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Abstract.    This paper presents the formulation for a novel force-based 1-D compound-element that 
captures both material and second order P-Δ nonlinearities in steel frames. At the nodal points, the element is 
attached to nonlinear rotational and a translational springs which represent the flexural and axial stiffness of 
the connections respectively. By decomposing the total strain in the material as well as the generalised 
displacements of the flexible connections to their elastic and inelastic components, a secant solution strategy 
based on a direct iterative scheme is introduced and the corresponding solution strategy is outlined. The 
strain and slope of the deformed element are assumed to be small; however the equilibrium equations are 
satisfied for the deformed element taking account of P-Δ effects. The formulation accuracy and efficiency is 
verified by some numerical examples on the nonlinear static, cyclic and dynamic analysis of steel frames. 
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1. Introduction 
 

The conventional analysis and design of steel structures considers the behaviour of the 
beam-to-column connections as being either rigid-joints or pinned-joints. In reality, however, it is 
well-known that most connections are neither fully rigid nor perfectly pinned, and they exhibit 
semi-rigid deformation behaviour which can significantly contribute to the overall frame 
deflection and they also affect the distribution of internal forces in the connected members (Trahair 
et al. 2008). 

Over the last thirty years, extensive research has been devoted to numerical and experimental 
studies and to the practical design of steel and steel-composite frames with semi-rigid connections 
(Stelmack et al. 1986, Chen et al. 1996, Rodrigues et al. 1998, Ivanyi 2000, Ashraf et al. 2004, da 
S. Vellasco et al. 2006, Wang and Li 2007, Liu et al. 2008, Wang and Li 2008, de Lima et al. 2009, 
Hadianfard 2012, Reyes-Salazar et al. 2012), and others. These studies cover various local and 
global aspects of semi-rigid steel frames, such as material, connection and geometrical 
nonlinearities (Cheng and Juang 1986, Liew et al. 1997, Sekulovic and Salatic 2001, Bayo et al. 
2006, Chan and Cho 2008, Chiorean 2009), the response of semi-rigid connections (Chen and 
Kishi 1989, Kishi and Chen 1990, Attiogbe and Morris 1991, Shen and Astaneh-Asl 1999, Shi et 
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al. 2008), the effects of elevated temperature and fire on the global response as well as the local 
behaviour of connections (Spyrou et al. 2004, Han et al. 2007, Iu et al. 2007, Ding and Wang 
2009) and the vibration and nonlinear dynamic analysis of semi-rigid steel frames subjected to 
extreme loads such as earthquake and blast (Cheng and Juang, 1986, Chui and Chan, 1996, da 
Silva et al. 2008, Khandelwal et al. 2008, Sekulovic and Nefovska-Danilovic 2008, Vu and Leon 
2008, Saravanan et al. 2009, Zarfam and Mofid 2009). 

The nonlinear continuum-based finite element models for frame components offer the good 
versatility and accuracy required for a detailed study of local effects, but they are computationally 
demanding and can be intractable in modelling frames with multiple beams and columns. 1-D 
frame elements, however, are a good compromise between accuracy and efficiency, which is 
required for capturing the global response of multi-storey multi-bay frames and is the focus of this 
paper (Chan and Chui 2000). 

Nonlinear frame elements can be formulated in the framework of lumped models or of 
distributed nonlinearity models. These lumped models, which have been used extensively for the 
nonlinear analysis of semi-rigid steel and steel-composite frames offer superior efficiency (Bayo et 
al. 2006, Chiorean 2009, Iu et al. 2009), whereas distributed nonlinearity models which are the 
focus of this paper have superior accuracy and they do not need a priori knowledge of plastic 
hinge position and length. Further details on the classification of models along with their pros and 
cons can be found in Chan and Chui (2000). 

In this paper, the concept of total strain (generalised displacement) decomposition to its elastic 
and inelastic components is adopted to derive the secant stiffness of sections and of nodal springs 
which represent the semi-rigid connections. Further, the exact force interpolation functions are 
employed to derive the element secant stiffness and a direct iteration scheme consistent with this 
secant formulation is presented. Geometrical nonlinearity is taken into account by satisfying the 
equilibrium equations for the deformed element (P-Δ effects); however, the strains and slope are 
assumed to be small. A composite Simpson integration scheme, accompanied with a parabolic 
piecewise interpolation of the curvature function, is used to establish the deformed shape of the 
element required for updating the geometry (Valipour and Foster, 2010b, Valipour and Bradford, 
2012). The accuracy and efficiency of the formulation is verified by some numerical examples 
considering the nonlinear static, cyclic and dynamic analysis of steel frames. 
 
