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Abstract.      The present work deals with the thermomechanical bending response of functionally graded 
plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently 
developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric 
distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and 
bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric 
shear deformation theory, the present refined trigonometric shear deformation theory contains only four 
unknowns as against five in case of other shear deformation theories. The material properties of the 
functionally graded plates are assumed to vary continuously through the thickness, according to a simple 
power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-
parameter Pasternak foundation. The results of the shear deformation theories are compared together. 
Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and 
elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be 
concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending 
response of functionally graded plates. 
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1. Introduction 
 

The increased applications of advanced composite materials in structural members have 
stimulated interest in the accurate prediction of the response characteristics of functionally graded 
(FG) plates used in situations where large temperature gradients are encountered. Functionally 
graded materials (FGMs) are designed so that material properties vary smoothly and continuously 
through the thickness from the surface of a ceramic exposed to high temperature to that of a metal 
on the other surface. The mechanical properties are graded in the thickness direction according to 
volume fraction power law distribution. Since the main applications of FGMs have been in high 
temperature environments, most of the research on FGMs has been restricted to thermomechanical 
stress analysis, thermal buckling, fracture mechanics and optimization. 
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Plates supported by elastic foundations have been widely adopted by many researchers to 
model various engineering problems during the past decades. To describe the interactions of the 
plate and foundation as more appropriate as possible, scientists have proposed various kinds of 
foundation models, as documented well in Ref. (Kerr 1964). The simplest model for the elastic 
foundation is the Winkler model, which regards the foundation as a series of separated springs 
without coupling effects between each other, resulting in the disadvantage of discontinuous 
deflection on the interacted surface of the plate. This was later improved by Pasternak (1954) who 
took account of the interactions between the separated springs in the Winkler model by 
introducing a new dependent parameter. From then on, the Pasternak model was widely used to 
describe the mechanical behavior of structure–foundation interactions (Omurtag et al. 1997, 
Matsunaga 2000, Filipich and Rosales 2002, Zhou et al. 2004, Behravan Rad 2012).  

The thermomechanical bending response of thick plates made of FGMs is of great interest for 
engineering design and manufacture. Reddy (2000) and Reddy and Cheng (2001) have used an 
asymptotic method to determine three-dimensional thermomechanical deformations of FG 
rectangular plates. Cheng and Batra (2000) have used the method of asymptotic expansion to study 
the 3D thermoelastic deformations of an FG elliptic plate. Vel and Batra (2002) have presented an 
exact 3D solution for the thermoelastic deformation of FG simply supported plates of finite 
dimensions. Ying et al. (2009) used a semi-analytical method to study thermal deformations of FG 
thick plates and the analysis is directly based on the 3D theory of elasticity. A two-dimensional 
global higher-order deformation theory has been employed by Matsunaga (2009) for thermal 
buckling of FG plates. Zhao et al. (2009) presented the mechanical and thermal buckling analysis 
of FG ceramic–metal plates using the first-order shear deformation plate theory, in conjunction 
with the Ritz method. Also, Fuchiyama and Noda (1995) considered an FG plate made of ZrO2 
and Ti 6Al 4V under thermal loading. Zenkour (2009) presented a thermoelastic bending analysis 
of FG plates on elastic foundations. Using a trigonometric shear deformation plate theory, Zenkour 
and Alghamdi (2010) studied the bending response of sandwich FG plates subjected to 
thermomechanical loads. Zenkour and Sobhy (2010) investigated the thermal buckling of FG 
sandwich plates using trigonometric shear deformation plate theory. 

 
 

Fig. 1 Coordinate system and geometry for rectangular FG plates on Pasternak elastic foundation 
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Thermomechanical bending response of FGM thick plates resting 

In the present paper, an analytical solution to the thermomechanical bending response of FG 
plates resting on Winkler-Pasternak elastic foundations is developed using a refined trigonometric 
shear deformation theory (RTSDT) recently developed by Tounsi et al. (2012). Other shears 
deformation theories available in the literature (Reddy 2000, Zenkour and Alghamdi 2010, 
Zenkour and Sobhy 2010), are presented and studied for comparisons. The present refined 
trigonometric shear deformation theory is based on assumption that the in-plane and transverse 
displacements consist of bending and shear components in which the bending components do not 
contribute toward shear forces and, likewise, the shear components do not contribute toward 
bending moments. Unlike the conventional trigonometric shear deformation theory (Zenkour and 
Alghamdi 2010, Zenkour and Sobhy 2010), the proposed trigonometric shear deformation theory 
contains four unknowns. Material properties of FG plate are assumed to vary according to power 
law distribution of the volume fraction of the constituents. The results based on the present refined 
trigonometric shear deformation theory are compared with those obtained by the higher- and first-
order shear deformation plate theories and classical plate theory. The influences of several 
parameters are discussed. 
 
