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Abstract.  The present work deals with the thermomechanical bending response of functionally graded
plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently
developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric
distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and
bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric
shear deformation theory, the present refined trigonometric shear deformation theory contains only four
unknowns as against five in case of other shear deformation theories. The material properties of the
functionally graded plates are assumed to vary continuously through the thickness, according to a simple
power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-
parameter Pasternak foundation. The results of the shear deformation theories are compared together.
Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and
elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be
concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending
response of functionally graded plates.
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1. Introduction

The increased applications of advanced composite materials in structural members have
stimulated interest in the accurate prediction of the response characteristics of functionally graded
(FG) plates used in situations where large temperature gradients are encountered. Functionally
graded materials (FGMs) are designed so that material properties vary smoothly and continuously
through the thickness from the surface of a ceramic exposed to high temperature to that of a metal
on the other surface. The mechanical properties are graded in the thickness direction according to
volume fraction power law distribution. Since the main applications of FGMs have been in high
temperature environments, most of the research on FGMs has been restricted to thermomechanical
stress analysis, thermal buckling, fracture mechanics and optimization.
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Plates supported by elastic foundations have been widely adopted by many researchers to
model various engineering problems during the past decades. To describe the interactions of the
plate and foundation as more appropriate as possible, scientists have proposed various kinds of
foundation models, as documented well in Ref. (Kerr 1964). The simplest model for the elastic
foundation is the Winkler model, which regards the foundation as a series of separated springs
without coupling effects between each other, resulting in the disadvantage of discontinuous
deflection on the interacted surface of the plate. This was later improved by Pasternak (1954) who
took account of the interactions between the separated springs in the Winkler model by
introducing a new dependent parameter. From then on, the Pasternak model was widely used to
describe the mechanical behavior of structure—foundation interactions (Omurtag et al. 1997,
Matsunaga 2000, Filipich and Rosales 2002, Zhou et al. 2004, Behravan Rad 2012).

The thermomechanical bending response of thick plates made of FGMs is of great interest for
engineering design and manufacture. Reddy (2000) and Reddy and Cheng (2001) have used an
asymptotic method to determine three-dimensional thermomechanical deformations of FG
rectangular plates. Cheng and Batra (2000) have used the method of asymptotic expansion to study
the 3D thermoelastic deformations of an FG elliptic plate. Vel and Batra (2002) have presented an
exact 3D solution for the thermoelastic deformation of FG simply supported plates of finite
dimensions. Ying et al. (2009) used a semi-analytical method to study thermal deformations of FG
thick plates and the analysis is directly based on the 3D theory of elasticity. A two-dimensional
global higher-order deformation theory has been employed by Matsunaga (2009) for thermal
buckling of FG plates. Zhao et al. (2009) presented the mechanical and thermal buckling analysis
of FG ceramic—metal plates using the first-order shear deformation plate theory, in conjunction
with the Ritz method. Also, Fuchiyama and Noda (1995) considered an FG plate made of ZrO,
and Ti 6Al 4V under thermal loading. Zenkour (2009) presented a thermoelastic bending analysis
of FG plates on elastic foundations. Using a trigonometric shear deformation plate theory, Zenkour
and Alghamdi (2010) studied the bending response of sandwich FG plates subjected to
thermomechanical loads. Zenkour and Sobhy (2010) investigated the thermal buckling of FG
sandwich plates using trigonometric shear deformation plate theory.
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Fig. 1 Coordinate system and geometry for rectangular FG plates on Pasternak elastic foundation
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In the present paper, an analytical solution to the thermomechanical bending response of FG
plates resting on Winkler-Pasternak elastic foundations is developed using a refined trigonometric
shear deformation theory (RTSDT) recently developed by Tounsi et al. (2012). Other shears
deformation theories available in the literature (Reddy 2000, Zenkour and Alghamdi 2010,
Zenkour and Sobhy 2010), are presented and studied for comparisons. The present refined
trigonometric shear deformation theory is based on assumption that the in-plane and transverse
displacements consist of bending and shear components in which the bending components do not
contribute toward shear forces and, likewise, the shear components do not contribute toward
bending moments. Unlike the conventional trigonometric shear deformation theory (Zenkour and
Alghamdi 2010, Zenkour and Sobhy 2010), the proposed trigonometric shear deformation theory
contains four unknowns. Material properties of FG plate are assumed to vary according to power
law distribution of the volume fraction of the constituents. The results based on the present refined
trigonometric shear deformation theory are compared with those obtained by the higher- and first-
order shear deformation plate theories and classical plate theory. The influences of several
parameters are discussed.