 
2. Element formulation 
 

2.1 Compatibility equations 
 
Adopting the Navier-Bernoulli assumptions, section compatibility requirements produce 

 yrx  ,                               (1) 

where xε denotes the total strain at the integration point in the local x-x direction (along the element 
axis; Fig 1(a)), rε  denotes the section axial strain, κ denotes the total curvature of section and y 
is the distance of the integration point (fibre) from the mid-plane of the element. 

Fig. 1(a) shows a 2-node plane frame element AB with three degrees of freedom at each node. 
Furthermore, at each nodal point the element is attached to a rotational and a translational spring 
which represent the flexural and axial stiffness of the connections respectively (Fig. 1(a)). The 
generalised nodal displacement and force vectors (with rigid body modes) are denoted by q and 
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Fig. 1 (a) 2-node frame element AB in x-y plane (b) outline of the simply supported configuration 
(system without rigid body modes) 

 
 

Q , respectively. Using the principle of virtual force for the simply supported configuration shown 
in Fig. 1(b), the strain-deformation compatibility equation for the frame element (without nodal 
springs) is obtained as 

dxxx
l
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dbq   ,                          (2) 
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 Tqqqq 3211 q is the vector of the generalised nodal deformations excluding the nodal 
springs (without rigid body modes) and  Tr κε(x) d  is the vector of the section generalised 
strains. 
 

2.2 Equilibrium equations and constitutive material law 
 
The equilibrium of the deformed configuration Ax (Fig. 2) leads to the matrix representation 

)()()( xxx und.DQbD  ,                         (4) 

in which 

 Tund. xvQx )(0)( 1 D ,                          (5) 
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Fig. 2 Free body diagram of Ax after deformation 
 

Fig. 3 Typical uniaxial stress-strain relationship in 
a total secant framework 

 
 

 T
QQQ 321Q  denotes the nodal force vector (in the system without rigid body modes), 

 TxMxNx )()()( D  is the section internal force vector and )(xund.D refers to undulation effect 
which represents the deflection of the element with respect to the rotated axis of the element after 
the deformation (Carol and Murcia 1989a). 

Decomposing the total axial strain xε  into elastic exε  and inelastic pxε components, and 
using the equations of equilibrium across the section (Valipour and Foster 2010a) gives 

)()()()( xxdxx ps
e DkD  ,                          (6) 

in which 
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Ω pxeΩ pxep dAε.EydAε.Ex 



 )(D ,                   (8) 

and where y is the distance of the integration point from the element mid-plane, eE  is the elastic 
secant modulus of the theoretical unloading curve (Fig. 3) and )(xsk

 and )(xpD  denote the 
secant stiffness matrix and the vector of residual plastic force, respectively. 

The flexibility matrix of the section )(xsf
 is obtained by inverting the section stiffness matrix, 

and then Eq. (6) can be rearranged as 

 )()()()( xxxx ps DDfd  .                         (9) 

Using Eqs. (4) and (9), the section generalised strain vector )(xd  is related to Q , and then 
substituting the results into Eq. (2) gives the relationship 

und.p qqQFq  ,                           (10) 

where 
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Fig. 4 (a) Ramberg-Osgood model for semi-rigid connections with Masing’s rule for unloading/reloading

branch (b) outline of the generalised force-displacement relationship for semi-rigid connections in the 
total secant framework 

 
 

dxxxx s

l
T )()()(

0
bfbF   

(11)

is the flexibility matrix of the simply supported element (without rigid body modes), 

dxxxx ps

l
T

p )()()(
0

Dfbq   (12)

is the nodal generalised plastic deformation vector excluding the nodal springs, and 

dxxxx und.s

l
T

und. )()()(
0

Dfbq                         (13) 

is the nodal generalised deformation vector due to the undulation effects. 
 
2.3 Constitutive law for semi-rigid connections 
 
Adopting the compound-element concept, the rotational and horizontal stiffnesses of the 

semi-rigid connections are represented by assigning equivalent springs to the beam nodal points 
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(Fig. 1(b)). Behavioural models of semi-rigid connections have been the subject of numerous 
experimental and analytical studies in the published literature (Kukreti and Abolmaali 1999, 
Ivanyi 2000, Simoes Da Silva et al. 2004, Mohamadi-shooreh and Mofid 2008, Prabha et al. 2008), 
and various analytical expressions in the form of a piecewise linear, polynomial, exponential and 
B-spline functions have been proposed to model the behaviour of semi-rigid connections with 
reasonable accuracy (Richard and Abbott 1975, Kishi and Chen 1990, Attiogbe and Morris 1991). 

