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Abstract.    This paper deals with the applicability of a new extended layerwise optimization method for 
thermal buckling load optimization of laminated composite plates. The design objective is the maximization 
of the critical thermal buckling of the laminated plates. The fibre orientations in the layers are considered as 
design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of 
the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise 
optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary 
conditions. 
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1. Introduction 
 

The laminated composite plate is one of the important structural elements, which is widely used 
in a variety of high performance engineering systems including aircraft, submarine, automotive, 
naval and space structures. When the plate is subjected to temperature change, thermally induced 
compressive stresses are developed in the constraint plate due to thermo-elastic properties and 
consequently buckling takes place. Thin plate structure becomes unstable at relatively lower 
temperature and buckles in the elastic region. Hence, the thermal buckling represents an important 
parameter for consideration and plays the significant role in the design of the structures. 

A considerable amount of literature exists on thermal buckling of laminated composite plates. 
For example, Shiau et al. (2010) studied thermal buckling behavior of composite laminated plates 
by making the use of finite element method. Lal et al. (2009) examined the effect of random 
system properties on thermal buckling load of laminated composite plates under uniform 
temperature rise. Vosoughi et al. (2011) investigated thermal postbuckling behavior of laminated 
composite skew plates. Akhras and Li (2010) extended the finite layer method to the thermal 
buckling analysis of piezoelectric antisymmetric angle-ply laminates. Rasid et al. (2011) improved 
thermal buckling and thermal post-buckling behaviours of laminated composite plates by 
embedding shape memory alloy wires within laminated composite plates. Ghomshei and 
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Mahmoudi (2010) implemented differential quadrature method for analyzing the thermal buckling 
behavior of the symmetric cross-ply laminated rectangular thin plates subjected to uniform and/or 
non-uniform temperature fields. 

The optimization of thermal buckling load for laminated composite plates has been the subject 
of significant research activities in recent years. Topal and Uzman (2008) investigated thermal 
buckling load optimization of laminated composite plates subjected to uniformly distributed 
temperature load. The objective function was to maximize the critical temperature capacity of 
laminated plates and the fibre orientation was considered as design variable. Topal and Uzman 
(2010) researched thermal buckling load optimization of symmetrically laminated angle-ply thin 
plates with centrally located different cutouts subjected to a uniform temperature load rise. Topal 
(2012) studied critical thermal buckling load optimization of symmetrically laminated four layered 
angle-ply plates with one or two different intermediate line supports. Spallino and Thierauf (2000) 
presented thermal buckling optimization of laminated composite plates subject to a temperature 
rise using evolution strategies. Singha et al. (2000) maximized buckling temperatures of 
graphite/epoxy laminated composite plates for a given total thickness considering fibre-directions 
and relative thicknesses of layers as design variables. Genetic algorithm was employed to optimize 
as many as ten variables for the five layered plates. Autio (2001) optimized behaviour of a 
laminated plate with given boundary temperatures and displacement constraints and the 
optimization problem was expressed in terms of lamination parameters. Mozafari et al. (2010) 
maximized thermal buckling loads of laminated composite plates for a given total thickness. Fibre 
directions and relative thickness of layers were considered as design variables. The imperialist 
competitive algorithm was employed to optimize as many as seven variables for the different 
layered plates. Chen et al. (2003) investigated design optimization for structural thermal buckling. 
The analysis of heat conduction, structural stress and buckling were considered at the same time in 
the design optimization procedure. The optimization model was constructed and solved by the 
sequential linear programming or sequential quadratic programming algorithm. Malekzadeh et al. 
(2012) applied the differential quadrature method in conjunction with the genetic algorithms to 
obtain the optimum buckling temperature of the laminated composite skew plates. Fares et al. 
(2004) presented a multiobjective optimization problem to determine the optimal layer thickness 
and optimal closed loop control function for a symmetric cross-ply laminate subjected to 
thermomechanical loadings. The optimization procedure aimed to maximize the critical 
combination of the applied edges load and temperature levels and to minimize the laminate 
dynamic response subject to constraints on the thickness and control energy. Lee et al. (1999) 
presented the design of a thick laminated composite plate subjected to a thermal buckling load 
under a uniform temperature distribution. In design procedures of composite laminated plates for a 
maximum thermal buckling load, golden section method was used as an optimization routine. 
Fares et al. (2005) presented design and control optimization to minimize the thermal postbuckling 
dynamic response and to maximize the buckling temperature level of composite laminated plates 
subjected to thermal distribution varying linearly through the thickness and arbitrarily with respect 
to the in-plane coordinates.  

