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Abstract.  An incompressible smoothed particle hydrodynamics (ISPH) method based on the incremental 
pressure projection method is developed in this study. The Rayleigh-Bénard convection in a square 
enclosure is used as a validation case and the results obtained by the proposed ISPH model are compared to 
the benchmark solutions. The comparison shows that the established ISPH method has a good performance 
in terms of accuracy. Subsequently, the proposed ISPH method is employed to simulate natural convection 
from a heated cylinder in a square enclosure. It shows that the predictions obtained by the ISPH method are 
in good agreements with the results obtained by previous studies using alternative numerical methods. A 
rotating and heated cylinder is also considered to study the effect of the rotation on the heat transfer process 
in the enclosure space. The numerical results show that for a square enclosure at , the addition of kinetic 
energy in the form of rotation does not enhance the heat transfer process. The method is also applied to 
simulate forced convection from a circular cylinder in an unbounded uniform flow. In terms of results, it 
turns out that the proposed ISPH model is capable to simulate heat transfer problems with the complex and 
moving boundaries. 
 

Keywords:    incompressible smoothed particle hydrodynamics (ISPH); incremental pressure projection; 
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1. Introduction 
 

During the course of more than 35 years, since its inception by Gingold and Monaghan (1977) 
and, independently, by Lucy (1977), Smoothed Particle Hydrodynamics (SPH) method has 
ventured many fields of application beyond the original intention in astrophysics. Recent review 
articles by Liu and Liu (2010), Monaghan (2012) reported the diverse applications of the SPH 
method and showed the capability of the method to handle complex physical problems. In the field 
of heat transfer, many works have been carried out to apply SPH to heat conduction problems 
pioneered by the work of Cleary and Monaghan (1999). However, only a few attempts have been 
made to apply SPH to convection problems despite the importance of the phenomena. 

The first application of SPH method to convection problem dates back to Kum et al. (1995) 
who studied the Rayleigh-Bénard convection problem using a fully compressible fluid model. 
Applying Monaghan’s (1992) kernel function, periodic condition for lateral boundaries, and the 
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ideal gas equation of state, they were able to predict the critical Rayleigh number close to the value 
reported by Chandrasekhar (1961) for an infinitely long fluid layer. They stated that the deviation 
can be attributed to the different models employed in both studies where Chandrasekhar (1961) 
used Boussinesq approximation. 

Another effort to apply the SPH method to natural convection problems was done by Cleary 
(1998) who used a weakly compressible SPH model. He implemented Boussinesq approximation 
by simply replacing the body force term in the momentum equation. For the differentially heated 
cavity problem, he showed that the average Nusselt number predicted by the SPH method and 
Fastflo finite element solver were in good agreement at low and moderate Rayleigh numbers. 
However, discrepancies existed in results at high Rayleigh numbers from both methods. Cleary 
(1998) also studied Rayleigh-Bénard convection in an infinitely long fluid layer where he also 
used periodic boundary conditions for the lateral boundaries. However, he predicted the critical 
Rayleigh number which was higher than previous works. 

Szewc et al. (2011) proposed a non-Boussinesq model which was also based on the weakly 
compressible SPH method and applied the method to the differentially heated cavity problem. In 
the Boussinesq regime, they showed that the velocity profile at the midplane and the local Nusselt 
number profile at the cold surface were in good agreement with the reference data. However, the 
average values of Nusselt number predicted by the SPH method for all Rayleigh numbers 
simulated were underestimated by 4% on average in comparison with results from previous works. 
However, the SPH model developed by Szewc et al. (2011) treated differently the density variation 
caused by heat transfer and continuity equation. In the conventional weakly compressible SPH, 
density is allowed to change following the continuity equation and then used to calculate pressure 
by the equation of state. In contrast, their model used the volume of particle obtained from the 
SPH summation equation, instead of the density, to calculate pressure. In their model, density was 
only a function of temperature and only appeared in the momentum conservation and thermal 
diffusion equation. 

The Lagrangian and meshfree nature of SPH has become the key advantages when dealing with 
problems which may involve complex geometry, large deformation, moving discontinuity, or 
material interface. In some applications, those flow phenomena are coupled with heat transfer like 
the non-isothermal sloshing problem found in the fuel tank of a space shuttle or liquid metal flow 
in casting. SPH offers an easy way to discretize a continuum, whether it is a fluid or solid, using 
particles. This feature also makes it a suitable candidate to solve complex solid-fluid interaction 
problem coupled with heat transfer from fluid to solid found in turbomachine. 