Since in the formulation presented in this study the element nodal forces are primary unknowns, 
using a behavioural model which explicitly expresses the generalised displacement of the spring q 
in terms of the generalised force f can facilitate the computer implementation of the model. In this 
study, the widely-known Ramberg-Osgood model which originally proposed by Ramberg and 
Osgood (1943) and then standardised by Ang and Morris (1984) is adopted and for the 
unloading/reloading branch Masing’s rule is employed which leads to an independent hardening 
model (Fig. 4(a)). 

Using the total secant concept and decomposing the total generalised displacement q to elastic 
eq  and plastic pq  components, the generalised force-displacement relationship for nodal springs 

can be expressed by 

),( pqqkf                                (14) 

where f is the generalised force and k  is the elastic secant modulus of the unloading curve (Fig. 
4b). 

With regard to Fig. 1(b) and Eq. (14), the generalised load-displacement relationships of the 
nodal springs is condensed into matrix form as 

rpsp qQFqq  ,                            (15) 

where  Tqqq 321q  and  TQQQ 321Q are the generalised nodal deformation and force 
vectors of the frame element including nodal springs (without rigid body modes) respectively, 

 
2121 ppr θθppp qqqq q T is the generalised plastic deformation vector of the nodal spring 

system and spF represents the flexibility matrix of the nodal springs system given by 
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Substituting q  from Eq. (10) into Eq. (15) produces 

    und.ppsp q,qq  QFFq .                      (17) 

It is noteworthy that in the proposed total secant approach the material stiffness as well as the 
stiffness of semi-rigid connections (i.e., nodal springs) are always positive regardless the 
material/spring is hardening or softening. Accordingly, the stiffness matrices of the frame element 
as well as the spring system remain positive definite at all stages of analysis and does not become 
ill-conditioned. 
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3. Displacement interpolation along the element axis 
 

In regard to Eq. (5), it is observed that incorporating the geometrical nonlinearity into the 
flexibility formulation necessitates the deformed shape of the element to be known. In the 
displacement-based formulation, the deformed shape of the element can be obtained based on the 
nodal displacement values and adopted shape functions. In the force-based element, however, 
there is no displacement shape function that can be used and a different technique is required 
(Carol and Murcia 1989b, Valipour and Foster 2010b). 

Adopting the small strains and slopes implicit within routine Euler beam theory leads to the 
displacement-strain relationships for an arbitrary section at x along the element (Fig. 2) given by 

  sssxqxqxv
x

d)()(
032    ,                      (18) 

where )(xv  is the lateral displacement of the section at x. With regard to Fig. 2, the undulation 
deflection )(xv  is calculated as 
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Following the approach devised by Valipour (2009), in this study a composite Simpson 
integration method together with piecewise parabolic interpolation of the curvature is used to 
update the element geometry. 

 
 

4. Rigid body motion and corresponding transformation 
 

If the length of the nodal springs is taken to be negligible compared to that of the member, the 
transformation between the force vectors of the systems with and without rigid body modes can be 
established as 

Δ P
T QQTQ ,                           (20) 

where  TQQQQQQ 654321Q  denotes the vector of the nodal forces in the system with 
rigid body modes, T is the transformation matrix given by 
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and PQ  is a vector of nodal forces due to the P  effect and is calculated as 

 TP lqqQlqqQ 0)(00)(0 521251 Q .              (22) 

Assuming that the element rotation is negligible compared to unity, the geometric compatibility 
equation is obtained as 

qTq  ,                                 (23) 
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where  Tqqqqqq 654321q  denotes the nodal displacement vector in the system with 
rigid body modes. 

If the stiffness matrix of the simply supported configuration including the nodal springs 
(without rigid body modes) is denoted by K = {F + Fsp}

-1, then Eq. (17) can be rewritten as 

 und.pp )(
r

qqqqKQ  .                        (24) 

Multiplying Eq. (24) by TT  and then substituting for q  from Eq. (23) results in 

  )()( .  Pund
T

pp
TT

r
QqKTqqKTQqKTT .               (25) 

The recursive form of Eq. (25) which can be solved for static loads by following a direct 
iterative solution scheme (Valipour and Foster 2010a) after assembling at the structure level is 

St.
i

St.St.
i

St.
i FRqK 1)()(1)(   ,                         (26) 

where                            is the assembled stiffness matrix of the structure,    

is the external nodal force vector, the left superscript (i-1) denotes the iteration number and 
is 
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Additionally, the recursive form of the dynamic equilibrium equations for a discretised system 
at the instant t+Δt is 

St.
itt

St.
tt
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i

St
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St.
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St.
tt
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i

St. FRqKqCqM )1(ΔΔ)(
.