2. Theoretical formulation

Consider a functionally graded plate of thickness 4, side length a in the x-direction, and b in the
y-direction resting on Winkler-Pasternak elastic foundations as shown in Fig. 1. The refined
trigonometric shear deformation plate theory used by Tounsi et al. (2012) accounts for
trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress
conditions on the top and bottom surfaces of the plate without using shear correction factor.

2.1 Basic assumptions
The assumptions of the present theory are as follows:

(1) The displacements are small in comparison with the plate thickness and, therefore, strains
involved are infinitesimal.

(2) The transverse displacement w includes two components of bending w,, and shear w;. These
components are functions of coordinates x, y only.

w(X, ,2) = w, (X, y) + w(x, ) (1

(3) The transverse normal stress o is negligible in comparison with in-plane stresses o, and o,.
(4) The displacements u in x-direction and v in y-direction consist of extension, bending, and
shear components.

U=ug+u, +ug, V=v,+v, +v, 2)

The bending components u, and v, are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for u, and v, can be given as

uy=—z 2%y = 3)
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Fig. 2 Effect of Winkler modulus parameter on the dimensionless center deflection (W) of a square FG
plate (k = 2) for different side-to-thickness ratio a/h with J, =10, go =100, 1, =0and t, =t; =10
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Fig. 3 Effect of Pasternak shear modulus parameter on the dimensionless center deflection (W) of a
square FG plate (k = 2) for different side-to-thickness ratio a/h with ky = 10, g, = 100, ¢; = 0 and £,
== 10.

The shear components u, and v, give rise, in conjunction with wy, to the trigonometric variations
of shear strains y,., y,. and hence to shear stresses 7., 7,. through the thickness of the plate in such a
way that shear stresses 7,., 7,. are zero at the top and bottom faces of the plate. Consequently, the
expression for u; and v; can be given as (Tounsi ef al. 2012)

0

W
S

b
Ox

u,=—f(2) v, ==f(2) “)

ow,
oy

where

f(2)= (z i E) (5)
V4 h
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Fig. 4 Variation of dimensionless axial stress ( o, ) through-the-thickness of a square FG plate (k = 2) for
different values of Winkler modulus parameter k, with J, = 10, go = 100, #,=0 and t, = t; = 10 and
alh=10

Fig. 5 Variation of dimensionless axial stress ( &,) through-the-thickness of a square FG plate (k = 2) for
different values of Pasternak shear modulus parameter J, with ky=10, go=100, ;=0 and t,=¢=10
and a/h=10

2.2. Kinematics

Based on the assumptions made in the preceding section, the displacement field can be
obtained using Egs. (1)-(5) as

ow,
Ox
0

WS
Oy

0
w(x,,2) = g (xy) - a—t - f(2)

(6)

0
V.2 = vy () 2 2 f(2)
Y
w(x, ,z) = wy (x,y) + w,(x, )

The kinematic relations can be obtained as follows
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ke k;

£ |4 :
s }/ z 7/2
£, p=9 &) t+z ky v+ f(2I K ¢, {y}zg(z){i} (7
0 b K Xz xz
Yy Vi kXy kXy
where
ﬁuo _ 82‘/Vb _ azvvs
£’ E3 K L ox’ o [om
g b= My , Jkb =1 - o, , k= _ow, , 7/{2 1Y (8a)
J Ox ) oy’ v oy* s ow,
0 kb Y ks j/xz s
Ve %+% w ) 62wb X ﬁzws ox
oy Ox oxdy xdy
and
g(z)=1- LG =cos [EJ (8b)
dz h

2.3. Constitutive equations

The plate is subjected to a sinusoidally distributed load ¢(x,y) and a temperature field 7(x,y,z).
The material properties P of the FG plate, such as Young’s modulus E, Poisson’s ratio v, and
thermal expansion coefficient a are given according the formula

k
P@)=py + (P -2 3+ ©

Fig. 6 Variation of dimensionless shear stress ( 7,_) through-the-thickness of a square FG plate (k = 2) for
different values of Winkler modulus parameter &y with J, = 10, go = 100, ¢, 0 and #, = ; = 10 and
alh=10
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Fig. 7 Variation of dimensionless shear stress (7 ) through-the-thickness of a square FG plate (k = 2) for

different values of Pasternak shear modulus parameter Jy with &y = 10, gy =100, #, =0 and t, = #; =
10 and a/h =10