In the present work, an incompressible SPH method based on the incremental pressure 
projection is developed. We applied the method to simulate natural, forced, and mixed convection 
cases. Boussinesq approximation is adopted when simulating the natural and mixed convection 
cases. We chose two-dimensional Rayleigh-Bénard convection in a square enclosure with 
isothermal horizontal boundaries and adiabatic lateral boundaries as the validation case. The 
method was also employed to simulate natural convection from an isothermal horizontal circular 
cylinder in a square enclosure. Situations where the cylinder is rotating were also simulated to 
study the effect of the forced rotation on the heat transfer process. For the forced convection case, 
we studied the uniform flow past a hot isothermal circular cylinder at Re = 40. 
 
 

2. Mathematical formulae and numerical model 
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2.1 Governing equations 
 
The three convection problems, natural, mixed, and forced convections, considered in the 

present work have different forms of governing equations. For the natural and mixed convections, 
as the result of adopting Boussinesq approximation, the body force term is present, although the 
non-dimensional groups are different, while there is no body force term for the forced convection. 
Moreover, there are different forms of non-dimensional Boussinesq equations according to 
velocity scales employed in the non-dimensionalization process. Therefore, it is convenient to 
write the governing equations in non-dimensional forms as 

 0  u   (1) 

 2
1 2

D
p C C

Dt
    

u
u   (2) 

 2
3

D
C

Dt

     (3) 

where C1, C2, and C3 are coefficients which represent non-dimensional groups that emerge as a 
result of the non-dimensionalization process. 

For the natural convection case, Gray and Giorgini (1976) discussed the choice of the velocity 

scale and suggested the use of the velocity scale,  H CU g T T L  . Using the velocity scale, 

we can define non-dimensional variables listed in Table 1. The resulting formulae for C1, C2, and 
C3 can be seen in Table 2. 

For the mixed convection case, U r  is used as the characteristic velocity. Adopting same 
definitions of non-dimensional variables as in Table 1, the formulae for the coefficients can be 
derived using the same process as in the natural convection case. The results are also listed in 
Table 2. 

For the forced convection case, the free stream velocity is adopted as the characteristic velocity. 
Because there is no body force, the coefficient C2 is equal to zero. Hence, the Navier-Stokes and 
the thermal diffusion equations are uncoupled. The other two coefficients, C1 and C3, are defined 
as shown in Table 2. 

 
 

Table 1 Formulae for the coefficients in the non-dimensional governing equations 

Coefficient Natural convection Mixed convection Forced convection

Coefficient of viscous term 
1

Pr
C

Ra
  1

1.0
C

Re
  1

1.0
C

Re
  

Coefficient of body force term  2
1.0C   

2 2

Ra
C

PrRe
  0.0 

Coefficient of temperature Laplacian 3

1.0
C

PrRa
  

3

1.0
C

RePr
  

3

1.0
C

RePr
  
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Table 2 Comparison of average Nusselt numbers at the bottom boundary of the Rayleigh-Bénard convection  
in a square enclosure 

Rayleigh number Ouertatani et al. (2008) Present study 

104 2.158 2.159 
105 3.910 3.888 
106 6.309 6.317 

 
 
Throughout this study, we use SPH gradient and divergence operators denoted, respectively, as 

  j
j i iji

jj

m
W  


      (4) 

and 

  j
j i iji

jj

m
W


    v v v   (5) 

where i  and iv  denotes scalar and vector variables of ith particle. 
When the above operators are used in conjunction with the kernel gradient correction proposed 

by Bonet and Lok (1999), their accuracies are significantly improved. This issue has been studied 
in detail by Oger et al. (2007). Although it appears that they flout the coherence principle and 
infringe on the reciprocity principle, above operators give better performance compared to the 
symmetric operators. In the context of incompressible SPH, Xu et al. (2009) has successfully 
applied above operators to simulations of Taylor-Green vortices. 