)1(Δ)(Δ)(    ,             (28) 

where St.M  and St.C
 are the mass and damping matrices of the structure, and tt

St.
i Δ)( q , 

tt
St.

i Δ)( q and tt
St.

i Δ)( q  denote displacement, velocity and acceleration vectors of the structure, 
respectively. After the time discretisation of the differential equation (28) by employing a standard 
method such as the Newmark or θ-Wilson method (Bathe 1997), the recursive equations can be 
solved by following a direct iterative scheme (Valipour and Foster 2010a). 

In the numerical examples presented in this paper, wherever required, a proportional damping 
in the form of St.St.St. βα KMC  is adopted. 

 
 

5. Inclusion of shear springs in the model 
 

The nodal shear (transverse) springs can be easily incorporated into the developed formulation 
using equilibrium and displacement compatibility equations of the compound element shown in 
Fig. 5(a). 

Using the total secant concept and decomposing the total generalised displacement to elastic 
and plastic components, the generalised force-displacement relationship for shear springs 1sk and 

2sk  attached to the nodal points (see Fig. 5(b)) can be expressed by 

 22212 ps qqqkQ 
 

and                        (29a) 
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 55525 ps qqqkQ  .                        (29b) 

For the compound element with shear springs (see Fig. 5(b)), Eq. (25) can be rewritten as 

     und.rppP
T qqqTQQTKTq  


 11

,               (30) 

where  Tqqqqqq 654321 q  and 

 T
P /lqqQ/lqqQ 0)(00)(0 521251Δ Q .              (31) 

Taking 2q  and 5q  from Eq. (29) and submitting it into q on the left-side of Eq. (30) 
produces 
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is the flexibility matrix of the nodal shear springs and 

 Tppp qq
s

0000 52q ,                       (34) 

is the generalised plastic deformation vector of the nodal shear springs. 
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Eq. (32) can be recast into the following matrix form which is more suitable for finite element 
implementation, 

     
       und.rs pps

T
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s
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qqqFTKTqFTKT
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






1111

111

.           (35) 

The recursive form of Eq. (35) can be solved by following a direct iterative solution scheme 
(Valipour and Foster 2010a) as described in previous section. 

The proposed model can only capture the axial, shear and flexural deformation of connections 
and the formulation is only applicable when effect of torsion and torsional behaviour of semi-rigid 
connection are not significant. 
 
 
6. Numerical examples 
 

6.1 P-∆ analysis of a column with flexible end connections 
 
This first example is used to demonstrate the performance of the developed formulation for the 

P-Δ analysis of a linear-elastic column with flexible end connections, and the results are compared 
with more demanding displacement-based formulation using cubic Hermitian shape functions. The 
geometry of the column, boundary conditions and loading are shown in Fig. 6. The elastic 
modulus of material is GPa 200E  and the shear deformation is ignored. It is noteworthy that 
the developed formulation can capture both material and geometrical nonlinearities, however, in 
this example the concentration is only on the geometrical P-Δ effects and accordingly the column 
is assumed to be linear-elastic. 

The values of lateral displacement at end B obtained from force-based formulation developed 
in this paper, as well as the results of a displacement-based method for different levels of load P, 
are shown in Table 1. Using a displacement-based model, at least 8 to 16 elements are required to 
obtain a degree of accuracy comparable to a single flexibility element using a 7-point Simpson  
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Table 1 Lateral displacement at point B at different levels of load P obtained from flexibility and 
displacement-based formulations with different number of element or integration points (Int. pts.) 

 
Lateral displacement at point B (mm) 

Cubic Hermitian shape function Present study (1 element) 

Lateral 
load 

No. of element 
(No. Int. pts.) 

1 2 4 8 16 64 5 pts 9 pts 

0.1P 
P= 100 kN 77.7 77.2 76.4 76.0 75.7 75.5 75.4 75.3 
P= 200kN 191.4 187.3 182.5 180.1 179.1 178.1 176.9 176.6
P= 300 kN 373.2 356.8 339.8 332.1 328.3 325.1 321.6 319.8

0.3P 
P= 100 kN 233.9 231.7 229.2 228.0 227.4 226.6 224.5 223.9
P= 200kN 574.2 561.8 547.4 540.8 537.2 535.0 529.8 528.5
P= 300 kN 1119.7 1070.5 1019.4 996.4 985.0 977.6 963.4 959.2

0.5P 
P= 100 kN 389.8 386.1 381.9 380.0 379.1 377.7 373.2 372.7
P= 200kN 956.9 936.4 912.3 901.4 895.3 891.7 883.9 881.3
P= 300 kN 1866.2 1784.2 1699. 1660.6 1641.6 1629.4 1598.7 1589.1
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Fig. 7 Geometry of members and sections, details of loadings and material properties for frames 
JSRF1b and JSRF2b tested by Liew et al. (1997) 

 
 

integration scheme. This demonstrates the superior efficiency and accuracy of the formulation 
presented in this study. 

