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Abstract.    In this paper Hamiltonian Approach (HA) have been used to analysis the nonlinear free 
vibration of Simply-Supported (S-S) and for the Clamped-Clamped (C-C) Euler-Bernoulli beams fixed at 
one end subjected to the axial loads. First we used Galerkin’s method to obtain an ordinary differential 
equation from the governing nonlinear partial differential equation. The effect of different parameter such as 
variation of amplitude to the obtained on the non-linear frequency is considered. Comparison of HA with 
Runge-Kutta 4th leads to highly accurate solutions. It is predicted that Hamiltonian Approach can be applied 
easily for nonlinear problems in engineering. 
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1. Introduction 
 

Beam vibration is still an interesting area in civil engineering and mechanical engineering. 
Beams widely use in many engineering applications such as bridges, tall buildings, truss structures 
and many other engineering applications. 

To obtain better performance of these structures and improve their life time, it is very necessary 
to have an accurate analysis by considering all the aspects in the design of them. Dynamic 
response of beams is one the most important parts in the design process of structures. The 
nonlinear vibration of beams and distributed and continuous systems are governed by linear and 
nonlinear partial differential equations in space and time. Generally, it has lots of difficulties to 
solve nonlinear partial differential equations analytically. Consequently, many scientific have been 
worked on numerical solutions and asymptotic approaches to solve the initial boundary-value 
problems. Perturbation methods have lots of shortcoming for solving high nonlinear differential 
equations. Therefore, the partial-differential equations are discrete to non-linear ordinary- 
differential equations by using the Galerkin approach and then we can apply the direct techniques 
to solve them analytically in time domain. 

In recent years, many approximate analytical methods have been proposed for studying 
nonlinear vibration equations of beams and shells and etc such as; homotopy perturbation (Ganji et 
al. 2009, Bayat et al. 2010), improved amplitude-frequency formulation (He 2008), energy balance 
(Bayat et al. 2011, Bayat and Pakar 2011c,d), variational approach (He 2007, Bayat 2011c, Shahidi 
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et al. 2011, Xu and Zhang 2009), max-min approach (Bayat and pakar 2011a, Shen and Mo 2009), 
iteration perturbation method (Bayat et al. 2011) and other analytical and numerical methods 
(Ghasemi and Bayat 2011, Soleimani et al. 2011, Bayat 2011b, Bayat et al. 2011, Bayat 2012a, 
Bayat and Pakar 2012b). 

Padovan (1980) analyzed the nonlinear vibration of structures by using perturbation method and 
finite element method. Sathyamoorthy (1982) investigated on classical methods for the analysis of 
nonlinear vibration of beams under harmonic loading. Biondi and Caddemi (2005) studied the 
flexural stiffness and slope discontinuities for uniform Euler-Bernoulli beam and tried to apply a 
close form solution for the governing equation. Lai et al. (2008) considered the nonlinear vibration 
of Euler-Bernoulli beam with different supporting conditions by applying the Adomian 
decomposition method (ADM). Naguleswaran (2003) developed the work on the changes of cross 
section of an Euler-Bernoulli beam resting on elastic end supports. Pirbodaghi et al. (2009) 
presented an analytical expression for geometrically free vibration of Euler-Bernoulli beam by using 
homotopy analysis method (HAM). They illustrated that the amplitude of the vibration has a great 
effect on the nonlinear frequency and buckling load of the beams. Liu et al. (2009) applied He's 
variational iteration method to obtain an analytical solution for an Euler-Bernoulli beam with 
different supporting conditions. Bayat et al. (2011f) obtained the natural frequency of the nonlinear 
equation of Euler-Bernoulli beam by using energy balance method. In this study, we try to asses an 
analytical expression for non-linear vibration of Simply-Supported (S-S) and for the 
Clamped-Clamped (C-C) buckled Euler-Bernoulli beams fixed at one end by using a new analytical 
approach called Hamiltonian Approach (HA) in time domain. 