 

2. Theoretical formulation 
 
Consider a functionally graded plate of thickness h, side length a in the x-direction, and b in the 

y-direction resting on Winkler-Pasternak elastic foundations as shown in Fig. 1. The refined 
trigonometric shear deformation plate theory used by Tounsi et al. (2012) accounts for 
trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress 
conditions on the top and bottom surfaces of the plate without using shear correction factor. 

 
2.1 Basic assumptions 
 
The assumptions of the present theory are as follows: 
 
(1) The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 
(2) The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinates x, y only. 

),(),(),,( yxwyxwzyxw sb                                                     (1) 

(3) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
(4) The displacements u in x-direction and v in y-direction consist of extension, bending, and 
shear components. 

sb uuuU  0 ,   sb vvvV  0                                                (2) 

The bending components ub and vb are assumed to be similar to the displacements given by the 
classical plate theory. Therefore, the expression for ub and vb can be given as 
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Fig. 2 Effect of Winkler modulus parameter on the dimensionless center deflection ( w ) of a square FG 

plate (k = 2) for different side-to-thickness ratio a/h with J0 = 10, q0 = 100, t1 = 0 and t2  = t3 = 10 

 
Fig. 3 Effect of Pasternak shear modulus parameter on the dimensionless center deflection ( w ) of a 

square FG plate (k = 2) for different side-to-thickness ratio a/h with k0 = 10, q0 = 100, t1 = 0 and t2 
= t3 = 10. 

 
 

The shear components us and vs give rise, in conjunction with ws, to the trigonometric variations 
of shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such a 
way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as (Tounsi et al. 2012) 
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Fig. 4 Variation of dimensionless axial stress (     ) through-the-thickness of a square FG plate (k = 2) for 

different values of Winkler modulus parameter k0 with J0 = 10, q0 = 100, t1 = 0 and t2 = t3 = 10 and 
a/h = 10 

 
Fig. 5 Variation of dimensionless axial stress (    ) through-the-thickness of a square FG plate (k = 2) for 

different values of Pasternak shear modulus parameter J0 with k0 = 10, q0 = 100, t1 = 0 and t2 = t = 10 
and a/h = 10 

 
 
2.2. Kinematics 
 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (1)-(5) as 
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The kinematic relations can be obtained as follows 
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2.3. Constitutive equations 
 
The plate is subjected to a sinusoidally distributed load q(x,y) and a temperature field T(x,y,z). 

The material properties P of the FG plate, such as Young’s modulus E, Poisson’s ratio v, and 
thermal expansion coefficient α are given according the formula 
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Fig. 6 Variation of dimensionless shear stress (     ) through-the-thickness of a square FG plate (k = 2) for 

different values of Winkler modulus parameter k0 with J0 = 10, q0 = 100, t1 0 and t2 = t3 = 10 and 
a/h = 10 
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Thermomechanical bending response of FGM thick plates resting 

 
Fig. 7 Variation of dimensionless shear stress (     ) through-the-thickness of a square FG plate (k = 2) for 

different values of Pasternak shear modulus parameter J0 with k0 = 10, q0 = 100, t1 = 0 and t2 = t3 = 
10 and a/h = 10 
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Fig. 8 Effect of the thermal load t3on the dimensionless center deflection ( w ) of a square FG plate (k 

= 2) for different side-to-thickness ratio a/h with k0 = 100, J0 = 10, q0 = 100, t1 = 0 and t2 = 10
 
 
where PC and PM are the corresponding properties of the ceramic and metal, respectively, and k is 
the volume fraction exponent which takes values greater than or equal to zero. 