Fig. 8 Effect of the thermal load #0n the dimensionless center deflection (W ) of a square FG plate (k
= 2) for different side-to-thickness ratio a/h with &k, = 100, Jy = 10, gy = 100, f;=0and t, = 10

where Pc and P, are the corresponding properties of the ceramic and metal, respectively, and £ is
the volume fraction exponent which takes values greater than or equal to zero.
The linear constitutive relations are

Ox O, Op 0 ||le,—aAT 0 0
o,r=0n 0»n 0 [& -aAT;and {Tyz}:{ 34 0 H?/yz} (10)
Txy 0 0 Q66 }/Xy g S RIVEN

zx

where (0, 0y, Ty, Tyz, Tyx) and (&, €, Yx» = Vi) are the stress and strain components, respectively.
Using the material properties defined in Eq. (9), stiffness coefficients, Oy, can be expressed as
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Fig. 9 Effect of the thermal load # on the dimensionless axial stress ( &, ) through-the-thickness of a
square FG plate (k= 2) with a/h = 10, ko= 100, Jy = 10, go =100, t, =0 and £, = 10

0 =0n =% (11a)
E

0,= Vl_‘(/zz), (11b)

Q44 =055 =06 = (b;(j?/)» (11c)

where AT =T — T, in which Tj is the reference temperature.
The applied temperature distribution 7(x,y,z) through the thickness are assumed, respectively,
to be

T(x,y,z)=T(x,y)+— T(x y)+—sm( P )T (x,¥), (12)

2.4. Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual
displacements. The principle of virtual work in the present case yields

hl2
[ [lobe 0,66, +0,67,+7.67.+0.8y Jdad~[(q-f)6waa=0 (13)
Q

—h/2Q

where Q is the top surface, and f, is the density of reaction force of foundation. For the Pasternak
foundation model

0w 0w

Kyw—-J -J 14
f w lax 262 ()
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where Ky is the modulus of subgrade reaction (elastic coefficient of the foundation) and J; and J,
are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is
homogeneous and isotropic, we will get J; = J, = Jy. If the shear layer foundation stiffness is
neglected, Pasternak foundation becomes a Winkler foundation.

Substituting Egs. (7) and (10) into Eq.(13) and integrating through the thickness of the plate, Eq.
(13) can be rewritten as

[ [Voel+ N 56+ N 56 + MISK + MPS K" + M SK® + M5 k'
ol ' x x y y Xy xy x x ¥y y Xy Xy x X (15)
SMISK A MLSK, +52.6 7 + 850 7 |d—[(g = £) (8w, + 5w, )d2=0
Q

The stress resultants V, M, and S are defined by

N,, N,, N, /2 1
Mf, Myb, Mfy = I (O'X,ay,rxy z dz, (16a)
MM M| /)
hi2
(52.50)= [ ez (16b)
—h/2

Substituting Eq. (10) into Eq. (16) and integrating through the thickness of the plate, the stress
resultants are given as

N A B B¢ NT
M= B D D Rk"t—iM"TL, S=Ay, (17)
Ms BS Ds HS ks MST
where
N={N NN, M ={at it ot e = v | (18a)
- x>yt iy ) o - x° y° xy) 2 - x?° y° xy)
NT :{NT NT 0}’ Y YA Y O}t Mo :{MST Mo 0}’ (18b)
x° y? ) x 0 y B x 0 y 9
0 0 ol b b b b s s gs g8 U
e={e%e0 0 [, K=l ke =k ) (18¢)
All A12 0 Bll BIZ 0 Dll D12 0
A=\4, 4, 0|, B=|B, B, 0|, D=|D, D, 0 |, (18d)
0 0 A 0 0 By] 0 0 D,
B, B, 0 Dy D, 0 H), H, 0
B*=|B, B, 0|, D'=|D) Di, O |, H =|H, H) 0 |, (18¢)
0 0 B 0 0 D 0 0 H
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s=lssof, r={r.], A“{Aé“ AOS}, (18)
55

where 4;;, B, etc., are the plate stiffness, defined by

All Bll Dll Blsl Dlsl Hlsl h/2 1
4, B, D, B, Dy Hyl=[0,022. /(2.2 /()./2@) v, (19)

s s s _ -V

A66 B66 D66 B66 D66 H66 hz 2

and

S N N N S N E(Z)

(Azz’BzzaDzz’szDzz’sz):( 11’BllaD11’Bn’D11’H11)’ Q11:m (19b)
hl/2
; : E(Z) 2

A, =A. = | —|g(2)[ dz, 19¢
44 55 _J/z 2(1+V)[g( )] (19¢)