 
6.2 Static analysis of a portal frame 
 
In this example, one-storey one-bay portal frames JSRF1b and JSRF2b, tested by (Liew et al. 

1997) are analysed. The geometry of the specimens, details of loading and material properties are 
given in Fig. 7. In addition, by applying a curve fitting technique, the moment-rotation response of 
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the semi-rigid connections C1, C2 and C3 are obtained based on the Ang and Morris (1984) 
three-parameter model and are compared with the experimental moment-rotation curves in Fig. 8. 

Using the force-based compound-element developed in this study, the frame was modelled with 
3 elements: one for each member (i.e., beam and column) of the frame. The FE model of the frame 
within the force-based formulation has 6 DOFs corresponding to 2 unrestrained nodes. The 
integrals are estimated by a composite Simpson’s integration scheme with 15 integration points 
through the section depth (3 points over the thickness of each flange) and 11 points along the 
members. 

The lateral load H versus the drift of the storey at point E obtained from the developed 
formulation, together with the experimental results and the results of a refined-plastic-hinge 
formulation from Chen et al. (1996) are shown in Fig. 9. It can be observed that the numerical 
results correlate reasonably well with the experimental ones and the present formulation has the 
capability to capture the global response as well as the ultimate loading capacity of the semi-rigid 
frames with reasonable accuracy. The discrepancy between the experimental and numerical results 
can be attributed to the connection behaviour data determined by separate pilot experiments which 
were somewhat different from the behaviour of the connections in the actual frame itself. 

The results obtained from the force-based compound-element with and without second order 
P-Δ effects for different numbers of longitudinal integration points are shown in Fig. 10. With 
regard to this figure, it can be observed that the formulation including second order P-Δ effects 
captures the response more accurately whereas the first order analysis overestimates the loading 

 
 

(a) Connection C1 

(b) Connection C2 (c) Connection C3 

Fig. 8 Moment-rotation relationship for semi-rigid connections 
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(a) (b) 

Fig. 9 Lateral load H versus drift at point E for specimen (a) JSRF1b (b) JSRF2b 
 

(a) (b) 

Fig. 10 Lateral load H versus drift at point E for specimen (a) JSRF1b (b) JSRF2b obtained from 
force-based compound-element with and without second order P-Δ effects included 

 
 

capacity of the structure. The difference between the two formulations (i.e., with and without 
geometric nonlinearity) becomes more pronounced at ultimate stages of loading. Furthermore, Fig. 
10 shows that the results are not sensitive to number of longitudinal integration points and even an 
integration scheme with 7 points along the element axis can capture the geometrically and 
materially nonlinear response of the member reasonably well. Using more than 9 integration points 
along the element axis does not improve the results and it merely increases the computational cost. 

 
6.3 Two-storey frame subjected to cyclic lateral load 
 
In this example, the two-storey frame tested by Stelmack et al. (1986) is analysed. The 

geometry of frame and sections, loading and the material properties are given in Fig. 11. Further, 
the history of cyclic loading and the experimental and analytical moment-rotation response of the 
connections are shown in Fig. 12. 
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Fig. 11 Geometry of members and sections, details of loading and material properties for frame tested 
by Stelmack (1986) 

 

(a) (b) 

Fig. 12 (a) History of the cyclic loading and (b) moment-rotation relationship of the connections for the 
semi-rigid frame tested by Stelmack (1986) 

 
 

Using the force-based formulation developed in this study, the frame was modelled with 6 
elements: one for each member (i.e., beam and column) of the frame. The integrals are estimated 
by a composite Simpson’s integration scheme with 15 integration points through the section depth 
(3 points over the thickness of each flange), 11 integration points along the beams and 9 points 
along the columns. 

The lateral load P versus the drift at the first and second storey and moment-rotation response 
of connection A for different cycles are shown in Figs. 13 to 15, respectively. It can be observed 
that the displacement and force responses obtained from analysis correlate reasonably well with 
the experimental data. The discrepancy between numerical predictions and experimental results 
can be attributed to the behavioural model adopted for steel and semi-rigid connections. In 
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particular, the loading/unloading model adopted for connections can affect the local as well as the 
global response of the structure subject to the cyclic loads. Furthermore, at later stages of loading 
when plastic hinges start to form the response of structure is influenced by hardening modulus of 
steel which is not available from the experiment. 
 
