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Abstract.  Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil 
and gas industries led to the development of novel geometric form of Buoyant Leg Storage and 
Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect 
to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of 
rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored 
system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental 
loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated 
failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension 
variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is 
carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and 
its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the 
amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the 
severity of instability. 
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1. Introduction 

 
Increasing demand for larger storage and regasification floating units to transport liquefied 

natural gas (LNG) results in exploration of offshore processing platforms in recent past; new 

geometrical form of BLSRP is proposed to meet increasing functional requirements 

(Chandrasekaran and loganath 2015, 2017). Circular deck, used for storage and processing LNG is 

supported on six buoyant legs, which are symmetrically positioned with respect to center of 

gravity of the deck. This arrangement makes the platform insensitive to wave directionality. 

Hinged joints, which connect the legs and buoyant legs, isolate the deck partially. Buoyant leg 

structures show a few major advantages namely: easy installation, transportation, fabrication and 

technical superiority (Graham et al. 1980, Robert et al. 1995, Chandrasekaran et al. 2015a, 

Chandrasekaran et al. 2015b). Uniqueness of BLSRP is partial isolation of the deck from buoyant 

legs, which reduces the deck response in rotational degrees-of-freedom, making it safe for LNG 
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processing (White et al. 2005, Chandresekaran et al. 2011, 2013, Chandrasekaran and Madhuri 

2012a, b, 2013, 2015). Considerable reduction in deck response compared to buoyant legs in all 

degrees of freedom is noted under regular and random waves, making this new geometry suitable 

for deep waters. Even though rotational degrees of freedom is not transferred to the deck, pitch 

response is noted in the deck due to the differential heave in the buoyant legs. As the platform is 

positive-buoyant, high initial pretension on tethers is necessary to ensure position restraint 

(Chandrasekaran et al. 2010). Buoyant legs and tethers are inclined at 20 degree angle to the 

vertical plane of the deck using spread taut mooring system. 

Detailed investigations on compliant platforms like Spar (Haslum and Faltinsen 1999, Koo et al. 

2004) showed Mathieu-type instability in systems where pitch natural period is about twice as that 

of heave. Dynamic behavior under unstable conditions showed chaotic behavior, which is critical 

to ensure safe functionality of the platform (Rho et al. 2002, 2003, 2004, 2005, Adrain et al. 2013). 

Mathieu stability analysis of TLP tethers was investigated considering tether as a simply supported 

column with constant tension along its length, excluding the nonlinear damping term and by using 

Galerkin’s method the governing equation was  cut down to Mathieu equation (Jeffreys and Patel 

1982). Using perturbation method and Runge-Kuttta method, Mathieu stability charts were 

extended to large parameters since TLPs exhibits large values for Mathieu parameters (Goldstein 

1929, Ince 1925). Stability analysis, based on the extended chart showed the necessity of Mathieu 

stability study in tethers (Patel and Park 1991).Recent studies proposed dynamic model for 

Mathieu equation of TLP tethers under lateral vibration. This model uses linear, cable equation, 

considering tension variation in the cable due to submerged mass (Simos and Pesce 1991). 

Stability analysis of Auger TLP and Hutton TLP showed that the platforms underwent Mathieu 

type instability, which resulted in their failure, which was subsequently repaired and corrected 

(Chandrasekaran et al. 2006, Mclachlan 1947). 

Tension leg platforms which are taut moored undergo Mathieu type instability due to the 

dynamic tether tension variation under wave forces and spar platforms undergo Mathieu type 

instability due to coupling of heave and pitch motions when the pitch natural frequency is twice 

that of heave natural frequency. Since Buoyant leg storage regasification platform inherits features 

of both TLP and spar, they may be prone to Mathieu type instability. Tethers play a significant role 

in stability of taut moored compliant structures and hence understanding tether stability is 

important. Literature review lacks stability analysis of this new generation platforms and hence it’s 

vital to conduct stability analysis of these new geometric forms. 

 

 

2. Formulation of mathieu equation 
 

Dynamic equation of tether is formulated using an idealized linear model, which is a straight 

slender column simply supported at ends (Simos and Pesce 1997). Tension due to submerged mass 

is considered to be linearly varied along its length. Dynamic equation of tether vibration is 

formulated using an idealized linear model. This is similar to that of straight slender column, 

which is simply supported at ends under varying axial tension caused due to its varying submerged 

mass. Ignoring flexural rigidity and current effects, dynamic equation for the lateral movement of 

tether is given by 

       𝑀
𝜕2𝑦

𝜕𝑡2 −
𝜕

𝜕𝑥
*𝑇(𝑥).