The stress and moment resultants, NXT = NyT , M fT =M ;’T , M ;T =M ‘;T due to thermal loading
are defined respectively by

N; h/2 E(Z) 1
ML= jl—a(z)T z \dz, (20)
M;T Y £(2)

The governing equations of equilibrium can be derived from Eq. (15) by integrating the
displacement gradients by parts and setting the coefficients duy, dvy, ow, and ow; zero separately.
Thus one can obtain the equilibrium equations associated with the present shear deformation
theory

oN, N

Su, +—2=0
ox oy
ON_  ON
Svy: ——+—==0
ox Oy
Sw,: + LU 2y—fe+q:0
Ox 0Ox0y oy
o’M*  O’MS M’ as® oS’
Sw,: 42 S+ ———f +q=0
ox Ox0Oy oy ox oy
Substituting from Eq. (17) into Eq. (21), we obtain the following equation
Ay dy g + Aged g + (Alz + A66)d12v0 =By d,;w, - (Blz + 2B66)d122Wb (22a)

s N N —
_()Bu +2Bg d W, — Bid, W, = p,,
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Apyd vy + Aged, vy + (Alz + Ag )dlzuo —By,dy,w, — (Blz +2B )dnsz

S S S (22b)
— By, + 2B ), 1,w, = Byydyy W, = Py,
By d,uy + (BIZ +2B )d122”0 + (BIZ +2B )dl 12% T BypdynV,
-D,d,,,w, - Z(Dlz +2Dy )dllzzwb —Dyydyyy,w, = Dj\d, W, (22¢)

- 2(D132 + 2D Jd, 1,W, — D3yd W, = ps

B\d,u, +(BIS2 +2Bgs 5ty + (Blsz +2Bg M, 1,v, + Byyd v,
-Dyd,,,w, _2(D1S2 +2Dgs [ 15oW, —Diod oWy, —Hi\d W (22d)

s s s s s _
- 2(le +2H o [, W, — Hyyd oy W + Assdy W+ Ayydyywe = p,

where {p}z {pl, Da»> D35 Dy }t is a generalized force vector, d;;, d;; and d, are the following

differential operators

il ijlm

o ol o o . .
ij: s d,'j[:—’ dl'ﬂm:—’ di=_’ (laj5l5m=1,2)' (233)
: le.@xj Ox i@x‘ /Gx, ox; Ox‘ /Ox 10X, ox;

The components of the generalized force vector {p} are given by

oNT oNT aszT 82MbT
=—, P, = =, bPs =f.+q- —— —,
ox Oy ¢ ox? oy’

)2 (23b)

o*msT oM
o’ oy?

Py=f,+tq- (23¢)
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Fig. 10 Effect of the thermal load #;0n the dimensionless shear stress (7. ) through-the-thickness of a
square FG plate (k= 2) with a/h =10, K, =100, J, = 10, go= 100, t;, =0 and £,= 10
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3. Exact solutions for FG plates

Rectangular plates are generally classified in accordance with the type of support used. We are
here concerned with the exact solution of Egs. (22) for a simply supported FG plate. To solve this
problem, Navier assumed that the transverse mechanical and temperature loads, p and 7; in the
form of a in the double Fourier series as

T

1

{q} _ {qt‘)}sin(z X)sin(u y), (i=1,2,3) (24

1

where A=n/a, u=n/b, qoand t; are constants.
Following the Navier solution procedure, we assume the following solution form for u, vy, Wy
and w; that satisfies the boundary conditions

u, U cos(A4 x)sin(u y)
v V sin(A x)cos
ol _ .( ) _(uy) , 25)
w, W, sin(A x)sin(u y)
w, W sin(A x)sin(u y)
where U, V, W, and W; are arbitrary parameters to be determined subjected to the condition that
the solution in Eq. (25) satisfies governing Egs. (22). One obtains the following operator equation

[KTa}={P}, (26)
Where {A} = {U, V, W), W,}" and [K] is the symmetric matrix given by
kll k12 k13 k14
[K] — k12 k22 k23 k24 , (27)
k13 k23 k33 k34
k14 kz4 k34 k44

in which

kyy = _(All/12 + Aéﬁ'uz)
k,=-Au (Alz + Aéﬁ)

ki, = A[B, 2> +(B,, +2B,) 1*]

kiy = /1[313'1/12 +(B), +2B4) #]
ky, = _(Aééﬂ’z + Azzﬂz)

kyy = 1[(B, +2Bg) 2 +BZZ”2]

ky, = u[(B) +2B5) A2 + By, 1*]

kg = (D)2 + 2Dy, +2Dg) 2> + Doyt + Koy +J, 2 +J, 487
kyy = _(Dls1/14 + 2Dy, + 2D )2 1 * + Dy '+ Ky + A +J2‘u2)
k,, = _(1—1;14 +2(H ) +2H VA 1 + Hoy ' + AL+ AL i + K, + I 2 +J2y2)