The corrected kernel gradient, ijW  , is given by 

 ij i ijW W  L   (6) 

where iL  is the kernel gradient correction. Following Bonet and Lok (1999), the formula for 

iL is denoted as 

 1
i i

L M   (7) 

where 

 ( )j
i ij i j

jj

m
W


   M x x   (8) 

The Laplacian operator applied in this work is similar to the one suggested by Brookshaw 
(1985). Morris et al. (1997) successfully applied this form of Laplacian to viscous flow 
simulations. Similar formulation is also used by Cummins and Rudman (1999) and Xu et al. 
(2009) to formulate the discrete pressure Poisson equation of incompressible SPH method. The 
Laplacian operator formulae for a scalar variable,  , and a vector variable, v, of the ith particle 
are denoted, respectively, as 
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   2
2

2.0 ij i i jj
i ji

jj ij

Wm
  



       
 


x x x

x
  (9) 

and 

 
   2
2

2.0 ij i i jj
i ji

jj ij

Wm



       
 


x x x

v v v
x

  (10) 

Applying the suitable operator, we can obtain the SPH discretized momentum equation and the 
thermal diffusion equation denoted, respectively, as 

 

   

   1 22

2.0

ji
j i i i j

jj

ij i i jj
i j i

jj ij

mD
p p W

Dt

Wm
C C






     

       
 





u
x x

x x x
u u j

x

  (11) 

and 

 
   3 2

2.0 ij i i jji
i j

jj ij

WmD
C

Dt


 



      
 


x x x

x
  (12) 

 

2.2 Kernel function 
 
The choice of kernel function is of paramount importance in SPH since the stability of SPH 

strongly depends upon the second derivative of the kernel. A detailed description on the method of 
constructing kernel function can be found in the monograph by Liu and Liu (2003). In this study, 
we apply the quintic spline kernel function identical to the one adopted by Morris et al. (1997). 
The formula of the quintic spline is denoted as 

  

     
   
 

5 5 5

5 5

5

3 6 2 15 1 , 0 1;

3 6 2 , 1 2;

3 , 2 3;

0, 3;

s s s s

s s s
f s

s s

s

       

      
   




  (13) 

and the normalized kernel function in two dimensions is denoted as 

 
2

7

478
W f

h
   (14) 
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Sigalotti et al. (2003) compared the performance of the quintic spline kernel and the cubic 
spline kernel for the case of plane Poiseuille flow where the effect of the viscous term is 
significant and found that quintic spline kernel gave better results. 

 
2.3 Boundary treatment 
 
SPH has an isotropic stencil that becomes truncated near a wall. A truncated kernel will cause 

an incorrect gradient evaluation for a near-wall particle and could drive a particle to penetrate the 
wall. A technique using edge and dummy particles identical to the one used by Lee et al. (2008) is 
employed in this study. A layer of particles is placed exactly at the boundary. These particles, the 
so-called edge particles, follow the conservation equations, have zero velocity and do not move. 
Each edge particle corresponds to a number of dummy particles placed in line beyond it so that the 
wall thickness is about equal to the support length. This setting is used to maintain the uniformity 
of particle distribution. Dummy particles do not follow the conservation equations. Values of field 
variables of dummy particles are determined according to the relevant boundary condition at the 
wall. 

In order to enforce the non-slip boundary condition, dummy particles are assigned the same 
velocity value as the corresponding edge particles. Homogenous Neumann boundary condition on 
pressure can be enforced by assigning to dummy particles the same pressure value as the 
corresponding edge particle, while letting the pressure of edge particles to evolve following the 
governing equations. 

An adiabatic boundary condition is implemented by assigning to dummy particles the same 
temperature value as the corresponding edge particle. Meanwhile, the temperature of the 
corresponding edge particle is evolved following the governing equations. This method will give a 
zero temperature gradient across the boundary. An isothermal boundary can be implemented by 
keeping temperatures of edge particles constant while temperatures of the corresponding dummy 
particles are extrapolated using a first order Taylor expansion based on the temperature gradient of 
the edge particle. 

For an external flow problem, like the flow past a circular cylinder, the domain basically 
extends to infinity. However, in order to be feasible, the domain used in the simulation must be 
finite. Therefore it is necessary to truncate the domain and to define boundaries and boundary 
conditions that would take into account the effects of the finite domain to the solution. In grid 
based methods, it is a common practice to use rectangular domain when simulating external flow. 
One boundary, usually the left vertical boundary, is defined as the inlet with Dirichlet boundary 
condition on velocity. The opposite boundary is defined as the outlet with Dirichlet boundary 
condition on pressure. The Neumann boundary conditions on pressure and velocity are usually 
prescribed at the lateral boundaries. 