The linear constitutive relations are  
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where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (9), stiffness coefficients, Qij, can be expressed as 
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Fig. 9 Effect of the thermal load t3 on the dimensionless axial stress (    ) through-the-thickness of a 

square FG plate (k = 2) with a/h = 10, k0 = 100, J0 = 10, q0 = 100, t1 = 0 and t2 = 10 
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where ΔT = T – T0 in which T0 is the reference temperature. 
The applied temperature distribution T(x,y,z) through the thickness are assumed, respectively, 

to be 
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2.4. Governing equations 
 
The governing equations of equilibrium can be derived by using the principle of virtual 

displacements. The principle of virtual work in the present case yields 
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where Ω is the top surface, and fe is the density of reaction force of foundation. For the Pasternak 
foundation model 

2

2

22

2

1
y

w
J

x

w
JwKf We









                                                    (14) 

x

92



 
 
 
 
 
 

Thermomechanical bending response of FGM thick plates resting 

where KW is the modulus of subgrade reaction (elastic coefficient of the foundation) and J1 and J2 
are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is 
homogeneous and isotropic, we will get J1 = J2 = J0. If the shear layer foundation stiffness is 
neglected, Pasternak foundation becomes a Winkler foundation. 

Substituting Eqs. (7) and (10) into Eq.(13) and integrating through the thickness of the plate, Eq. 
(13) can be rewritten as 
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The stress resultants N, M, and S are defined by 
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Substituting Eq. (10) into Eq. (16) and integrating through the thickness of the plate, the stress 
resultants are given as 
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where Aij, Bij, etc., are the plate stiffness, defined by 
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The stress and moment resultants, T
y

T
x NN  , bT

y
bT
x MM  , sT

y
sT
x MM   due to thermal loading 

are defined respectively by 
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The governing equations of equilibrium can be derived from Eq. (15) by integrating the 
displacement gradients by parts and setting the coefficients δu0, δv0, δwb and δws zero separately. 
Thus one can obtain the equilibrium equations associated with the present shear deformation 
theory 
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Substituting from Eq. (17) into Eq. (21), we obtain the following equation 
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where    tppppp 4321 ,,,  is a generalized force vector, ijd , ijld  and ijlmd  are the following 
differential operators 
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The components of the generalized force vector {p} are given by 
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Fig. 10 Effect of the thermal load t3on the dimensionless shear stress (    ) through-the-thickness of a 

square FG plate (k = 2) with a/h = 10, K0 = 100, J0 = 10, q0 = 100, t1 = 0 and t2 = 10 
xz
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3. Exact solutions for FG plates 
 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (22) for a simply supported FG plate. To solve this 
problem, Navier assumed that the transverse mechanical and temperature loads,  p and Ti in the 
form of a in the double Fourier series as 
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where λ = π / a, μ = π / b, q0 and ti are constants. 
Following the Navier solution procedure, we assume the following solution form for u0, v0, wb 

and ws that satisfies the boundary conditions 

,

) sin() sin(

) sin() sin(

) cos() sin(

) sin() cos(

0

0











































yxW

yxW

yxV

yxU

w

w

v

u

s

b

s

b






                                               (25) 

where U, V, Wb and Ws are arbitrary parameters to be determined subjected to the condition that 
the solution in Eq. (25) satisfies governing Eqs. (22). One obtains the following operator equation 
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The components of the generalized force vector {P} = {P1, P2, P3, P4}
t are given by 
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4. Results and discussion 
 
In this section, numerical examples are presented and discussed for verifying the accuracy of 

the present theory in predicting the thermomechanical bending responses of plates. Comparisons 
are made with various plate theories available in the literature. The description of various 
displacement models is given in Table 1. 

The FGM plate is taken to be made of Titanium and Zirconia with the following material 
properties: 

 Metal (Titanium, Ti-6Al-4V): EM = 66.2 GPa; v = 1/3; αM = 10.3 × (10-6/C°). 
 Ceramic (Zirconia, ZrO2): EC = 117.0 GPa; v = 1/3; αC = 7.11 × (10-6/C°). 

