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Simulation of free falling rigid body into water by a stabi-
lized incompressible SPH method
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Abstract. A stabilized incompressible smoothed particles hydrodynamics (ISPH) method is utilized to
simulate free falling rigid body into water domain. Both of rigid body and fluid domain are modeled by
SPH formulation. The proposed source term in the pressure Poisson equation contains two terms;
divergence of velocity and density invariance. The density invariance term is multiplied by a relaxed
parameter for stabilization. In addition, large eddy simulation with Smagorinsky model has been
introduced to include the eddy viscosity effect. The improved method is applied to simulate both of free
falling vessels with different materials and water entry-exit of horizontal circular cylinder. The
applicability and efficiency of improved method is tested by the comparisons with reference experimental
results. 
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1. Introduction

The accurate prediction of impact loads by fluid provides important information on the safety of

ships and has many applications in scientific and engineering computations, e.g., aerodynamic

around an air craft and debris motion in a flood. Numerous experimental, theoretical and numerical

studies have been performed to study the water entry problems. Greenhow and Lin (1983)

conducted a series of experiments to show the considerable differences in the free surface

deformation for the entry and exit of a circular cylinder. Zhao et al. (1997) used both the

experiment and the potential flow theory to investigate the water entry of a falling wedge. Similar

water entry problems have also been studied by Tyvand and Miloh (1995) using a series expansion

approach and by Greenhow and Moyo (1997) using a non-linear boundary element method model

based on the irrotational flow assumption.

The large deformation and violent behavior of coupled free surface with impact loads by liquid

sloshing, is the most difficult problem for numerical simulations because the implementation of the

fully nonlinear free-surface condition is in general complicated. Thereare several techniques to

handle such problems. Hirt and Nichols (1981) used a simple method to approximate free

boundaries in finite difference numerical simulations, based on the concept of a fractional volume of

fluid (SOLA-VOF). Sussman et al. (1994) presented a level set approach for computing solutions to

incompressible two-phase flow. Marker density function (MDF) is introduced by Miyata and Park

*Corresponding author, Ph.D. candidate, E-mail: abdelraheem@doc.kyushu-u.ac.jp

DOI: http://dx.doi.org/10.12989/ose.2011.1.3.207



208 Abdelraheem M. Aly, Mitsuteru Asai and Yoshimi Sonoda

(1995). Kleefsman et al. (2005) and Panahi et al. (2006) computed the water entry of a cylinder by

solving the N–S equation with a volume-of-fluid surface tracking using a finite volume formulation.

Lin (2007) used the concept of a locally relative stationary in his Reynolds-averaged N–S (RANS)

modeling to study the water entry of a circular cylinder with prescribed falling velocity. Most of the

previous techniques are capturing the free-surface on grid system. However, there is a different

approach without grid system, the so-called particle methods, which provides a robust numerical

tool to simulate the complicated interactions between the flow and a solid body. Owing to the mesh-

free nature, the breakup and reconnection of the free surfaces can be easily realized in a particle

method without the sophisticated mesh management as required in a grid method. The capability of

the particle model has been evidenced in the simulations of breaking wave impact on a moving

float by Koshizuka et al. (1998) and Gotoh and Sakai (2006) using the moving particle semi-

implicit (MPS) method. Recently, Lee et al. (2010) are introduced moving particle semi-implicit

(MPS) method to simulate violent free-surface motions interacting with structures. On the other

hand, the smoothed particle hydrodynamic (SPH) method was originally proposed by Lucy (1977)

and further developed by Gingold and Monaghan (1977) for treating astrophysical problems. Its

main advantage is the absence of a computational grid or mesh since it is spatially descritized into

Lagrangian moving particles. This allows the possibility of easily modeling flows with a complex

geometry or flows where large deformations or the appearance of a free surface occurs. Oger et al.

(2006) employed the 2D SPH model with a fluid–solid coupling technique to study the water entry

of a wedge with different degrees of freedom. The numerical model used a highly robust spatially

varying particle resolution to improve the computational accuracy and efficiency. Recently, Liu et

al. (2009) implemented the two phase SPH model to simulate water entry of a wedge. The SPH is

originally developed in compressible flow, and then some special treatment is required to satisfy the

incompressible condition. Shao and Lo (2003) introduced an incompressible version of the SPH. In

incompressible SPH method, the pressure is implicitly calculated by solving a descritized pressure

Poisson equation at every time step. Lee et al. (2006) showed that, the incompressible SPH model

able to realistically predict the pressure field of the flows due to its hydrodynamic formulations.