First we used Galerkin method for discretization to obtain an ordinary nonlinear differential 
equation from the governing non- linear partial differential equation. It was then assumed that only 
fundamental mode was excited. Finally, Hamiltonian Approach is compared with other researcher’s 
results. The Hamiltonian Approach results are accurate and only one iteration leads to high accuracy 
of solutions for whole domain and can be a powerful approach for solving high nonlinear 
engineering problems. 
 
 
2. Description of the problem 
 

The equation of motion for an axially loaded Euler-Bernoulli beam by considering the mid-plane 
stretching effect is 

22 4 2 2 2

2 4 2 2 20
0

2

Lw w w EA w w
m EI P dx

t x x L x x

                       
  (1)

We introduce these new non-dimensional variables for convenience; 

4 1 2 2, , ( ) ,x x L w w t t EI ml P PL EI       

Where ρ = (I/A)1/2 is the radius of gyration of the cross-section. Then Eq. (1) can be written as 
follows 
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  (2)

If we assume w(x, t) = W (t) ϕ (x) in which ϕ (x) is the first Eigen mode of the beam (Tse 1987) 
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Fig. 1 Schematic representation of an axially loaded Euler-Bernoulli beam 

 
 

and using the Galerkin method, then we will have the following governing nonlinear vibration 
equation of motion for an axially loaded Euler-Bernoulli beam 

2
3
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( ) ( ) ( ) 0

d W t
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The initial conditions for center of the beam are 

(0)
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The value of the α1, α2 and α3 can be obtained as follow 
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3. Basic idea of He’s Hamiltonian Approach 
 

The Hamiltonian Approach is a novel method which was proposed by He (2002, 2010). The 
Hamiltonian Approach is one of the simple and effective approaches for conservative oscillatory 
systems. Here we give an introduction of this approach, consider the following general oscillator 

( ) 0W f W   (6)

With initial conditions 

(0) , (0) 0.W W    (7)
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The variation principle for the Eq. (6) can be obtained easily by using the semi-inverse method 
(He 2002) 

/4 2

0

1
( ) ( )

2

T
J W W F W dt

    
    (8)

Where T is period of the nonlinear oscillator,  
The first term of Eq. (8),     is kinetic energy and F(W) is the potential energy, so the Eq. (8) 

is the least Lagrangian action, from which we can obtain its Hamiltonian, which reads 

21
( ) ( ) constant

2
H W W F W    (9)

From Eq. (9), we have 

0
H




 (10)

Introducing a new function, ( )H W , defined as 
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Eq. (10) is, then, equivalent to the following one 

0
H
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 (12)

Or 

 
0

1

H


  

    
 (13)

From Eq. (13) we can obtain approximate frequency–amplitude relationship of a nonlinear 
oscillator. 

 
 

4. Basic idea of Runge-Kutta’s Method (RKM) 
 

For such a boundary value problem given by boundary condition, some numerical methods 
have been developed. Here we apply the fourth-order Runge-Kutta algorithm to solve governing 
equation subject to the given boundary conditions. Runge-Kutta iterative formulae for the 
second-order differential equation are 
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where Δt is the increment of the time and k1, k2, k3 and k4 are determined from the following 
formula 

).(WfW
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(15)

The numerical solution starts from the boundary at the initial time, where the first value of the 
displacement function and its first-order derivative is determined from initial condition. Then, with 
a small time increment [Δt], the displacement function and its first-order derivative at the new 
position can be obtained using Eq. (15). This process continues to the end of time. 