The reference temperature is taken by T0 = 25°C (room temperature). Numerical results are 
presented in terms of non-dimensional stresses and deflection. The various nondimensional 
parameters used are 

 
 

Table 1 Displacement models 

Model Theory 
Unknown 
functions 

CPT Classical plate theory 3 
FSDT First-order shear deformation theory (Whitney and Pagano, 1970) 5 
PSDT Parabolic shear deformation theory (Reddy, 2000) 5 
TSDT Trigonometric shear deformation theory (Zenkour, 2009) 5 
Present Present refined trigonometric shear deformation theory 4 
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Numerical results are tabulated in Tables 2-5 and plotted in Figs. 1-11 using the present refined 
trigonometric shear deformation theory (RTSDT). We note that the shear correction factor is taken   
K = 5/6 in FSDT. 

The correlation between the present refined trigonometric shear deformation theory (RTSDT) 
and different higher-order and first-order shear deformation theories and classical plate theory is 
illustrated in Tables 2-4. These Tables give also the effects of the volume fraction exponent ratio k 
and elastic foundation parameters on the dimensionless deflection and stresses of FG rectangular 
plate. 

Table 2 gives the effects of the volume fraction exponent ratio k and elastic foundation 
parameters on the dimensionless displacements and stresses of FG rectangular plate subjected to a 
mechanical load. It can be shown that the deflection and stresses are decreasing with the existence 
of the elastic foundations. The inclusion of the Winkler foundation parameter gives results more 
than those with the inclusion of Pasternak foundation parameters. As the volume fraction exponent 
increases for FG plates, the deflection will increase. The stresses are also sensitive to the variation 
of k. 

Tables 3 and 4 present similar results as those given in Table 2 including the effect of the 
temperature field. The obtained results are compared with those predicted by FSDT, TSDT and 
PSDT. An excellent agreement is obtained between the present theory and the conventional TSDT 
(Zenkour 2009) for all values of power law index k and with or without the presence of the elastic 
foundation. It is important to observe that the stresses for a fully ceramic plate are not the same as 
that for a fully metal plate with elastic foundations. This is because the plate here is affected with 
the inclusion of the temperature field. 

From results presented in Tables 2-4, it should be noted that the unknown function in present 
theory is four, while the unknown function in FSDT, PSDT and TSDT is five. It can be concluded 
that the present theory is not only accurate but also simple in predicting the thermomechanical 
bending response of FG plates resting on Winkler’s or Pasternak’s elastic foundations. 

Table 5 gives the effects of side-to-thickness ratio and elastic foundation parameters on the 
dimensionless deflection of FG square plate under thermomechanical loads using the present 
refined trigonometric shear deformation theory (RTSDT). It is clear that the deflection decreases 
as the side-to-thickness ratio a/h increases. In addition, all displacements are decreasing with the 
existence of the elastic foundations. The inclusion of the Winkler foundation parameter gives 
results more than those with the inclusion of Pasternak foundation parameters. 
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Table 2 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and 
stresses of an FG rectangular plate (a = 10h, b = 2a, q0 = 100, T = 0). 

K K0 J0 Theory w     

Ceramic 

0 0 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.68131 
0.68134 
0.68131 
0.68135 
0.65704 

0.42424 
0.42408 
0.42424 
0.42148 
0.42148 

0.86240 
0.86253 
0.86240 
0.86459 
0.86459 

-0.39400 
-0.38180 
-0.39400 
-0.30558 

– 

100 0 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.40523 
0.40524 
0.40523 
0.40525 
0.39652 

0.25233 
0.25222 
0.25233 
0.25070 
0.25437 

0.51296 
0.51300 
0.51296 
0.51426 
0.52183 

-0.23435 
-0.22708 
-0.23435 
-0.18175 

– 

0 100 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.083654 
0.083655 
0.083654 
0.083655 
0.08328 

0.052093 
0.052070 
0.052093 
0.051750 
0.05342 

0.10589 
0.10590 
0.10589 
0.10615 
0.10959 

-0.048377 
-0.046876 
-0.048377 
-0.037518 

– 

100 100 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.077197 
0.077197 
0.077197 
0.077198 
0.07688 

0.048071 
0.048050 
0.048071 
0.047754 
0.04932 

0.097724 
0.097731 
0.097724 
0.097959 
0.10116 

-0.044643 
-0.043259 
-0.044643 
-0.034622 

– 

0.5 100 100 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.078729 
0.078730 
0.078729 
0.078732 
0.078463 