Recently, an incompressible SPH model had been widely used to simulate free surface flows for

incompressible fluids (Ellero et al. 2007, Lee et al. 2008, Khayyer et al. 2008, Khayyer et al.

2009). Lee et al. (2008) presented comparisons of a semi-implicit and truly incompressible SPH

(ISPH) algorithm with the classical WCSPH method, showing how some of the problems

encountered in WCSPH have been resolved by using ISPH to simulate incompressible flows. He

used the function of temporal velocity divergence for descritized source terms of Poisson equation

of pressure to ensure truly incompressible flow. Khayyer et al. (2008, 2009) proposed a corrected

incompressible SPH method (CISPH) derived based on a variational approach to ensure the angular

momentum conservation of ISPH formulations to improve the pressure distribution by improvement

of momentum conservation and the second improvement is achieved by deriving and employing a

higher order source term based on a more accurate differentiation.

In this paper, stabilized incompressible smoothed particle hydrodynamics is introduced to simulate

both of free falling vessels with different manufacturing materials and water entry-exit of circular

cylinder. The density invariance in the pressure Poisson equation multiplies by a relaxed parameter

for more stabilization. The comparison between the proposed ISPH model and experimental results

as Greenhow and Lin (1983) for water entry and exit of circular cylinder has been introduced and it

showed a good agreement. The proposed model showed adjustment in free surface deformation and

keeping the total volume of fuid during the whole simulation. 
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2. Mathematical analysis

In this section, the governing equation for the current method is introduced and description of the

method is discussed in details.

2.1 Governing equations 

The mass and momentum equations of the incompressible flows are presented as

 (1)

(2)

where  and  are density and kinematic viscosity of fluid,  is the velocity vector and p is pressure,

 is external force, and t indicates time. In the most general incompressible flow approach, the

density is assumed by a constant value with its initial value . The main concept in an

incompressible SPH method is solving a descritized pressure Poisson equation at every time step to get

the pressure value. In this paper, we used the following equation for the pressure Poisson equation

(3)

where, ( ) is relaxation coefficient,  is temporal velocity, triangle bracket < > means SPH

approximation, which is explained in the next section. Deriving Eq. (3) is proposed by Tanaka and

Masunaga (2010) in the framework of MPS method.

2.2 SPH formulation 

The fundamental basis of the SPH method is the interpolation theory. The method allows any

function to be expressed in terms of its values at a set of disordered points representing particle

positions using kernel function. A physical scalar function A(r) at a certain position r can be

represented by the following integral form

(4)

where V represents the solution space and the smoothing length h represents the effective width of

the kernel. The properties of the kernel function should satisfy the following two conditions for

mass and energy conservation

(5)

For SPH numerical analysis, the integral Eq. (4) is approximated by a summation of contributions

from neighbor particles in the support domain
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where the subscripts i and j indicate positions of labeled particle, and mj means representative mass

related to particle j. The density  in SPH form is defined by 

(7)

The gradient of the scalar function can be assumed by using the above defined SPH

approximation as follows 

(8)

Also, the other expression for the gradient can be represented by

 

(9)

In this paper, quintic spline function is utilized as a kernel function for two-dimensional problems.

(10)

In the current incompressible SPH method, the gradient of pressure and the divergence of velocity

are approximated as follow

(11)

(12)

Although the Laplacian could be derived directly from the original SPH approximation of a

function in Eq. (9), this approach may lead to a loss of resolution. Then, the second derivative of

the laminar viscous force and the Laplacian of pressure have been proposed by Morris et al. (1997)

by an approximation expression as follows

(13)

where  is a parameter to avoid a zero dominator, and its value is usually given by

 Similarly, the Laplacian of pressure in pressure Poisson equation (PPE) 
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(14) 

The PPE after SPH interpolation is solved by a preconditioned (diagonal scaling) Conjugate

Gradient (PCG) method with a convergence tolerance (=1.0 × 10−9). 