(28)
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The components of the generalized force vector {P} = {P,, P,, P3, P,}" are given by
P=A(A"t,+B"1,+"B"t,)
P, = (At + B't,+°B1,)

P, =—q,—h(22 + 12 )(B"t, + D"t,+D"1, ) 29
P, =—qy— (22 + 1) B, +°D"1,+°F1,)
where
T pT T " E(z) -2
{a” . B".D"}= | :a(z){l,z,z }dz, (30a)
—h/2
apT apnT " E(z2) w .
{B" D" }= [ Ta(z)‘l’(z){l,z}dz, (30b)
—h/2
spT snT spT h/zE(Z) — T w
BT R )= | :a(z)f(z){l,z,‘l’(z)}dz, (30¢)

-h/2

in which z=z/h, f(z) = f(z)/h and ¥(z) =lsin(%)
T

4. Results and discussion

In this section, numerical examples are presented and discussed for verifying the accuracy of
the present theory in predicting the thermomechanical bending responses of plates. Comparisons
are made with various plate theories available in the literature. The description of various
displacement models is given in Table 1.

The FGM plate is taken to be made of Titanium and Zirconia with the following material
properties:

e Metal (Titanium, Ti-6A1-4V): Ey, = 66.2 GPa; v =1/3; ay, = 10.3 x (10°/C°).

e  Ceramic (Zirconia, ZrO,): Ec=117.0 GPa; v=1/3; ac="7.11 x (10"6/C°).

The reference temperature is taken by 75 = 25°C (room temperature). Numerical results are

presented in terms of non-dimensional stresses and deflection. The various nondimensional
parameters used are

Table 1 Displacement models

Unknown

Model Theory functions
CPT Classical plate theory 3
FSDT First-order shear deformation theory (Whitney and Pagano, 1970) 5
PSDT Parabolic shear deformation theory (Reddy, 2000) 5
TSDT Trigonometric shear deformation theory (Zenkour, 2009) 5
Present Present refined trigonometric shear deformation theory 4
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. — 10°D
e  center deflection w= 04 W(ﬁ,é}

a‘q, \2 2
. - 1 a b h
e axialstress oxr=—5—o0o | —,—,— |,
107 g, 222
o - 1 -
e  longitudinal shear stress 7, = T, 0,0,—h
10q, * 3
- 1 b
e  transversal shear stress 7. =— 7.10,-,01,
10g, 2

e  thickness coordinate Z==z/h.

4 2 2 3
_aKW‘J_aJl:bJ2 D hE.

° K = ; = , =
D L)) D 12(1-v2)

Numerical results are tabulated in Tables 2-5 and plotted in Figs. 1-11 using the present refined
trigonometric shear deformation theory (RTSDT). We note that the shear correction factor is taken
K =5/6 in FSDT.

The correlation between the present refined trigonometric shear deformation theory (RTSDT)
and different higher-order and first-order shear deformation theories and classical plate theory is
illustrated in Tables 2-4. These Tables give also the effects of the volume fraction exponent ratio k&
and elastic foundation parameters on the dimensionless deflection and stresses of FG rectangular
plate.

Table 2 gives the effects of the volume fraction exponent ratio k& and elastic foundation
parameters on the dimensionless displacements and stresses of FG rectangular plate subjected to a
mechanical load. It can be shown that the deflection and stresses are decreasing with the existence
of the elastic foundations. The inclusion of the Winkler foundation parameter gives results more
than those with the inclusion of Pasternak foundation parameters. As the volume fraction exponent
increases for FG plates, the deflection will increase. The stresses are also sensitive to the variation
of k.

Tables 3 and 4 present similar results as those given in Table 2 including the effect of the
temperature field. The obtained results are compared with those predicted by FSDT, TSDT and
PSDT. An excellent agreement is obtained between the present theory and the conventional TSDT
(Zenkour 2009) for all values of power law index & and with or without the presence of the elastic
foundation. It is important to observe that the stresses for a fully ceramic plate are not the same as
that for a fully metal plate with elastic foundations. This is because the plate here is affected with
the inclusion of the temperature field.