0.045788 
0.045766 
0.045788 
0.045460 
0.04693 

0.081728 
0.081731 
0.081728 
0.081870 
0.08451 

-0.038066 
-0.036901 
-0.038066 
-0.029835 

– 

1 100 100 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.079321 
0.079322 
0.079321 
0.079322 
0.07907 

0.044892 
0.044871 
0.044892 
0.044575 
0.04604 

0.073054 
0.073061 
0.073054 
0.073208 
0.07561 

-0.035023 
-0.033939 
-0.035023 
-0.027163 

– 

2 100 100 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.079758 
0.079758 
0.079758 
0.079753 
0.07950 

0.044595 
0.044574 
0.044595 
0.044297 
0.04581 

0.067185 
0.067192 
0.067185 
0.067395 
0.06969 

-0.032215 
-0.031170 
-0.032215 
-0.024345 

– 

5 100 100 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.080150 
0.080150 
0.080150 
0.080141 
0.07989 

0.045736 
0.045714 
0.045736 
0.045462 
0.04710 

0.064125 
0.064136 
0.064125 
0.064399 
0.06672 

-0.029922 
-0.028921 
-0.029922 
-0.022053 

– 

Metal 100 100 

Present 
PSDT 
TSDT 
FSDT 
CPT 

0.081190 
0.081191 
0.081190 
0.081191 
0.08099 

0.050559 
0.050538 
0.050559 
0.050227 
0.05196 

0.058148 
0.058155 
0.058148 
0.058294 
0.06030 

-0.026565 
-0.025744 
-0.026565 
-0.020603 

– 

x xzxy
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Table 3 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and 
stresses of an FG rectangular plate (a/h = 10, b = 2a, q0 = 100, 031  TT , 102 T ) 

k K0 J0 Theory w     

Ceramic 

0 0 

Present 
PSDT 
TSDT 
FSDT 

1.5241 
1.5243 
1.5241 
1.5242 

0.34104 
0.34091 
0.34104 
0.33831 

1.97150 
1.97170 
1.97150 
1.97387 

-0.39400 
-0.38180 
-0.39400 
-0.30558 

100 0 

Present 
PSDT 
TSDT 
FSDT 

0.90655 
0.90655 
0.90655 
0.90654 

-0.04355 
-0.04356 
-0.04355 
-0.04379 

1.18980 
1.18980 
1.18980 
1.18990 

-0.03682 
-0.03568 
-0.03682 
-0.02856 

0 100 

Present 
PSDT 
TSDT 
FSDT 

0.18714 
0.18714 
0.18714 
0.18714 

-0.49153 
-0.49134 
-0.49153 
-0.48884 

0.27911 
0.27905 
0.27911 
0.27706 

0.37921 
0.36745 
0.37921 
0.29409 

100 100 

Present 
PSDT 
TSDT 
FSDT 

0.17270 
0.17270 
0.17270 
0.17270 

-0.50052 
-0.50034 
-0.50052 
-0.49778 

0.26082 
0.26075 
0.26082 
0.25873 

0.38756 
0.37555 
0.38756 
-0.30057 

0.5 100 100 

Present 
PSDT 
TSDT 
FSDT 

0. 17184 
0.17183 
0. 17184 
0. 17180 

-0.49679 
-0.49659 
-0.49679 
-0.49350 

0.19609 
0.19089 
0.19609 
0.18949 

0.38693 
0.37511 
0.38693 
0.30356 

1 100 100 

Present 
PSDT 
TSDT 
FSDT 

0.16978 
0.16978 
0.16978 
0.16977 

-0.49047 
-0.49024 
-0.49047 
-0.48711 

0.15150 
0.15145 
0.15150 
0.14980 

0.37510 
0.36342 
0.37510 
0.29033 

2 100 100 

Present 
PSDT 
TSDT 
FSDT 

0.16819 
0.16819 
0.16819 
0.16825 

-0.48398 
-0.48375 
-0.48398 
0.48075 

0.12850 
0.12840 
0.12850 
0.12602 

0.35985 
0.34801 
0.35985 
0.27047 

5 100 100 

Present 
PSDT 
TSDT 
FSDT 

0.16719 
0.16720 
0.16719 
0.16733 

-0.48223 
-0.48201 
-0.48223 
-0.47920 

0.12836 
0.12822 
0.12836 
0.12497 

0.34986 
0.33789 
0.34986 
0.25580 

Metal 100 100 

Present 
PSDT 
TSDT 
FSDT 

0.16353 
0.16351 
0.16353 
0.16351 

-0.49911 
-0.49881 
-0.49911 
-0.49478 

0.15172 
0.15166 
0.15172 
0.14985 

0.34603 
0.33531 
0.34603 
0.26836 

 
 