The SPS stress tensor is modeled through the traditional Boussinesq eddy viscosity assumption as

(15)

where  is an eddy viscosity is calculated by using standard Smagorinsky model

(16)

in which, Cs = 0.2 is Smagorinsky constant,  is constant and it taken as smoothing compact

support 3h in this scheme. The local strain rate  is calculated as Violeau and Issa (2007). The

turbulent kinetic energy k incorporated in the pressure term, and then the current viscous term is

reformulated as follows

(17)

where . Note that, the improved ISPH method includes the proposed source term in

the pressure Poisson equation and the eddy viscosity effect, while the original ISPH method use the

source term as divergence of velocity only (α = 0) without the eddy viscosity. 

2.3 Treatment of moving rigid body

Koshizuka and Oka (1996) proposed a passively moving-solid model to describe the motion of

rigid body in a fluid. Firstly, both of fluid and solid particles are solved with the same calculation

procedures. Secondly, an additional procedure is applied to solid particles as follows: Assuming

that, the number of solid particles is n with location  for each particle, the centre of the solid

object at , the relative coordinate of a solid particle to the centre  and the moment of inertia I

of the solid object are calculated by

(18)

(19)

(20)

The translational velocity  and rotational velocity  of solid object are calculated by
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(22)

Finally, the velocity of each particle in the solid body is replaced by

(23)

From the above rigid body corrections, the motion of free moving object can be tracked as a complete

rigid body. Gotoh and Sakai (2006) show that the previous treatment works very well in a stable

computation where the Courant condition is satisfied. In addition, Shao (2009) investigated the water

entry of a free falling wedge using an incompressible smoothed particles hydrodynamics (Incom-SPH). 

R
1

I
--- uk qk×
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n

∑=

uk T qk R×+=

Fig. 1 Flowchart of (a) original ISPH and (b) proposed ISPH
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2.4 Boundary condition

The boundary condition on the rigid bodies has an important role to prevent penetration and to

reduce error related to truncation of the kernel function. In the current work, dummy particles

technique, in which dummy particles are regularly distributed at the initial state and have zero velocity

through the whole simulation process. Moreover, the pressure Poisson equation is solved for all

particles including these dummy particles to get an enough repulsive force for preventing penetration.

3. Results and discussions

Numerical examples have been introduced to validate the current scheme.

3.1 Prediction of free falling vessels with different materials
 

In this section, the improved model has been used to simulate free falling vessels with different

manufacturing materials and wood. The relaxation coefficient in the current simulation is taken as

(α = 0.15), particle size is 1 cm and the time step ∆t = 0.001 s. The vessel is falling into liquid in

tank; splash is appear from liquid and the vessel start floating. Note, the liquid in tank is taken as

water with density . In the floating case, the position of vessel depends on the

vessel material. Three different vessel materials in this simulation have been performed as shown in

table 1. Fig. 2 shows the schematic diagram for the free falling vessel. The snapshots for the time

ρf 1.0 g cm
3⁄=

Table 1. Show the density of different vessel material

Solid Density ρ
s
 g/cm3

Polypropylene 0.86

Nylon 1.14

Delrin 1.41

Fig. 2 Present the schematic diagram for the free falling vessel
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history of floating vessel have been shown in Figs. 3-5. It is seen, as expected, that the vessel is

floating and it still over the liquid in all times when the density ratio between the density of vessel

and density of liquid is less than 1.0, while the vessel is floating until it fills completely by liquid

when the density ratio is approximately equals to 1.0. In the third case, the density ratio is greater

than 1.0, the vessel is rapidly falls dawn as the times goes and it fills completely by the liquid. Fig.

6 show the pressure distribution for free falling of three vessels during the simulation. It is observed

that, the pressure distributions during the whole simulation are smooth. Finally, the current

simulation shows a good agreement with the expected results and it keeps the total volume of fluid

Fig. 3 Show time history for free falling of Polypropylene vessel

Fig. 4 Show the time history for free falling of Nylon vessel
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Fig. 5 Show the time history for free falling of Delrin vessel

Fig. 6 Show the time history of pressure distribution during free falling of (a) Polypropylene vessel (b) Nylon
vessel and (c) Delrin vessel, respectively



216 Abdelraheem M. Aly, Mitsuteru Asai and Yoshimi Sonoda

during the whole simulation. Due to the lack of experimental test related to the current simulation,

the current simulation is compared only with the exact hydrostatic pressure as shown in fig. 7. 

