and that of the ceramic plate of the smallest magnitude. 
The deflections of the FG sandwich and homogeneous plates decrease as a / h increases. It is to be 
noted that the FG sandwich plates with intermediate properties undergo corresponding 
intermediate values of center deflection. This is expected because the metallic plate is the one with 
the lowest stiffness and the ceramic plate is the one with the highest stiffness. 
 
 

 
Fig. 3 Effect of the aspect ratio a / b on dimensionless center deflection w̅  for two types of 

sandwich plates: (a) tFGM = 0.4h; (b) tFGM = 0.8 
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Fig. 3 Continued 

 
 

Fig. 3 shows the effects of the aspect ratio a / b on the dimensionless deflection w̅. The 
deflection of the ceramic plate is found to be of the smallest magnitude and that of the metallic 
plate, of the largest magnitude. The increase of the aspect ratio a / b leads to a decrease of 
deflections of the homogeneous and FG sandwich plates. It is to be noted that the FG sandwich 
plates with intermediate properties undergo corresponding intermediate values of center deflection. 

Fig. 4 shows the variation of axial stress σ̄x through-the thickness of the homogeneous ceramic 
and FG sandwich plates. The stresses are tensile below the mid-plane and compressive above the  
 
 

 
Fig. 4 Variation of axial stress σ̄x through the plate thickness for two types of sandwich plates:     

(a) tFGM = 0.4h; (b) tFGM = 0.8 

238



 
 
 
 
 
 

Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates 

 
Fig. 4 Continued 

 
 
mid-plane. As expected, the different volume fraction exponents influences considerably the 
variation of axial stresses. 

Fig. 5 shows plots of the through-the-thickness distribution of the transverse shear stress τ̄ xz for 
k = 0.0, 1.5, and 3.5. The maximum value occurs at a point on the mid-plane of the plate and its 
magnitude for FG plate is larger than that for homogeneous ceramic plate. 

Fig. 6 shows the effect of the aspect ratio a / b on the dimensionless center deflection w̅ for FG 

 
 

 
Fig. 5 Variation of transverse shear stress τ̄ xz through the plate thickness for two types of 

sandwich plates: (a) tFGM = 0.4h; (b) tFGM = 0.8 
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Fig. 5 Continued 

 
 
sandwich plate. The effect of the mechanical and thermal loads is taken into consideration. It is 
found that the aspect ratio effect is more pronounced on the thermomechanical bending deflection 
w̅ (q0 = t2 = t3 = 100 and) of the FG sandwich plate. 

In Figs. 7 and 8, we have plotted the through-the-thickness distributions of the dimensionless 
axial stress σ̄x and the transverse shear stress τ̄ xz of the FG sandwich plate for k = 3.5 and tFGM = 

0.4h, respectively. These figures show the great influence played by the different thermal and 
bending loads on the axial and transverse shear stresses. 
 
 

 
Fig. 6 Effect of mechanical and temperature loads on the dimensionless center deflection of FG 

sandwich plate versus a / b (tFGM = 0.4h, k = 3.5). 
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Fig. 7 Effect of mechanical and temperature loads on the dimensionless axial stress of FG 

sandwich plate (tFGM = 0.4h, k = 3.5) 
 

 
Fig. 8 Effect of mechanical and temperature loads on the dimensionless transverse shear stress of 

FG sandwich plate (tFGM = 0.4h, k = 3.5) 

 
 
5. Conclusions 

 
A novel hyperbolic shear deformation theory for thermomechanical bending of FG sandwich 

plates is presented. The theory accounts for the stretching and shear deformation effects without 
requiring a shear correction factor. The gradation of properties through the thickness is assumed to 
be of the power law type and comparisons have been made with homogeneous isotropic plates. 
Numerical results for stresses and deflection are obtained and investigated for different plate 
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configurations. It has been confirmed that the inclusion of thickness stretching effect makes a plate 
stiffer, and hence, leads to a reduction of deflections and stresses. 
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Appendix 
 
The stiffness coefficients Cij of the symmetric matrix [C] appeared in Eq. (24) are as follows 
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The components of the generalized force vector {F} = {F1, F2, F3, F4, F5}

t are given by 
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