On the other hand, layerwise optimization (LO) approach was introduced by Narita who 
applied this method to the optimization of the laminates. Narita started with a predetermined 
number of layers in symmetric formation and systematically found the optimal fibre orientations 
from the outer to the inner layers. His study was restricted by predetermined number of layers. 
Topal (2012) studied frequency optimization of laminated composite plates using a new extended 
layerwise optimization method. On the other hand, this paper deals with a new extended layerwise 
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optimization method for thermal buckling load optimization of laminated plates. Furthermore, this 
algorithm has no limitations on the number of layers. The design objective is the maximization of 
the critical thermal buckling load. The first order shear deformation theory is used for finite 
element solution of laminates. The design variable is the fiber orientations. Finally, the numerical 
analysis is carried out to show the applicability of extended layerwise optimization algorithm of 
laminated plates for different parameters such as plate aspect ratios and boundary conditions. 

 
2. Basic equations 

 
Consider a laminated composite plate of uniform thickness h, having a rectangular plan axb as 

shown in Fig. 1. The individual layers are assumed to be homogeneous and orthotropic.  
 
 

Fig. 1. Geometry and coordinate system of a rectangular laminated composite plate 
 
 
The displacement field for the first order shear deformation theory can be expressed as  

o xu(x, y, z) u (x, y) z (x, y)      

        o yv(x, y, z) v (x, y) z (x, y)       (1) 

ow(x, y, z) w (x, y)  

where u, v and w are the displacements of a general point in the x, y and z directions 
respectively. The parameters o ou , v  are the inplane displacements and ow  is the transverse 

displacement of a point on the laminate middle plane. The functions x  and y  are the rotations 

of the normal to the laminate middle plane about x- and y-axes, respectively. The displacement 
vector at the mid-plane can be defined as 

                      T
o o o x yd u , v , w , ,       (2) 

Substituting Eq. (1) into the general linear strain-displacement relations, the following relations 
are obtained.  
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The stress-strain relations accounting for thermal effects for the kth lamina in the element co-
ordinates (x,y,z) are written as  

x 11 12 16 x x

y 12 22 26 y y

16 26 66xy xy xy(k)(k)

Q Q Q T

Q Q Q T

Q Q Q T

       
    
        

              

   (4) 

yz yz44 45
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              (5) 

where ijQ  is the transformed reduced stiffnesses, x , y , xy  are the coefficients of 

thermal expansion and T  is the uniform constant temperature difference. 
 

The stress resultants  N , stress couples  M  and transverse shear stress resultants  Q  are 
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In Eq. (7), K is the shear correction factor. In this study, the shear correction factor is taken 5/6. 
 
 

3. Finite element formulation 
 
In this study, nine noded Lagrangian rectangular plate elements having five degrees of freedom 

are used for the finite element solution of the laminated plates. The interpolation function of the 
displacement field is defined as 
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where id , iN  and n are the nodal variables, the interpolation function and total number of 

nodals per element, respectively. The stiffness matrix of the plate is obtained by using the 
minimum potential energy principle. Bending stiffness  bK , shear stiffness  sK  and geometric 

stiffness  gK  can be calculated as below 

                                               bb

T

A
bb BDBK  dA 

      ss
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A
ss BDBK  dA       (9) 
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ijA  and ijD  can be calculated as follows 

                                       dzz,1QD,A
2/h

2/h

2
ijijij 



  (i, j=1, 2, 6)       

  
h / 2

ij ij
h / 2

A Q dz


    (i, j=4, 5)                                  (11) 

In Eq. (10), 2
1k  and 2

2k  are the shear correction factors and, in this study the shear correction 
factor is assumed 5/6. 

 
The discrete eigenvalue equation of the static buckling problem of laminates can be derived as 

                                     0uKKK gsb       (12) 

Calculating the critical buckling temperature of buckling due to thermal load is two stage 
processes. For a specified rise T in temperature the thermal loads are computed and a linear 
static analysis is carried out to determine the thermal stress resultants. These stress resultants are 
then used to compute the geometric stiffness matrice, which subsequently used in Eq. (12), to 
determine the least eigenvalue,  , and the associated mode shape. The critical buckling 
temperature , crT , is calculated as follows 

 
                                     crT T       (12) 
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In this study, subspace iteration technique is applied to obtain the numerical solutions of the 
problem.  