 

(a) Fourth cycle 

(b) Fifth cycle (c) Sixth cycle 

Fig. 13 Lateral load P versus drift for first storey at different cycles 
 

(a) Second cycle (b) Third cycle 

Fig. 14 Lateral load P versus drift for second storey at different cycles 
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(a) Third cycle 

(b) Forth cycle (c) Fifth cycle 

Fig. 15 Moment-rotation response of connection A at different cycles 
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Fig. 16 Geometry of members and sections, details of loading and material properties for unbraced 

two-storey frame 
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(a) (b) 

Fig. 17 (a) History of the dynamic loading and (b) moment-rotation relationship for the semi-rigid connections
 

(a) (b) 

Fig. 18 History of second floor drift for the case (a) without gravity loads (b) with gravity loads 
 
 

6.4 Dynamic analysis of frame with nonlinear connections 
 
In this example, the transient response of a one-bay two-storey frame whose geometry and 

loading are shown in Fig. 16 for cases with and without gravity loads is studied, and the results are 
compared with response obtained by Sekulovic et al. (2002) and Chan and Chui (2000). 
Furthermore, the history of the lateral load and the analytical moment-rotation relationship for 
connections adopted in this study are shown in Figs. 17(a) and 17(b) respectively. It is assumed 
that all of the frame elements except connections remain elastic. 

Using force-based elements developed in this study, the entire frame was modelled by 8 
elements (two elements per beam and one element per column). The integrals are estimated by a 
composite Simpson’s integration scheme with 15 integration points through the section depth (3 
points over thickness of each flange) and the distance between longitudinal integration points is 
limited to 300 mm. 

The Newmark scheme with a time step of 0.05 sec was used for the dynamic analysis. In 
addition, a Rayleigh damping proportional to the mass matrix with a multiplier of 2.0 was 
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adopted for dynamic analysis. The history of the second floor drift for cases without and with 
gravity load is shown in Fig. 18, which shows reasonable correlation with the analytical results 
obtained by Sekulovic et al. (2002) and Chan and Chui (2000). For the case without gravity load, 
the maximum drift of second floor predicted by the developed formulation is δmax = 59.9 mm 
which correlates very well with δmax = 60.4 mm obtained from Chan and Chui (2000) analysis and 
slightly more than δmax = 56.6 mm predicted in Sekulovic et al. (2002). Concerning the case with 
gravity load, the developed formulation gives δmax = 67.9 mm deflection compared to δmax = 68.4 
mm predicted by Chan and Chui (2000) analysis. The difference between responses, particularly at 
later stages of time history, can be attributed to level of damping and loading/unloading model 
adopted for connections. 
 
 
7. Conclusions 
 

A novel force-based formulation in the framework of the total secant stiffness matrix has been 
derived for 1-D frame elements with flexible end connections. The formulation takes account of 
material and geometrical nonlinearities as well as the nonlinearity of the end connections within 
small strain/slope theory of beams. A composite Simpson integration scheme with a piecewise 
parabolic interpolation of curvature was used to calculate the displacement of the sections along 
the element axis required for the P-Δ geometrical nonlinearities associated with undulation effect. 
The formulation accuracy and efficiency established by comparisons with available methods, 
being verified by four numerical examples, and it was shown that by using only one element per 
member (i.e., beam or column) the formulation has the capability to capture the global response of 
semi-rigid frames with very high accuracy. 
 
 
References 
 
Ang, K.M. and Morris, G.A. (1984), “Analysis of three-dimensional frames with flexible beam-column 

connections”, Canadian J. Civil Eng., 11(2), 245-254. 
Ashraf, M., Nethercot, D.A. and Ahmed, B. (2004), “Sway of semi-rigid steel frames Part 1: Regular 

frames”, Eng. Struct., 26(12), 1809-1819. 
Attiogbe, E. and Morris, G. (1991), “Moment-rotation functions for steel connections”, J. Struct. Eng., ASCE, 

117(6), 1703-1718. 
Bathe, J.K. (1997), Finite element procedures, New York, McGraw Hill. 
Bayo, E., Cabrero, J.M. and Gil, B. (2006), “An effective component-based method to model semi-rigid 

connections for the global analysis of steel and composite structures”, Eng. Struct., 28(1), 97-108. 
Carol, I. and Murcia, J. (1989a), “Nonlinear time-dependent analysis of planar frames using an 'exact' 

formulation. I. Theory”, Comput. Struct., 33(1), 79-87. 
Carol, I. and Murcia, J. (1989b), “Nonlinear time-dependent analysis of planar frames using an 'exact' 

formulation. II. Computer implementation for R.C. structures and examples”, Comput. Struct., 33(1), 
89-102. 

Chan, S.L. and Cho, S.H. (2008), “Second-order analysis and design of angle trusses Part I: Elastic analysis 
and design”, Eng. Struct., 30(3), 616-625. 

Chan, S.L. and Chui, P.P.T. (2000), Non-linear static and cyclic analysis of steel frames with semi-rigid 
connections, Amsterdam, Elsevier. 

Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, New York, John Wiley & 
Sons, Inc. 

18



 
 
 
 
 
 

Nonlinear P-Δ analysis of steel frames with semi-rigid connections 

Chen, W.F. and Kishi, N. (1989), “Semi-rigid steel beam-to-column connections: Data base and modeling”, 
J. Struct. Eng., ASCE, 115(1), 105-119. 

Cheng, F.Y. and Juang, D.S. (1986), “Effects of P-Delta and semi-rigid connections on response behaviour 
of inelastic steel frames subjected to cyclic and siesmic loadings”, ASCE, 32-50. 

Chiorean, C.G. (2009), “A computer method for nonlinear inelastic analysis of 3D semi-rigid steel 
frameworks”, Eng. Struct., 31(12), 3016-3033. 

Chui, P.P.T. and Chan, S.L. (1996), “Transient response of moment-resistant steel frames with flexible and 
hysteretic joints”. J. Constr. Steel Res., 39(3), 221-243. 

Da S. Vellasco, P.C.G., De Andrade, S.a.L., Da Silva, J.G.S., De Lima, L.R.O. and Brito Jr., O. (2006), “A 
parametric analysis of steel and composite portal frames with semi-rigid connections”, Eng. Struct., 28(4), 
543-556. 

Da Silva, J.G.S., De Lima, L.R.O., Da S. Vellasco, P.C.G., De Andrade, S.a.L. and De Castro, R.A. (2008), 
“Nonlinear dynamic analysis of steel portal frames with semi-rigid connections”, Eng. Struct., 30(9), 
2566-2579. 

De Lima, L.R.O., Freire, J.L.D.F., Vellasco, P.C.G.D.S., Andrade, S.a.L.D. and Silva, J.G.S.D. (2009), 
“Structural assessment of minor axis steel joints using photoelasticity and finite elements”, J. Constr. Steel 
Res., 65(2), 466-478. 

Ding, J. and Wang, Y.C. (2009), “Temperatures in unprotected joints between steel beams and concrete-filled 
tubular columns in fire”, Fire Safety J., 44(1), 16-32. 

Hadianfard, M.A. (2012), “Using integrated displacement method to time-history analysis of steel frames 
with nonlinear flexible connections”, Struct. Eng. Mech., 41(5), 675-689. 

Han, L.H., Huo, J.S. and Wang, Y.C. (2007), “Behavior of steel beam to concrete-filled steel tubular column 
connections after exposure to fire”, J. Struct. Eng., ASCE, 133(6), 800-814. 

Iu, C.K., Bradford, M.A. and Chen, W.F. (2009), “Second-order inelastic analysis of composite framed 
structures based on the refined plastic hinge method”, Eng. Struct., 31(3), 799-813. 

Iu, C.K., Chan, S.L. and Zha, X.X. (2007), “Material yielding by both axial and bending spring stiffness at 
elevated temperature”, J. Constr. Steel Res., 63(5), 677-685. 

Ivanyi, M. (2000), “Full-scale tests of steel frames with semi-rigid connections”, Eng. Struct., 22(2), 
168-179. 

Khandelwal, K., El-Tawil, S., Kunnath, S.K. and Lew, H.S. (2008), “Macromodel-based simulation of 
progressive collapse: Steel frame structures". J. Struct. Eng., 134(7), 1070-1078. 

Kishi, N. and Chen, W.F. (1990), “Moment-rotation relations of semirigid connections with angles”, J. Struct. 
Eng., ASCE, 116(7), 1813-1834. 

Kukreti, A.R. and Abolmaali, A. (1999), “Moment-rotation hysteresis behavior of top and seat angle steel 
frame connections”, ASCE, J. Struct. Eng., 125(8), 810-820. 

Liew, J.Y.R., Yu, C.H., Ng, Y.H. and Shanmugam, N.E. (1997), “Testing of semi-rigid unbraced frames for 
calibration of second-order inelastic analysis”, J. Constr. Steel Res., 41(2-3), 159-195. 

Liu, Y., Xu, L. and Grierson, D.E. (2008), “Compound-element modeling accounting for semi-rigid 
connections and member plasticity”, Eng. Struct., 30(5), 1292-1307. 

Mohamadi-Shooreh, M.R. and Mofid, M. (2008), “Parametric analyses on the initial stiffness of flush 
end-plate splice connections using FEM”, J. Constr. Steel Res., 64(10), 1129-1141. 

Prabha, P., Marimuthu, V., Arul Jayachandran, S., Seetharaman, S. and Raman, N. (2008), “An improved 
polynomial model for top -and seat- Angle connection”, Steel Compos. Struct., 8(5), 403-421. 