3.2 Water entry and exit of horizontal circular cylinder

In this section, we described the fully nonlinear free-surface deformations of initially calm water

caused by the water entry and water exit of a horizontal circular cylinder with both free and forced

vertical motions. 

(a) Water entry with free motion

In this simulation, the deformation of free surface caused by dropped circular cylinder into calm

water. The neutral buoyant and half buoyant circular cylinder with radius 5.5 cm are used in the

calculations. ‘Neutrally buoyant’ means that the cylinder’s weight equals the buoyancy force on a

totally submerged cylinder, while the ‘half buoyant’ means the cylinder’s weight equals one half of

the buoyancy force. The relaxation coefficient in the current simulation is taken as (α = 0.2) and the

time step t=0.0005 s.

The cylinder was dropped from the height of 50 cm between the lowest point of the cylinder and

the mean free surface. Fig. 8 show the comparison of free surface deformation during water entry of

circular cylinder between improved model and experimental results for Greenhow and Lin (1983) at

the case of neutral buoyant. Also, Fig. 9 show the comparison of free surface deformation during

water entry of circular cylinder between improved model and experimental results for Greenhow

and Lin (1983) at the case of half buoyant. Note, the green color in the experimental snapshots is

corresponds to BEM method for Sun and Faltinsen (2006). From these snapshots, a good agreement

between the improved ISPH model, BEM method and experimental results has been found and the

free surface has smoothness and small deformation in the improved model.

In addition, Fig. 10 shows the comparison of the depth penetration for the circular cylinder

∆

Fig. 7 Comparison between pressure values by proposed ISPH model and exact hydrostatic pressure at time
8.0 second
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Fig. 8 Comparison of free surface deformation during water entry of circular cylinder between improved
model (Right) and experimental results for Greenhow and Lin (1983) (Left) at the case of neutral
buoyant.
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Fig. 9 Comparison of free surface deformation during water entry of circular cylinder between improved
model (Right) and experimental results for Greenhow and Lin (1983) (Left) at the case of half
buoyant.
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between the improved ISPH model and experimental data as Greenhow and Lin (1983). It is clear

that, from these comparisons, the improved model shows good agreement with experimental results

for both two cases; neutral and half buoyant. 

(b) Water exit of horizontal circular cylinder

The circular cylinder is rest at the bottom of the tank and is lifted by the constant force equal to

the cylinder weight. The relaxation coefficient in the current simulation is taken as (α = 0.2) and the

time step t=0.0005 s. Numerical results are compared with experimental results as Greenhow and

Lin (1983). Fig. 11 shows the deformation in free surface during water exit of circular cylinder at

several time instants, it is seen that, the water above the cylinder is lifted by the cylinder and thin

layers of water are formed subsequently on the top of the cylinder and it falls down along the

cylinder and causes breaking of the free surface. In addition, Fig. 12 shows the comparison of the

distance from the top of the cylinder to mean free surface during water exit of a neutrally buoyant

cylinder with experimental results as Greenhow and Lin (1983). It is observed that, the improved

model shows relatively accurate result by comparing with the experimental results.

∆

Fig. 10. Depth of penetration during water entry of neutral buoyant cylinder

Fig. 11 Comparison of free surface deformation during water exit of circular cylinder between improved
model (Right) and experimental results for Greenhow and Lin (1983) (Left)
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Fig. 11 continued
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4. Conclusions

A stabilized ISPH method is improved by introducing density invariance term with divergence of

velocity term in the pressure Poisson equation. Also, the density invariance term is multiplied by

relaxation coefficient for more stabilization. In this paper, the numerical simulations of the free

falling vessels manufacturing from different materials have been performed. Moreover, water entry

and water exit of horizontal circular cylinder have been performed by proposed incompressible SPH

method. 

In the water entry and exit of horizontal circular cylinder examples, the complicated free surface

deformation is simulated with good agreement to the photographs taken from the experimental

results. In addition, the depth of water penetration during water entry and the elapsed distance at

water exit agree well with experimental results. 

In this study, the improved ISPH method has many advantages such as:

· Keeping the total volume of fluid during the simulation which resultant from introduction of the

density invariance term with a relaxation parameter into the source term of pressure Poisson

equation.

· Preventing the penetration in rigid solid using suitable repulsive force which resultant from

solving pressure Poisson equation for all dummy particles.

· Adjust the deformation in free surface by using reasonable eddy viscosity.
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