 
 

4. Extended layerwise optimization algorithm 
 
In this paper, the objective of extended layerwise optimization algorithm is finding the 

optimum stacking sequence [ 1 / 2 / 3 /..../ N ] s,opt  for the maximum fundamental frequency of 

laminated plates which can be determined sequentially in the order from the outermost to the 
innermost layer. The current algorithm basically is illustrated in Fig. 2. The aim of this algorithm 
is the introduction of new layers in the stack that serve to improve the frequency criterion under 
consideration. However, there is a major difference in the procedure adopted with that of Narita 
[11-12], in that herein no predetermined number of layers is assumed a priori. Here, the new layers 
are introduced on the mid-surface of the laminate whose optimal orientation are determined with 
no limitations as to their number. Another reason for the outward ordering of the successive layers 
is to place the most effective ones furthest away from the mid-surface. The steps of this algorithm 
can be expressed as below: 

 
I-1. Assuming constant total laminate thickness equal to h, 1  is found so that it would possess 

the best critical thermal buckling load. The search for optimal angle is done exhaustively in the 0   

to +90   domain in increments of   selected. 
 
I-2 Addition of the new layer into the stack which would cause the previously determined 

layer’s thickness to reduce to half and be placed on the top of the stack. 
 
I-N: In this step, by the introduction of the Nth layer based on the same criterion of choice, the 

thickness of the N-1 layers previously determined would decrease to h/2N. Finally, the new layer 
must show non-negative improvement of the critical thermal buckling load criterion. The process 
stops when this improvement becomes less than a predefined value. At the end of stage, a laminate 
of 2N-layers with the best posture for the critical thermal buckling load criterion is available. 

 
 

 
Fig. 2. Stepwise of extended layerwise optimization algorithm 
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The optimal design problem can be stated mathematically as follows 

               Find:       [ 1 / 2 / 3 /..../ N ] s  

               Maximize  cr max cr(T ) max T


                (13) 

           Subject to o o
k0 90    

The critical thermal buckling load for a given fibre orientation is determined from the finite 
element solution of the eigenvalue problems given by Eq. (12). The optimization procedure 
involves the stages of evaluating the critical thermal buckling load and improving the fiber 
orientation   to maximise crT . Thus, the computational solution consists of successive stages of 

analysis and optimization until a convergence is obtained and the optimal angle opt  is 

determined within a specified accuracy.  

 
 

5. Numerical results and discussion 
 
In order to show the applicability of this algorithm, the optimization results of the laminated 

plates are given for T300/5208 graphite/epoxy material. The material properties are given as below 

GPa181E1  , 2E 10.3GPa , 12G 7.17GPa , 12 =0.28, 6 1
1 0.02x10 C    , 

6 1
2 22.5x10 C     

In this study, the increments of   is equal to 5 . The nondimensional thermal buckling load 
parameter is defined as 

                                    3
cr o crT T x10             (14) 

where 6 o
o 10 / C  . 

 
In this study, firstly a convergence study is performed to determine the appropriate finite 

element mesh to be used in the thermal buckling load analysis of the laminated plate model. Four 
meshes are developed, with increasing numbers of elements in the x and y directions. In the 

numerical analysis, simply supported 4-layered cross ply-ply  0 / 90 / 0 / 90     laminated plates 

are investigated (b/h=10). The material properties are given as below 
As it can be seen from Table 1, there is only a 0.18% difference between the loads calculated 

for mesh 15x15 and mesh 20x20. This indicates that mesh 20x20 is capable of performing the 
analysis within a reasonable degree of accuracy. 

 
 
 
 

289



 
 
 
 
 
 

Umut Topal 

Table 1 Mesh convergence study of the present study for simply supported 4-layered cross ply-ply 

 0 / 90 / 0 / 90     laminated plates 

Mesh Critical temperature crT ( C)  

5x5 5.246x104 
10x10 4.983x104 
15x15 4.949x104 
20x20 4.940x104 

 
 
In this section, the convergence behavior and accuracy of the present study are investigated. A 

single thin (b/h=40) clamped laminated square plate ( 45   ) is considered to compare the 
present study with the literature results. The material properties are given as below: 

1E 76GPa , 2E 5.5GPa , 12 13G G 2.30GPa  , 23G 1.5GPa , 12 0.34  , 

6 1
1 4x10 C     , 6 1

2 79x10 C     
 
 
Table 2 Convergence study of the present study for a clamped square laminated plate 