The effect of foundation stiffness and side-to-thickness ratio on the dimensionless deflection of 

FG square FG plate (k = 2) is shown in Figs. 2 and 3. It can be seen that the increase of side-to-
thickness ratio ha /  leads to a decrease of the center deflection of the FG plate. Furthermore, it is 
seen from Fig. 2 that as the Winkler modulus parameter increase the center deflection of the FG 
plate decreases. This decreasing trend is attributed to the stiffness of the elastic medium. In 
addition, it can be observed from Fig. 3 that as the shear modulus parameter increases, the center 

x xzxy
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Table 4 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and 
stresses of an FG rectangular plate (a/h = 10, b = 2a, q0 = 100, 101 T , 032  TT ) 

k K0 J0 Theory w     

Ceramic 

0 0 
Present 
PSDT 
TSDT 

2.1762 
2.1982 
2.1762 

0.36232 
0.35746 
0.36232 

2.8301 
2.8590 
2.8301 

-0.38826 
-0.37714 
-0.38826 

100 0 
Present 
PSDT 
TSDT 

1.2943 
1.3074 
1.2943 

-0.18687 
-0.19699 
-0.18687 

1.7137 
1.7314 
1.7137 

0.12172 
0.12203 
0.12172 

0 100 
Present 
PSDT 
TSDT 

0.26722 
0.26989 
0.26722 

-0.82640 
-0.84276 
-0.82640 

0.41361 
0.41791 
0.41361 

0.71573 
0.70345 
0.71573 

100 100 
Present 
PSDT 
TSDT 

0.24658 
0.24906 
0.24658 

-0.83925 
-0.85572 
-0.83925 

0.38749 
0.39153 
0.38749 

0.72767 
0.71512 
0.72767 

0.5 100 100 
Present 
PSDT 
TSDT 

0.24403 
0.24643 
0.24403 

-0.83097 
-0.84723 
-0.83097 

0.27656 
0.27923 
0.27656 

0.72198 
0.70975 
0.72198 

1 100 100 
Present 
PSDT 
TSDT 

0.23987 
0.24222 
0.23987 

-0.81888 
-0.83494 
-0.81888 

0.21276 
0.21462 
0.21276 

0.69830 
0.68600 
0.69830 

2 100 100 
Present 
PSDT 
TSDT 

0.23656 
0.23886 
0.23656 

-0.80694 
-0.82284 
-0.80694 

0.17576 
0.17714 
0.17576 

0.66812 
0.65525 
0.66812 

5 100 100 
Present 
PSDT 
TSDT 

0.23434 
0.23662 
0.23434 

-0.80533 
-0.82118 
-0.80533 

0.17862 
0.17992 
0.17862 

0.64769 
0.63442 
0.64769 

Metal 100 100 
Present 
PSDT 
TSDT 

0.22721 
0.22935 
0.22721 

-0.83863 
-0.85494 
-0.83863 

0.22451 
0.22677 
0.22451 

0.63900 
0.62785 
0.63900 

 
 

deflection of the FG plate decreases considerably for thick FG plate. However, for thin plates, the 
effect of foundation stiffness tends to become less. 

The axial stress,    , are plotted in Figs. 4 and 5. It can be seen that the maximum compressive
stresses occur at a point near the top surface and the maximum tensile stresses occur, of course, at
a point near the bottom surface of the FG plate. In addition, it can be observed from these figures
that the elastic foundation has a significant effect on the maximum values of the axial stress,     . 

It is observed that normal stress increases gradually with K0 or J0. However, the effect of 
Pasternak shears modulus parameter is more significant than Winkler modulus parameter. 