𝜕𝑦

𝜕𝑥
+ + 𝐵𝑣 |

𝜕𝑦

𝜕𝑡
| .

𝜕𝑦

𝜕𝑡
= 0             (1) 
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Where, M is the total mass of the tether, which is the sum of added mass and physical mass per 

unit length. T(x) is the total tension in the tether, which is the sum of static tension and dynamic 

tension given by  

 𝑇(𝑥) = 𝑃 + 𝜇𝑔(𝐿 − 𝑥) − 𝐴𝑐𝑜𝑠(ω𝑡)                  (2) 

P is the initial pretension in the tethers, μ is the mass per unit length of the tether, L is tether length, 

A is the tension amplitude, ω is the wave frequency, Bv is the viscous damping coefficient. 

For free lateral vibration of tether, Eq. (2) becomes 

𝑀
𝜕2𝑦

𝜕𝑡2 −
𝜕𝑇(𝑥)

𝜕𝑥
= 0                              (3) 

Lateral motion of nth natural mode is assumed as 

yn (Xnt) = fn(t).Xn(x)            (4) 

Substituting (4) in (1) we get a classical Sturm-Liouville problem 

   (*
𝑃

𝑀
+

𝜇𝑔(𝐿−𝑥)

𝑀
+ 𝑋𝑛) + ωn

2Xn = 0              (5) 

The above equation can be rewritten by introducing a new variable η and after some algebraic 

work the Eq. (5) becomes a modified Bessel equation 

η
2
Xn+ ηXn+4𝞫n

2 η 2Xn = 0               (6) 

Where    

η = √1 +
𝜇𝑔(𝐿−𝑥)

𝑃
                              (7)  

β𝑛
2

   = 

(𝜇𝑔)2

𝑃𝑀
ω𝑛

2                              (8)  

Solution for Eq. (6) is obtained in Bessel functions (J0,Y0) (Bowman 1958) and is obtained as 

Xn(n) = C1 J0 (2 𝞫n η) + C2 Y0 (2𝞫n η)                 (9) 

By applying boundary conditions 

 Xn ( η |𝜏 = 0 ) = 0 and Xn ( η |𝜏 = 1 ) = 0                (10) 

The constants are obtained and the Eq. (9) for the resultant modal forms, is obtained as below 

Xn(x)=J0 (2𝛽𝑛 *1 +
𝜇𝑔(𝐿−𝑥)

𝑃
+

1/2
) −  

𝐽0(2𝛽𝑛)

𝑌0(2𝛽𝑛)
 𝑌0 (2𝛽𝑛 *1 +

𝜇𝑔(𝐿−𝑥)

𝑃
+

1/2
)        (11) 

Where, 𝞫n is obtained as the solution of the equation given below 

   J0 .2𝛽𝑛√1 +
𝜇𝑔𝐿

𝑃
/ Y0 (2𝞫n) - Y0 .2βn√1 +

𝜇𝑔𝐿

𝑃
/ J0 (2𝞫n) = 0          (12) 

By substituting Eq. (11) in Eq. (1) and applying Galerkin’s variation method, the Eq. (1) is 

re-written as 
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𝑑2𝑓

𝑑𝜏
 + (𝞭 – q cos(2𝞽))f + c |

𝑑𝑓

𝑑𝜏
|

𝑑𝑓

𝑑𝜏
 = 0                 (13) 

Where, 2𝞽 = ωt (𝞽 dimensionless time variable) and f is the lateral displacement of tether. 

𝞭 and q are Mathieu parameters given by 

𝞭n = 
4

𝑀𝜔2 ,𝜇𝑔
(  𝐼2 + 𝐼4  ) 

𝐼1
- – (P+ μgL)

𝐼3

𝐼1
                 (14a)    

 qn =  
2𝑎

𝑀𝜔2

𝐼3

𝐼1
                             (14b) 

where, M is the total tether mass, ω is the wave frequency, μ is the mass per unit length of tether, g 

is acceleration due to gravity, P is the initial pretension and a is the tension amplitude. 

Corresponding integrals of the above equations are given by 

I1 =∫ 𝑋𝑛
2𝐿

0
(x)dx             (15a) 

I2 = ∫
𝑑𝑋𝑛(𝑥)

𝑑𝑥

𝐿

0
 dx         (15b) 

I3 = ∫
𝑑2𝑋𝑛(𝑥)

𝑑𝑥2

𝐿

0
 Xn(x) dx         (15c) 

I4 = ∫
𝑑2𝑋𝑛(𝑥)

𝑑𝑥2

𝐿

0
 Xn( x)dx            (15d) 

As stability condition is influenced by Mathieu parameters, solution to Mathieu equation is 

expressed in the form of a stability chart.  