 
 

5. Solution using Hamiltonian Approach 
 

The Hamiltonian of Eq. (3) is constructed as 

2 2 2 4
1 2 3

1 1 1 1

2 2 2 4
W W p WH W       (16)

Integrating Eq. (16) with respect to t from 0 to T/4, we have 

2 2 2 4
1 2

/4

0 3

1 1 1 1

2 2 2 4

T
W W p W WH dt       
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We use the following trial function 

( ) cos( )W t t   (18)

If we Substitute Eq. (18) into Eq. (17), its results are 
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Setting 

 
2 3

1 2 3
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 (20)

If we solve Eq. (20) the approximate frequency of the system is 

  2
1 2 3

1
4 3

2
p      (21)
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Hence, the approximate solution can be readily obtained 

  2
1 2 3

1
( ) cos 4 3

2
W t p t        

 
 (22)

The ration of the non-linear to linear frequency is 

  2
1 2 3

1 2

4 31

2
NL
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p

p

  
 









 
 (23)

 
 
6. Results and discussion 
 

The Hamiltonian Approach is used to obtain an analytical solution for simply supported and 
clamped- clamped beams. 

To obtain numerical solution we must specify the parameter β. This parameter depends on 
value of α1, α2, α3 and p, then we have 

 
3

2 1p


 




 (24)

So Eq. (21) become 

23
1

4
NL

L





   (25)

From the reference (Azrar 1999) for a simply supported beam we had Δ = δ / 12  and for 
clamped- clamped beam Δ = δ / 12 w1

*(1/2) that δ is maximum amplitude parameter and w1
*(1/2) 

is first mod of beam in middle of beam. Tables 1 and 2 represent the comparisons of nonlinear to 
linear frequency ratio (ωNL / ωL) for Simply-Supported Beam and for the Clamped-Clamped 
Beams with the Hamiltonian Approach (HA) and the numerical solutions and other researchers 
results for different parameters of Δ and β. Azrar (1999) and Lewandowski (1987) ignored to 
consider the mid-plane effect in their study therefore for large amplitude the ratio of nonlinear to 
linear frequency increases. To show the accuracy of the HA results, Runge-Kutta 4th is used to 
consider the effect of the variation of non-dimensional amplitude ratio versus t for the beam center. 
Figs. 2 and 3 represent a comparison of analytical solution of W(t) based on time with the 

 
 

Table 1 Comparison of nonlinear to linear frequency ratio ( NL L  ) for Simply-Supported Beams 

δ Δ β Present Study (HA) Azrar[28] Lewandowski[29] 

1 0.2886 3 1.0897 1.0891 1.0897 

2 0.5773 3 1.3228 1.3177 1.3229 

3 0.8660 3 1.6393 1.6256 1.6394 

4 1.1547 3 2 - 1.9999 
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Table 2 Comparison of nonlinear to linear frequency ratio (ωNL / ωL) for Clamped-Clamped Beams 

δ w1
*(1/2) Δ β Present Study (HA) Azrar[28] Lewandowski[29] 

1 1.58815 0.18177 1.81421 1.0222 1.0222 1.0222 

1.5 1.58815 0.27265 1.81421 1.0494 1.0492 1.0492 

2 1.58815 0.36354 1.81421 1.0862 1.0857 1.0858 

2.5 1.58815 0.45442 1.81421 1.1318 1.1307 1.1308 

3 1.58815 0.54531 1.81421 1.1852 1.1831 1.1832 

3.5 1.58815 0.63619 1.81421 1.2453 1.2420 1.2422 

4 1.58815 0.72707 1.81421 1.3112 1.3064 1.3063 

4.5 1.58815 0.81796 1.81421 1.3822 1.3756 1.3751 
 

Fig. 2 Comparison of analytical solution of W(t) 
based on time with the RKM solution for 
simply supported beam, δ = 2, β = 3 

Fig. 3 Comparison of analytical solution of W(t) 
based on time with the RKM solution for 
clamped-clamped beam, δ = 3, β = 1.81421

 

Fig. 4 Nonlinear to linear frequency ratio versus non-dimensional amplitude ratio 

0 2 4 6 8 10 12 14

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

W
(t)

t

 HA   RKM

0 1 2 3 4 5 6 7 8 9 10

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
W

(t)

t

 HA   RKM

0 1 2 3 4 5

1.0

1.5

2.0

2.5


 N

L
/

 L



 S-S
 C-C

79



 
 