Figs. 6 and 7 depict the through-the-thickness distributions of the shear stress xz  in the FG 
square plates under the thermal loads (q0 = 100, t1 = 0 and t2 = t3 = 10). The volume fraction 
exponent of the FG plate is taken as k = 2. The through-the-thickness distributions of the shear 
stress       are not parabolic in the FG plate and the stresses increase with increasing the foundation 

x

x

xz

x xy xz
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Table 5 Effects of side-to-thickness ratio and elastic foundation parameters on the dimensionless deflection 
of an FG square plate (q0 = 100, 01 T , 1032  TT ) 

k K0 J0 
a/h 

5 10 20 50 

Ceramic 

0 0 4.0497 1.2060 0.49406 0.29463 

100 0 3.0746 0.94827 0.39198 0.23435 

0 100 0.55779 0.18947 0.080457 0.048477 

100 100 0.53445 0.18171 0.077180 0.046508 

1 

0 0 4.9217 1.4844 0.62354 0.38238 

100 0 3.4814 1.0949 0.46489 0.28596 

0 100 0.53692 0.18501 0.080594 0.049942 

100 100 0.51374 0.17716 0.077187 0.047836 

2 

0 0 5.1072 1.5476 0.65537 0.40539 

100 0 3.5349 1.1218 0.48075 0.29837 

0 100 0.52225 0.18223 0.080217 0.050177 

100 100 0.49953 0.17443 0.076803 0.048043 

3 

0 0 5.2006 1.5784 0.67020 0.41571 

100 0 3.5618 1.1352 0.48812 0.30384 

0 100 0.51578 0.18125 0.080135 0.050284 

100 100 0.49326 0.17347 0.076714 0.048141 

4 

0 0 5.2669 1.6000 0.68046 0.42274 

100 0 3.5823 1.1446 0.49319 0.30755 

0 100 0.51221 0.18073 0.080101 0.050358 

100 100 0.48980 0.17295 0.076673 0.048208 

5 

0 0 5.3201 1.6175 0.68878 0.42850 

100 0 3.5999 1.1523 0.49726 0.31053 

0 100 0.50995 0.18033 0.080067 0.050416 

100 100 0.48761 0.17256 0.076639 0.048259 

Metal 

0 0 5.9677 1.8338 0.79875 0.50883 

100 0 3.8241 1.2387 0.54697 0.34979 

0 100 0.49466 0.17493 0.079196 0.051011 

100 100 0.47271 0.16727 0.075734 0.048787 
 
 

stress       are not parabolic in the FG plate and the stresses increase with increasing the foundation
parameters K0 or J0. The maximum values of      occur at 1.0z  of the FG plate, not at the plate
center as in the homogeneous case. 

Finally, Figs. 8-10 show the effect of the thermal field t3 on the deflection and stresses. The 
elastic foundation parameters are K0 = 100 and J0 = 10. The deflection and both axial stresses and 
shear stresses increase with the increase of the thermal load t3. 

xz
xz
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5. Conclusions 
 
A refined trigonometric shear deformation plate theory is used to study the thermomechanical 

bending behavior of functionally graded plates resting on Winkler-Pasternak elastic foundations. 
The theory contains only four unknown displacements and satisfies the zero traction boundary 
conditions at the plate’s surfaces. The results of the shear deformation theories are compared 
together. The gradients in material properties play an important role in determining the response of 
the FG plates. However, the inclusion of the foundation parameters may give displacements and 
stresses with higher magnitudes. The mixture of the ceramic and metal with continuously varying 
volume fraction can eliminate interface problems of sandwich plates and thus the stresses 
distributions are smooth. All comparison studies demonstrated that the deflections and stresses 
obtained using the present refined theory (with four unknowns) and other higher-order shear 
deformation theories (five unknowns) are almost identical. In addition, unlike any other theory, the 
theory presented gives rise to only four governing equations resulting in considerably lower 
computational effort when compared with the other higher-order theories reported in the literature 
having more number of governing equations. Hence, it can be said that the proposed theory is 
accurate and simple in solving the thermomechanical bending behavior of FG plates resting on 
elastic foundations. 

This theory can be implemented via a displacement based finite element method as is shown by 
Vo and Thai (2012). For this, the variational statement in Eq. (15) requires that the bending and 
shear components of transverse displacement wb and ws be twice differentiable and C1-continuous, 
whereas the axial displacements u0 and v0 must be only once differentiable and C0-continuous. 
Thus, a finite element formulation of the present theory will be considered in the future work to 
solve more complex problems. 
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