Critical Temperature
Huang and Tauchert 

(1992) 
Kabir et al. (2003) Present study 

crT ( C)  129.91 131.55 130.04 

 
 
As it can be seen from Table 2, the results obtained for critical buckling temperature are in very 

close aggrement with the literature results. 
Table 3 shows the stepwise results of this algorithm for simply supported square laminated 

plates (b/h=25). The first column indicates the number of steps and the second column indicates 
the optimum fibre orientations in the layers. The third column and fourth column show the critical 
thermal buckling loads and the increases in critical thermal buckling loads between the steps, 

respectively. The stopping criterion for crT  is taken as 0.005. 
 
 

Table 3. Stepwise results for critical thermal buckling load for simply supported laminated plates (a/b=1, 
b/h=25) 

Step Stacking order crT  crT  

1 [0] or [90] 1.6009 - 
2 [0/45] or [90/45] 1.8903 0.289 
3 [0/45/45] or [90/45/45] 1.8956 0.005 

 
 
 In Table 4, effect of plate aspect ratio (a/b) on the optimum results using extended 

layerwise optimization approach is illustrated. As seen from Table 2, the optimum stacking 
sequences and the number of layers are the same for a / b 1 . On the other hand, the critical 
thermal buckling load decreases with increase in the plate aspect ratio because of diminishing of 
the plate rigidity. 
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Table 4 Effect of plate aspect ratio (a/b) on the optimum results for simply supported laminated plates 
(b/h=25) 

a/b Optimum stacking sequence crT  

1 [0/45/45] or [90/45/45] 1.8956 
1.5 [90] 1.0884 
2 [90] 0.8954 

2.5 [90] 0.8034 
3 [90] 0.7557 

 
 

Extended layerwise optimization algorithm may be applied to laminated plates with any 
combinations of simple support (S), clamped support (C), and free edge (F). Different 
combinations of the boundary conditions are considered in this study. For example, a clamped-
simple-clamped-simple (CSCS) is a specimen with clamped supported on x=0 and x=a, and simple 
supported on y=0 and y=b, respectively. In Table 5, effect of different boundary conditions on the 
optimum results are given using extended layerwise optimization approach (b/h=25, a/b=1). As 
seen from Table 5, the maximum and minimum critical thermal buckling loads are obtained for 
(SFCF) and (SCCF) boundary conditions, respectively. It is obvious from the results that, the 
optimum stacking sequences and the number of layers can be changeable for different boundary 
conditions. 

 
Table 5 Effect of boundary conditions on the optimum results for square laminated plates (b/h=25, a/b=1) 

 Boundary  
conditions 

Optimum stacking sequence crT  

(SSSS) [0/45/45] or [90/45/45] 1.8956 
(CSCS) [0/90/0/0/0/0/0/0/0/0/0] 7.8609 
(CCCC) [0/90/90/0/0] 3.2427 
(CFCF) [0] 3.5058 
(CFFF) [0] 4.7251 
(CCFF) [90/0/0/0] 26.8995

(SFCF) [90] 
1212.70
40 

(SSSF) [90] 1.8328 
(SCSF) [90/0/90/90/90/90/90] 23.1651
(SSCF) [0/90] 15.7081
(SCCF) [0] 1.5939 
(SSSC) [90] 2.2696 
(SSCC) [90/0] 10.0142

 
 

6. Conclusions 
 
In this paper, the applicability of a new extended layerwise optimization method on critical 

thermal buckling load optimization of laminated composite plates is investigated. The design 
objective is the maximization of the critical thermal buckling load. The fibre orientations in the 
layers are considered as design variables. The aim of this algorithm is the introduction of new 
layers in the stack that serve to improve the critical thermal buckling load criterion under 
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consideration. The limited set of results presented in this paper suggests that the extended 
layerwise optimization method is an effective technique for determining the optimum laminate 
lay-ups in laminated plates in spite of increase of the computational effort and time. On the other 
hand, the optimum stacking sequences and the number of layers can be changeable for different 
boundary conditions.  