 

 

3. Numerical modeling 
 

Numerical analysis of offshore triceratops and Buoyant Leg Storage and Regasification 

Platform for hydrodynamic response and dynamic tether tension variation are carried out using 

ANSYS AQWA software. The geometric propertied are derived from existing TLP 

(Chandrasekaran and Jain 2000), keeping the total mass, buoyancy force, initial pretension in 

tethers and total deck area same as that of TLP. As buoyant legs qualify for Morison region, they 

are modeled using line elements in ANSYS AQWA workbench. Each buoyant leg is further 

assigned with outer diameter 14.14 m and wall thickness of 0.15 m. The mass of the buoyant leg 

structure (BLS) units, ballast load and weight of the deck are assigned to the mass center on the 

vertical plane. The radii of gyration about three translational axes are designed in ANSYS design 

modular. Each buoyant leg unit is modeled as an independent rigid body as they are not 

interconnected. Deck consists of quadrilateral and triangular plate elements with appropriate mass 

properties. Buoyant legs are connected to the deck using ball joints (Chandrasekaran 2015, 2016, 

2017, Chandrasekaran and Jain 2016). Tethers, those extend form keel of the buoyant leg to sea 

bed, are modeled as flexible elements. Buoyant legs are connected to the sea bed with groups of 

tethers containing four tethers in each group. Each leg consists of a group of 4 tethers and a total of 

24 tethers hold-down the platform under a spread-mooring system. Fig. 1 shows the numerical 

model under moored condition, which is referred as normal case in the analysis. Static equilibrium 

between the buoyancy force, weight and initial tether tension is given as below 
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Fb = W+ 6 T0 cos (20)                           (16) 

It is important to note that a maximum inclination of 20° with respect to the vertical is allowed for 

the legs and the downward force due to pretension of tethers is the vertical component of tether 

force given by T0cos(20), Fb is the total buoyant force and W is the total weight of the structure . 

Table 1 shows the geometric properties of the platform. Three cases under eccentric loads are 

analyzed namely: i) eccentric load on top of one buoyant leg (referred as case 2); ii) eccentric load 

in between two adjacent buoyant legs (referred as case 3); and iii) eccentric load on top of two 

adjacent buoyant legs (referred as case 4). Such cases of eccentric loading are accidental and hence 

referred as postulated failure cases in the study. Fig. 2 shows the numerical model with different 

position of eccentric loads. Each case of eccentric loading is analyzed for two load magnitudes 

namely: 5% and 10% of that of the total mass.  

 

 

Fig. 1 Numerical model of BLSRP (normal case) 

 

 
Table 1 Geometric properties of platform 

 Description BLSRP 

Water depth 1069.36 m 

Total weight 641000 kN 

Buoyant force 940880 kN 

Diameter of buoyant leg 14.14 m 

Diameter of deck 99.40 m 

Length of buoyant leg 132.48 m 

Total tether force 319125.60 kN 

Pretension in each leg 53187.61 kN 

Tether length 964.81 m 

Number of tethers (6 groups) 24 

Axial stiffness of tethers 76830.67 kN/m 
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Fig. 2 Numerical model of BLSRP under postulated failure i) case 2; ii) case 3; iii) case 4 

 

 

4. Results and discussions 
 

BLSRP is analyzed under regular wave of wave height 5 m and time period 6.8 s taken from 

literature for Gulf of Mexico (Chandrasekaran et al. 2006, Simos and Pesce 1991) under zero 

degree incident angle to BLS 1, under normal and postulated failure cases. BLSRP under eccentric 

loading is analyzed for two loads 32050 kN (5%) and 64100 kN (10%) as 15% or more of payload 

on center of gravity of the deck causes instability in the structure (Chandrasekaran and Kiran 

2017). The presence of eccentric loading causes offset in the heave degree of freedom (Fig. 3), 

reducing the pretension in tethers near the eccentric loading causing more response in buoyant legs. 

Maximum tension amplitude is summarized in Table 2 while dynamic tether tension variations, for 

a postulated failure cases are shown in Fig. 4.  