Ramberg, W. and Osgood, W.R. (1943), “Description of stress-strain curves by three parameters”, Report No.  
902, National Advisory Committee for Aeronautics, Washington, D.C. 

Reyes-Salazar, A., Soto-Lópeza, M.E., Bojórquez-Morab, E. and López-Barrazab, A. (2012), “Effect of 
modeling assumptions on the seismic behavior of steel buildings with perimeter moment frames”, Struct. 
Eng. Mech., 41(2), 183-204. 

Richard, R.M. and Abbott, B.J. (1975), “Versatile elastic-plastic stress-strain formula”, ASCE, J. Engng. 
Mech., 101(4), 511-515. 

Rodrigues, F.C., Saldanha, A.C. and Pfeil, M.S. (1998), “Non-linear analysis of steel plane frames with 

19



 
 
 
 
 
 

Hamid R. Valipour and Mark A. Bradford 

semi-rigid connections”, J. Constr. Steel Res., 46(1-3), 94-97. 
Saravanan, M., Arul Jayachandran, S., Marimuthu, V. and Prabha, P. (2009), “Advanced analysis of cyclic 

behaviour of plane steel frames with semi-rigid connections”, Steel Compos. Struct., 9(4), 381-395. 
Sekulovic, M. and Nefovska-Danilovic, M. (2008), “Contribution to transient analysis of inelastic steel 

frames with semi-rigid connections”, Eng. Struct., 30(4), 976-989. 
Sekulovic, M. and Salatic, R. (2001), “Nonlinear analysis of frames with flexible connections”, Comput. 

Struct., 79(11), 1097-1107. 
Sekulovic, M., Salatic, R. and Nefovska-Danilovic, M. (2002), “Dynamic analysis of steel frames with 

flexible connections”, Comput. Struct., 80(9), 935-955. 
Shen, J. and Astaneh-Asl, A. (1999), “Hysteretic behavior of bolted-angle connections”, J. Constr. Steel Res., 

51(3), 201-218. 
Shi, G., Shi, Y., Wang, Y. and Bradford, M.A. (2008), “Numerical simulation of steel pretensioned bolted 

end-plate connections of different types and details”, Eng. Struct., 30(10), 2677-2686. 
Simoes Da Silva, L., De Lima, L.R.O., Da S. Vellasco, P.C.G. and De Andrade, S.a.L. (2004), “Behaviour of 

flush end-plate beam-to-column joints under bending and axial force”, Steel Compos. Struct., 4(2), 77-94. 
Spyrou, S., Davison, B., Burgess, I. and Plank, R. (2004), “Experimental and analytical studies of steel joint 

component at elevated temperatures”, Fire and Materials, 28(2-4), 83-94. 
Stelmack, T.W., Marley, M.J. and Gerstle, K.H. (1986), “Analysis and tests of flexibly connected steel 

frames”, J. Struct. Eng., ASCE, 112(7), 1573-1588. 
Trahair, N.S., Bradford, M.A., Nethercot, D.A. and Gardner, L. (2008), The Behaviour and Design of Steel 

Structures to EC3, London, Taylor and Francis. 
Valipour, H.R. (2009), “Nonlinear analysis of reinforced concrete frames under extreme loadings, PhD 

Thesis”, PhD Dissertation, School of Civil and Environmental Engineering, The University of New South 
Wales, Sydney, Australia, 

Valipour, H.R. and Bradford, M. (2012), “An efficient compound-element for potential progressive collapse 
analysis of steel frames with semi-rigid connections”, Finite Elements in Analysis and Design, 60, 35-48. 

Valipour, H.R. and Foster, S.J. (2010a), “Finite element modelling of reinforced concrete structures 
including catenary action”, Comput. Struct., 88(9), 529-538. 

Valipour, H.R. and Foster, S.J. (2010b), “A total secant flexibility-based formulation for frame elements with 
physical and geometrical nonlinearities”. Finite Elements in Analysis and Design, 46(3), 288-297. 

Vu, A.Q. and Leon, R.T. (2008), “Vibration analysis of steel frames with semi-rigid connections on an 
elastic foundation”, Steel Compos. Struct., 8(4), 265-280. 

Wang, J.-F. and Li, G.-Q. (2007), “Testing of semi-rigid steel-concrete composite frames subjected to 
vertical loads”, Eng. Struct., 29(8), 1903-1916. 

Wang, J.-F. and Li, G.-Q. (2008), “A practical design method for semi-rigid composite frames under vertical 
loads”, J. Constr. Steel Res., 64(2), 176-189. 

Zarfam, P. and Mofid, M. (2009), “On the assessment of modal nonlinear pushover analysis for steel frames 
with semi-rigid connections”, Struct. Eng. Mech., 32(3), 383-398. 

 
 
CC 

20