 
 
 
 

Mahmoud Bayat, Iman Pakar and Mhadi Bayat 

Fig. 5 Influence of α1 on nonlinear to linear 
frequency base on Δ for α2 = 0.5, α3 = 1, p 
= 1 

Fig. 6 Influence of α2 on nonlinear to linear 
frequency base on Δ for α1 = 1, α2 = 1, 
p = 3 

Fig. 7 Influence of α3 on nonlinear to linear 
frequency base on Δ for α1 = 1, α2 = 0.5, p = 
3 

Fig. 8 Influence of p on nonlinear to linear 
frequency base on Δ for α1 = 1, α2 = 2, p 
= 0.5 

Fig. 9 Influence of   on nonlinear to linear 
frequency base on α1 for α2 = 0.5, α3 = 
0.5, p = 3 

Fig. 10 Influence of Δ on nonlinear to linear 
frequency base on α2 for α1 = 0.5, α3 
= 0.5, p = 3 
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Fig. 11 Influence of Δ on nonlinear to linear 
frequency base on α3 for α1 = 0.5, α2 = 
0.5, p = 3 

Fig. 12 Influence of Δ on nonlinear to linear 
frequency base on p for  α1 = 0.5, α2 = 
1, α3 = 0.5

Fig. 13 The phase plane of simply supported 
beam for different variations of 
amplitude 

Fig. 14 The phase plane of clamped-clamped 
beam for different variations of 
amplitude

 
 

numerical solution. From Figs. 2-3, the motion of the system is a periodic motion and the 
amplitude of vibration is a function of the initial conditions. In clamped beams the eigenmodes of 
them involve hyperbolic component and simply supported beams have only sinusoidal component 
in their eigenmodes, in this case the HA provides more accurate solution as it is indicated in Fig. 4. 
Figs. 5 to 7 show the effect of α1, α2, α3 on the ratio of non-linear to linear frequency versus 
non-dimensional amplitude ratio. For further illustration, the variation of the buckling load 
parameter (P) versus the non-dimensional amplitude ratio is shown in Fig. 8. The Influence of   
on nonlinear to linear frequency base on α1, α2, α3 and p show in Figs. 9 to 12. In small amplitudes 
the rate of increase in non-linear fundamental frequency is too low with increasing displacement. 
The effect of non-linearity becomes more obvious when the maximum amplitude increases. The 
phase plans of the problem for different variations of amplitude are also considered in Figs. 13 and 
14. 
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7. Conclusions 
 

In this paper, nonlinear responses of the Simply-Supported and the Clamped-Clamped buckled 
Euler-Bernoulli beams fixed at one end are investigated mathematically. The Galerkin method was 
used for discretization, the governing non-linear partial differential equation to a single non-linear 
ordinary differential equation. The Hamiltonian Approach (HA) has been successfully applied to 
obtain an accurate analytical solution for the non-linear vibration of axially loaded Euler-Bernoulli 
beams. The results and errors of the method are compared with Runge-Kutta 4th order and the 
other researchers results. It has been indicated that HA is very powerful mathematical tool for 
providing an accurate analytical solutions. The HA solutions are quickly convergent and its 
components can be simply calculated .This method contrary to the perturbation method does not 
need small parameters and are applicable for whole range of parameters. 
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 EA axial rigidity of the beam cross section 

A cross-sectional area EI bending rigidity of the beam cross section 
L beam length ϕ (x) trial function 
w' normal displacement W(t) time-dependent deflection parameter 
E Young’s modulus Δ dimensionless maximum amplitude of oscillation 
X axial coordinate δ maximum amplitude parameter of  beam 
E  axial load β parameter of boundary condition of beam 
m  mass per unit length ωNL nonlinear frequency 
t time ωL linear frequency 
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