From results presented in Tables 2-4, it should be noted that the unknown function in present
theory is four, while the unknown function in FSDT, PSDT and TSDT is five. It can be concluded
that the present theory is not only accurate but also simple in predicting the thermomechanical
bending response of FG plates resting on Winkler’s or Pasternak’s elastic foundations.

Table 5 gives the effects of side-to-thickness ratio and elastic foundation parameters on the
dimensionless deflection of FG square plate under thermomechanical loads using the present
refined trigonometric shear deformation theory (RTSDT). It is clear that the deflection decreases
as the side-to-thickness ratio a/h increases. In addition, all displacements are decreasing with the
existence of the elastic foundations. The inclusion of the Winkler foundation parameter gives
results more than those with the inclusion of Pasternak foundation parameters.
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Table 2 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and
stresses of an FG rectangular plate (a = 104, b = 2a, gy = 100, T = 0).

K K, Jo Theory w o, Ty T,

Present 0.68131 0.42424 0.86240 -0.39400
PSDT 0.68134 0.42408 0.86253 -0.38180
0 0 TSDT 0.68131 0.42424 0.86240 -0.39400
FSDT 0.68135 0.42148 0.86459 -0.30558

CPT 0.65704 0.42148 0.86459 -
Present 0.40523 0.25233 0.51296 -0.23435
PSDT 0.40524 0.25222 0.51300 -0.22708
100 0 TSDT 0.40523 0.25233 0.51296 -0.23435
FSDT 0.40525 0.25070 0.51426 -0.18175

. CPT 0.39652 0.25437 0.52183 -

Ceramic

Present 0.083654 0.052093 0.10589 -0.048377
PSDT 0.083655 0.052070 0.10590 -0.046876
0 100 TSDT 0.083654 0.052093 0.10589 -0.048377
FSDT 0.083655 0.051750 0.10615 -0.037518

CPT 0.08328 0.05342 0.10959 -
Present 0.077197 0.048071 0.097724 -0.044643
PSDT 0.077197 0.048050 0.097731 -0.043259
100 100 TSDT 0.077197 0.048071 0.097724 -0.044643
FSDT 0.077198 0.047754 0.097959 -0.034622

CPT 0.07688 0.04932 0.10116 -
Present 0.078729 0.045788 0.081728 -0.038066
PSDT 0.078730 0.045766 0.081731 -0.036901
0.5 100 100 TSDT 0.078729 0.045788 0.081728 -0.038066
FSDT 0.078732 0.045460 0.081870 -0.029835

CPT 0.078463 0.04693 0.08451 -
Present 0.079321 0.044892 0.073054 -0.035023
PSDT 0.079322 0.044871 0.073061 -0.033939
1 100 100 TSDT 0.079321 0.044892 0.073054 -0.035023
FSDT 0.079322 0.044575 0.073208 -0.027163

CPT 0.07907 0.04604 0.07561 -
Present 0.079758 0.044595 0.067185 -0.032215
PSDT 0.079758 0.044574 0.067192 -0.031170
2 100 100 TSDT 0.079758 0.044595 0.067185 -0.032215
FSDT 0.079753 0.044297 0.067395 -0.024345

CPT 0.07950 0.04581 0.06969 -
Present 0.080150 0.045736 0.064125 -0.029922
PSDT 0.080150 0.045714 0.064136 -0.028921
5 100 100 TSDT 0.080150 0.045736 0.064125 -0.029922
FSDT 0.080141 0.045462 0.064399 -0.022053

CPT 0.07989 0.04710 0.06672 -
Present 0.081190 0.050559 0.058148 -0.026565
PSDT 0.081191 0.050538 0.058155 -0.025744
Metal 100 100 TSDT 0.081190 0.050559 0.058148 -0.026565
FSDT 0.081191 0.050227 0.058294 -0.020603

CPT 0.08099 0.05196 0.06030 -




100 Bachir Bouderba, Mohammed Sid Ahmed Houari and Abdelouahed Tounsi

Table 3 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and
stresses of an FG rectangular plate (a/h = 10, b =2a, qo =100, 7, =7, =0, 7, =10)