 
References 

 
Akhras, G. and Li, W.C. (2010), “Three-dimensional thermal buckling analysis of piezoelectric 

antisymmetric angle-ply laminates using finite layer method”, Compos. Struct., 92(1), 31-38. 
Autio, M. (2001), “Optimization of coupled thermal-structural problems of laminated plates with 

lamination parameters”, Struct. and Multidiscip. Optim., 21, 40-51. 
Chen, B., Gu, Y., Zhao, G., Lin, W., Chang, T.Y.P. and Kuang, J.S. (2003), “Design optimızation 

for structural thermal buckling”, J. Therm. Stresses, 26, 479-494. 
Fares, M.E., Youssif, Y.G. and Hafiz, M.A. (2005), “Multiobjective design and control 

optimization for minimum thermal postbuckling dynamic response and maximum buckling 
temperature of composite laminates”, Struct. and Multidiscip. Optim., 30(2), 89-100. 

Fares, M.E., Youssif, Y.G. and Hafiz, M.A. (2004), “Structural and control optimization for 
maximum thermal buckling and minimum dynamic response of composite laminated plates”, Int. 
J. Solids Struct., 41, 1005-1019. 

Ghomsei, M.M.M. and Mahmoudi, A. (2010), “Thermal buckling analysis of cross-ply laminated 
rectangular plates under nonuniform temperature distribution: A differential quadrature 
approach”, J. Mech. Sci. Tech., 24, 2519-2527. 

Huang, N.N. and Tauchert, T.R. (1992). “Thermal buckling of clamped symmetric laminated 
plates”, Thin-Walled Struct., 13(4), 259–273. 

Kabir, H.R.H., Askar, H. and Chaudhuri, R.A. (2003), “Thermal buckling response of shear 
flexible laminated anisotropic plates using a three-node isoparametric element”, Compos. 
Struct., 59(2), 173-187. 

Lal, A., Singh, B.N. and Kumar, R. (2009), “Effects of random system properties on the thermal 
buckling analysis of laminated composite plates”, Comput. Struct., 87(17-18), 1119-1128. 

Lee, Y.S., Lee, Y.W., Yang, M.S. and Park, B.S. (1999), “Optimal design of thick laminated 
composite plates for maximum thermal buckling load”, J. Therm. Stress, 22(3), 259-273. 

Malekzadeh, P., Vosoughi, A.R., Sadeghpour, M. and Vosoughi, H.R. (2012), “Thermal buckling 
optimization of temperature‐dependent laminated composite skew plates”, J. Aerospace Eng., In 
Press. 

Mozafari, H., Alias, A. and Kamali F. (2010), “Optimum design of composite plates under thermal 
buckling loads using imperialist competitive algorithm”, Int. J. Comput. Sci. Eng. Tech., 1, 54-
58. 

Rasid, Z.A., Ayob, A., Zahari, R. Mustapha, F., Majid, D.L. and Varatharajoo, R. (2011), 
“Thermal buckling and post-buckling improvements of laminated composite plates using finite 
element method”, Key Eng. Mat., 471-472, 536-541. 

Shiau, L.C., Kuo, S.Y. and Chen C.Y. (2010), “Thermal buckling behavior of composite laminated 
plates”, Compos. Struct., 92(2), 508-514. 

Singha, M.K., Ramachandra, L.S. and Bandyopadhyay, J.N. (2000), “Optimum design of 
laminated composite plates for maximum thermal buckling loads”, J. Comp. Mat., 34(23), 1982-
1997. 

292



 
 
 
 
 
 

Application of a new extended layerwise approach to thermal buckling load optimization  

Spallino, R. and Thierauf G. (2000), “Thermal buckling optimization of composite laminates by 
evolution strategies”, Comput. and Struct., 78(5), 691-697. 

Topal, U. (2012). “Extended layerwise optimization approach for laminated plates in frequency 
domain”, Steel Comp. Struct., 12, 541-548. 

Topal, U. (2012), “Thermal buckling load optimization of laminated plates with different 
intermediate line supports”, Steel Comp. Struct., 13(3), 207-223 

Topal, U. and Uzman, Ü. (2010), “Effect of rectangular/circular cutouts on thermal buckling load 
optimization of angle-ply laminated thin plates”, Sci. Eng. Comp. Mat., 17, 93-110. 

Topal, U. and Uzman, Ü. (2008), “Thermal buckling load optimization of laminated composite 
plates”, Thin-Walled Struct., 46(6), 667-675. 

Vosoughi, A.R., Malekzadeh, P., Banan, Mo. R. and Banan, Ma. R. (2011), “Thermal 
postbuckling of laminated composite skew plates with temperature-dependent properties”, Thin-
Walled Struct., 49(7), 913-922.  

 
 
CC 
 

293