 

 

 
Table 2 Maximum tension amplitude in tethers under postulated failure cases 

Description Load Leg 1  

(MN)  

Leg 2 

(MN)  

Leg 3 

 (MN) 

Leg 4 

 (MN) 

Leg 5 

 (MN) 

Leg 6  

(MN) 

Maximum  

(MN) 

Case 1 - 62.49 61.53 61.43 61.40 61.85 60.97 62.49 

Case 2 
5% 89.99 71.78 59.08 63.56 65.76 73.70 89.99 

10%` 168.54 140.70 76.40 128.80 80.79 136.04 168.54 

Case 3 
5% 85.06 18.52 68.28 67.98 65.11 77.17 85.06 

10%` 153.42 112.99 103.06 100.50 110.26 144.23 153.42 

Case 4 
5% 82.34 64.45 64.91 64.57 63.22 69.21 82.34 

10%` 112.36 99.39 73.37 68.76 80.14 107.94 112.36 
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Fig. 3 Heave response of the deck under postulated failure cases 
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Postulated failure cases, created by placing eccentric loads at different locations resulted in 

dynamic tether tension variation given in Fig. 4. Each case is examined for Mathieu type instability. 

For the known values of initial pretension, length, cross-section area, total mass of platform and 

submerged mass of tethers, natural period of tethers are obtained analytically to determine lateral 

motion of tethers. Substituting the lateral motion obtained analytically and tether tension variation 

obtained numerically, Mathieu parameters derived for the tether equation of motion are obtained 

for first mode of vibration. Parameters are then plotted in Mathieu stability chart to obtain stability 

of the structure (Fig. 5). Summary of the results are shown in Table 3. As observed form the Table 

3, one of the parameters (𝞭), which depends on stiffness and initial pretension of tethers remains 

constant for all the postulated failure cases. Other parameter (q), which depends on tension 

variation, differs for various postulated failure. It is also seen from the table that the platform is 

stable under normal condition (case 1). Even eccentric loads under various postulated failure cases 

with 5% load amplitude did not result in Mathieu instability. For eccentric loading with 10% load 

amplitude, cases 2 and 3 show unstable condition, justifying the chaotic nature of tether tension 

variation. It is interesting to note that under eccentric loads with magnitude of 10% of that of the 

mass of the platform, when placed on the adjacent buoyant legs (case 4) shows stable condition. 

This is due to the fact that amplitude of tension variation, which resulted in chaotic nature in the 

beginning, settles down to lower amplitude. Irrespective of the position of eccentric load 

considered, platform undergoes Mathieu type instability for eccentric load greater than 10% of 

total mass of the structure. 

 

 

 

 

Continued- 

353



 

 

 

 

 

 

S. Chandrasekaran and P.A. Kiran 

 

 

 

 

Fig. 4 Dynamic tether tension variation under postulated failure cases 

 

 

354



 

 

 

 

 

 

Mathieu stability of offshore Buoyant Leg Storage & Regasification Platform 

Table 3 Mathieu parameters under postulated failure cases 

Description Load 𝞭 q Stability condition 

Case 1 - 75.07 5.9 Stable 

Case 2 
5% 75.07 23.35 Stable 

  10% 75.07 73.19 Unstable 

Case 3 
5% 75.07 20.22 Stable 

10% 75.07 63.6 Unstable 

Case 4 
5% 75.07 18.49 Stable 

10% 75.07 37.54 Stable (boundary) 

 

5. Fatigue analysis of tethers 

 
Tethers in taut-moored compliant structures are subjected to cyclic loading throughout its life. 

As seen above, dynamic tether tension variation is significant under the postulated failure cases. 

Even though the amplitude of tension variation is lesser than that of the tether breaking load, 

cyclic loading due to environmental loads may lead to fatigue failure (Siddiqui and Suhail 2000, 

2001, Hove and Moan 1995). Current study also investigates fatigue life of tethers under axial 

stress using Miner-Palmgren approach. Fatigue strength is estimated based on the number of 

cycles (for example, 107) for which the maximum stress range that can be applied without causing 

failure. S-N curve is defined by the following equation 

A = NSm               (17) 

where, S is the cyclic stress range, N is the number of cycles to failure, A and m are constants 

depending on the fatigue class and number of cycles obtained from DNV-RP-C203. While stress 

range and number of cycles are estimated using Rainflow counting method, Minor’s hypothesis is 

used to obtain the fractional damage caused by different stress range; results are then summed up 

to obtain overall damage, based on which life of the tether is extrapolated. Damage is given by the 

following relationship 

𝐷 =  ∑
𝑛𝑖

𝑁𝑖

𝑗
𝑖=1              (18) 

where, D is total damage, j is number of stress bins, n is number of counts and N is number of 

stress range. Detailed fatigue analyses are carried out for each tether under the postulated failure 

cases to obtain service life of tethers. Detailed fatigue analyses are carried out for each tether under 

the postulated failure cases to obtain overall damage of tethers for 500s, given in Table 4 (tension 

leg 1 for eccentric loading case3-10%). Summary of results is shown in Table 5. Under normal 

case a maximum of 34.25 years of life is obtained for tethers were as a minimum of 23.15 years is 

noted for tethers of wave-entrant buoyant leg. For 5% eccentric loading a maximum reduction of 