k K, Jo Theory w o, Ty [
Present 15241 034104 197150 -0.39400
. . PSDT 1.5243 0.34091 197170 -0.38180
TSDT 15241 0.34104 197150 -0.39400
FSDT 1.5242 0.33831 197387 -0.30558
Present 090655  -0.04355  1.18980  -0.03682
100 . PSDT 090655  -0.04356  1.18980  -0.03568
TSDT 090655  -0.04355  1.18980  -0.03682
, FSDT 0900654  -0.04379 118990  -0.02856
Ceramic
Present 0.18714 049153 027911 037921
. 100 PSDT 018714  -049134 027905 036745
TSDT 018714  -049153 027911 037921
FSDT 018714  -048884 027706  0.29409
Present 0.17270 050052 026082 038756
100 100 PSDT 0.17270  -0.50034 026075 037555
TSDT 0.17270  -0.50052 026082 038756
FSDT 0.17270  -049778 025873  -0.30057
Present 017184 049679  0.19609 038693
0s 100 100 PSDT 0.17183  -049659  0.19080 037511
: TSDT 0.17184 049679  0.19609  0.38693
FSDT 0.17180  -049350  0.18949  0.30356
Present 016978 -049047  0.15150 037510
| 100 100 PSDT 016978 -049024 015145  0.36342
TSDT 016978  -049047 015150  0.37510
FSDT 016977  -048711 014980  0.29033
Present 0.16819 048398  0.12850 __ 0.35985
) 100 100 PSDT 0.16819  -048375  0.12840  0.34801
TSDT 0.16819  -048398  0.12850 035985
FSDT 0.16825 048075 012602 027047
Present 016719 -048223  0.12836 _ 0.34986
5 100 100 PSDT 016720  -048201 012822  0.33789
TSDT 016719  -048223 012836 0.34986
FSDT 016733 -047920 012497  0.25580
Present 016353 -049911 015172 0.34603
PSDT 016351  -049881 015166 033531
Metal 100 100 TSDT 0.16353  -049911  0.15172 034603
FSDT 0.1635]  -0.49478  0.14985  0.26836

The effect of foundation stiffness and side-to-thickness ratio on the dimensionless deflection of
FG square FG plate (k = 2) is shown in Figs. 2 and 3. It can be seen that the increase of side-to-
thickness ratio a/h leads to a decrease of the center deflection of the FG plate. Furthermore, it is
seen from Fig. 2 that as the Winkler modulus parameter increase the center deflection of the FG
plate decreases. This decreasing trend is attributed to the stiffness of the elastic medium. In
addition, it can be observed from Fig. 3 that as the shear modulus parameter increases, the center
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Table 4 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and
stresses of an FG rectangular plate (a/h = 10, b =2a, qo =100, 7, =10, 7, =T, = 0)

k K, Jo Theory w o, Ty 7.
Present 2.1762 0.36232 2.8301 -0.38826
0 0 PSDT 2.1982 0.35746 2.8590 -0.37714
TSDT 2.1762 0.36232 2.8301 -0.38826
Present 1.2943 -0.18687 1.7137 0.12172
100 0 PSDT 1.3074 -0.19699 1.7314 0.12203
. TSDT 1.2943 -0.18687 1.7137 0.12172
Ceramic
Present 0.26722 -0.82640 0.41361 0.71573
0 100 PSDT 0.26989 -0.84276 0.41791 0.70345
TSDT 0.26722 -0.82640 0.41361 0.71573
Present 0.24658 -0.83925 0.38749 0.72767
100 100 PSDT 0.24906 -0.85572 0.39153 0.71512
TSDT 0.24658 -0.83925 0.38749 0.72767
Present 0.24403 -0.83097 0.27656 0.72198
0.5 100 100 PSDT 0.24643 -0.84723 0.27923 0.70975
TSDT 0.24403 -0.83097 0.27656 0.72198
Present 0.23987 -0.81888 0.21276 0.69830
1 100 100 PSDT 0.24222 -0.83494 0.21462 0.68600
TSDT 0.23987 -0.81888 0.21276 0.69830
Present 0.23656 -0.80694 0.17576 0.66812
2 100 100 PSDT 0.23886 -0.82284 0.17714 0.65525
TSDT 0.23656 -0.80694 0.17576 0.66812
Present 0.23434 -0.80533 0.17862 0.64769
5 100 100 PSDT 0.23662 -0.82118 0.17992 0.63442
TSDT 0.23434 -0.80533 0.17862 0.64769
Present 0.22721 -0.83863 0.22451 0.63900
Metal 100 100 PSDT 0.22935 -0.85494 0.22677 0.62785
TSDT 0.22721 -0.83863 0.22451 0.63900

deflection of the FG plate decreases considerably for thick FG plate. However, for thin plates, the
effect of foundation stiffness tends to become less.

The axial stress, &, are plotted in Figs. 4 and 5. It can be seen that the maximum compressive
stresses occur at a point near the top surface and the maximum tensile stresses occur, of course, at
a point near the bottom surface of the FG plate. In addition, it can be observed from these figures
that the elastic foundation has a significant effect on the maximum values of the axial stress, &, .

It is observed that normal stress increases gradually with K, or Jy,. However, the effect of
Pasternak shears modulus parameter is more significant than Winkler modulus parameter.

Figs. 6 and 7 depict the through-the-thickness distributions of the shear stress z.. in the FG
square plates under the thermal loads (go = 100, ¢, = 0 and & = # = 10). The volume fraction
exponent of the FG plate is taken as k = 2. The through-the-thickness distributions of the shear
stress 7. are not parabolic in the FG plate and the stresses increase with increasing the foundation
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Table 5 Effects of side-to-thickness ratio and elastic foundation parameters on the dimensionless deflection

of an FG square plate (¢, = 100, T"l =0, Tz :72 =10)

alh
k K, Jo
5 10 20 50
0 0 4.0497 1.2060 0.49406 0.29463
Ceramic 100 0 3.0746 0.94827 0.39198 0.23435
0 100 0.55779 0.18947 0.080457 0.048477
100 100 0.53445 0.18171 0.077180 0.046508
0 0 49217 1.4844 0.62354 0.38238
100 0 3.4814 1.0949 0.46489 0.28596
! 0 100 0.53692 0.18501 0.080594 0.049942
100 100 0.51374 0.17716 0.077187 0.047836
0 0 5.1072 1.5476 0.65537 0.40539
5 100 0 3.5349 1.1218 0.48075 0.29837
0 100 0.52225 0.18223 0.080217 0.050177
100 100 0.49953 0.17443 0.076803 0.048043
0 0 5.2006 1.5784 0.67020 0.41571
100 0 3.5618 1.1352 0.48812 0.30384
3 0 100 0.51578 0.18125 0.080135 0.050284
100 100 0.49326 0.17347 0.076714 0.048141
0 0 5.2669 1.6000 0.68046 0.42274
100 0 3.5823 1.1446 0.49319 0.30755
4 0 100 0.51221 0.18073 0.080101 0.050358
100 100 0.48980 0.17295 0.076673 0.048208
0 0 5.3201 1.6175 0.68878 0.42850
100 0 3.5999 1.1523 0.49726 0.31053
: 0 100 0.50995 0.18033 0.080067 0.050416
100 100 0.48761 0.17256 0.076639 0.048259
0 0 5.9677 1.8338 0.79875 0.50883
Metal 100 0 3.8241 1.2387 0.54697 0.34979
0 100 0.49466 0.17493 0.079196 0.051011
100 100 0.47271 0.16727 0.075734 0.048787

stress 7 _ are not parabolic in the FG plate and the stresses increase with increasing the foundation
parameters K, or Jy. The maximum values of 7. occur at z= 0.1 of the FG plate, not at the plate

center as in the homogeneous case.

Finally, Figs. 8-10 show the effect of the thermal field # on the deflection and stresses. The
elastic foundation parameters are Ky = 100 and Jy= 10. The deflection and both axial stresses and
shear stresses increase with the increase of the thermal load .
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5. Conclusions

A refined trigonometric shear deformation plate theory is used to study the thermomechanical
bending behavior of functionally graded plates resting on Winkler-Pasternak elastic foundations.
The theory contains only four unknown displacements and satisfies the zero traction boundary
conditions at the plate’s surfaces. The results of the shear deformation theories are compared
together. The gradients in material properties play an important role in determining the response of
the FG plates. However, the inclusion of the foundation parameters may give displacements and
stresses with higher magnitudes. The mixture of the ceramic and metal with continuously varying
volume fraction can eliminate interface problems of sandwich plates and thus the stresses
distributions are smooth. All comparison studies demonstrated that the deflections and stresses
obtained using the present refined theory (with four unknowns) and other higher-order shear
deformation theories (five unknowns) are almost identical. In addition, unlike any other theory, the
theory presented gives rise to only four governing equations resulting in considerably lower
computational effort when compared with the other higher-order theories reported in the literature
having more number of governing equations. Hence, it can be said that the proposed theory is
accurate and simple in solving the thermomechanical bending behavior of FG plates resting on
elastic foundations.

This theory can be implemented via a displacement based finite element method as is shown by
Vo and Thai (2012). For this, the variational statement in Eq. (15) requires that the bending and
shear components of transverse displacement w;, and w; be twice differentiable and C'-continuous,
whereas the axial displacements 1, and v, must be only once differentiable and C°-continuous.
Thus, a finite element formulation of the present theory will be considered in the future work to
solve more complex problems.
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