89.9% in the fatigue life is observed. As seen in cases 2 and 3, for 10% load, fatigue life of tethers 

is reduced significantly to about 13 days, which is quite alarming. Increase in the magnitude of 

eccentric loading and position of the load is very important. There is a significant decrease in 

fatigue life with the increase in the amplitude of tension variation. Very low fatigue life of tethers 

under Mathieu instability proves the severity of instability. For example, case 4 under 10% loading 

shows a stable condition but the fatigue life is very low in comparison to other stable condition 

cases.  
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Table 4 Damage calculation of tether 1 for case 3-10%eccentric loading for 500s 

Stress bin Counts Damage 

34.76 1 2.70E-08 

52.27 1 9.18E-08 

69.78 4 8.74E-07 

75.62 3 8.34E-07 

98.97 1 6.23E-07 

110.65 3 2.61E-06 

116.49 1 1.02E-06 

128.16 1 1.35E-06 

134.00 11 1.70E-05 

139.84 8 1.41E-05 

145.68 11 2.19E-05 

151.51 8 1.79E-05 

157.35 16 4.01E-05 

163.19 20 5.59E-05 

169.03 21 6.52E-05 

174.86 13 4.47E-05 

180.70 15 5.69E-05 

186.54 12 5.01E-05 

192.38 2 9.15E-06 

198.22 2 1.00E-05 

204.05 4 2.18E-05 

Total damage for 500s 4.32E-04 

 

 

 

Life of tethers = 1/ (4.32E-04x7.2x24)[days] 

X 
13.4 

 
 
 
Table 5 Fatigue life (rounded of) of tethers under eccentric loading 

Description Load Leg 1  Leg 2 Leg 3 Leg 4 Leg 5 Leg 6 Minimum 

life 

Case 1 - 23 Y 33 Y 33 Y 23 Y 34 Y 34 Y 23 Y 

Case 2 

5% 2 Y 5 Y 23 Y 13 Y 20 Y 5 Y 2 Y 

10% 14 days 29 days 2 Y 92 days 1 Y 30 days 14 days 

Case 3 

5% 3 Y 7 Y 15 Y 11 Y 9 Y 4 Y 3 Y 

10% 13 days 45 days 127 days 122 days 51 days 14 days 13 days 

Case 4 

5% 5 Y 13 Y 14 Y  8 Y 13 Y 9 Y 5 Y 

10% 103 days 286 days 5 Y 4 Y 1 Y 113 days 103 days 
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Fig. 5 Mathieu stability for BLSRP under postulated failure cases plotted in extended stability chart given 

by Patel and Park (1991) 

 
 
6. Conclusions 

 

Buoyant leg storage and regasification platform is relatively new geometric form of offshore 

processing platforms. Six buoyant legs, placed symmetrically make the platform insensitive to 

wave direction and gives better stability. A detailed numerical analysis is carried out for BLSRP 

using Mathieu equation of stability. Postulated failure cases, created by placing eccentric loads at 

different locations resulted in dynamic tether tension variation; chaotic nature of tension variation 

is also observed in few cases. It is observed that the platform is stable under normal conditions. 

Even eccentric loads under various postulated failure cases with 5% load amplitude did not result 

in Mathieu instability. For eccentric loading with 10% load amplitude, cases 2 and 3 show unstable 

condition, justifying the chaotic nature of tether tension variation. Under normal case a maximum 

of 34.25 years of fatigue life is obtained for tethers where as a minimum of 23.15 years is noted 

for tethers of wave-entrant buoyant leg. Increase in the magnitude of eccentric load and its position 

influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the 

amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability 

proves the severity of instability. Mathieu stability analysis of BLSRP under postulated failure has 

not been attempted before, making the present study innovative.  
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Nomenclature 

 

M     Total mass of tether 

T(x)     Total tension in tether 

Bv     Viscous damping coefficient 

P     Pretension 

μ     Physical mass per unit length 

L     Length of tether 

a    Tension amplitude 

ω     Wave frequency 

η, βn    Variables 

J0, Y0    Bessel functions 

δ, q     Mathieu parameters 

ωn     Modal wave frequency 

τ     Dimensionless time variable 

Xn(x)    modal forms for tether dynamics model 

f    lateral displacement of tether 

A, m    constants for S-N curve obtained from DNV-RP-C203 

N    number of cycles to failure 

D     total damage 

j     number of stress bins 

n    number of counts 
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