In the present work, we only defined boundary conditions for inlet and outlet boundaries and 
left the lateral boundaries without any prescribed condition. We believe that the SPH method can 
handle the domain truncation well without any need for prescribing the boundary condition that 
will take into account the effect of the finite domain. The inlet and outlet boundaries are 
implemented by defining the inlet and outlet regions beyond the domain boundaries whose widths 
are equal to support length. This method is similar to the one proposed by Lastiwka et al. (2009). 
However, instead of introducing particles at the inlet and destroying them at the outlet, as proposed 
by Lastiwka et al. (2009), we simply drag back the particles that have moved beyond the outlet 
region into the inlet region. We believe that mass conservation is better treated this way. Moreover, 
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this method is easier to implement compared to the former.  
 
2.4 Incremental pressure projection 
 
Using the first order backward difference in time, we can write the discretized momentum 

conservation equation in the following form 

 
1

1 2
1 2

n n
n np C C

t





    


u u
u j   (15) 

Defining the auxiliary velocity field, u*, and writing the pressure at the next time step, pn+1, as 

 1n np p p     (16) 

the momentum conservation equation can be split into 

 
*

2
1 2

n
n np C C

t


    


u u
u j   (17) 

 
1 *n

p
t


 

 


u u
  (18) 

Taking divergence on both sides of Eq. (18), the pressure Poisson equation in the following form 
is obtained 

 2 p
t

  
 


u

  (19) 

It was Chorin (1968), Temam (1968) that originally suggested the projection method to solve the 
Navier-Stokes equation. The idea of incorporating pressure gradient from the previous time step to 
increase the stability was first put forth by Goda (1979) leading to above decomposition. 
Applying SPH operators defined above, we obtain the SPH pressure Poisson equation denoted as 

 
       2

2.0 1ij i i jj j
i j j i i i j

j jj jij

Wm m
p p W

t
 

 

           
 

 
x x x

u u x x
x

  (20) 

Assembling SPH pressure Poisson equations for all fluid and edge particles, a system of linear 
equation in the form of 

 Ax B   (21) 

where 

 
 
2

2.0
( , )

ij i i jj

j ij

Wm
A i j



       
 

x x x

x
  (22) 
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 
2

2.0
( , )

ij i i jj

jj ij

Wm
A i i



      
 


x x x

x
  (23) 

and 

      1 j
j i i i j

jj

m
B i W

t 
   
  u u x x   (24) 

is generated. 
For cases where wall boundaries are presented, a homogenous Neumann boundary condition on 

pressure denoted as 

 0p


 n   (25) 

must be imposed when solving the pressure Poisson equation. Under the method of edge and 
dummy particles, this condition implies that the pressures of dummy particles must have the same 
value as the corresponding edge particles. This condition can be easily incorporated by modifying 
the coefficient matrix of the corresponding edge particles. Using this method, the homogenous 
Neumann boundary condition will be automatically satisfied when the system of linear equation is 
solved. In this study, general minimal residual (GMRES) method is used to solve the system of 
linear equation for all simulated cases. 

The pressure field obtained using this method could suffer from the so-called spurious pressure 
mode. Monaghan (1989) has derived a formula to smooth out the velocity field so that the particle 
moves with a velocity that is close to the average velocity in its neighbourhood. In the present 
work, a similar formula is applied to smooth out the pressure field and remove the spurious 
pressure mode. When it is applied to the pressure, the formula is denoted as 

    j
i i j i i j

jj

m
p p p p W


    x x   (26) 

where ip  is the smoothed pressure. 

 
2.5 Tensile instability 
 
Incompressibility condition requires that a particle has a constant volume. In a Lagrangian 

method such as SPH, it means that the particle distribution should be uniform. If particles are 
closely clustered in a region of the flow domain and leaving other region void of particle, we can 
no longer hold that the volumes of those closely clustered particles are constant. It is noted by Hu 
and Adams (2007), only if a discrete velocity-divergence-free condition is enforced, particle 
clustering may occur due to the spatial truncation error of the discretization scheme. 

In this work, we employ the particle shifting strategy proposed by Xu et al. (2009) to prevent 
particle clustering. The idea of this method consists in shifting the fluid particles a little bit away 
from their streamlines and corrects the field variables according to the first order Taylor expansion. 
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The direction and amount of the shift is determined by the local arrangement of neighbouring 
particles under the support region. We also adopt the formula in Xu et al. (2009) to determine the 
shifting vector and position shift. 

 
2.6 Time step criteria 
 
There are two widely used time step criteria in the context of incompressible SPH that limit the 

choice of time step size. Cummins and Rudman (1999) proposed a CFL stability constraint 
expressed by 

 
0.25h

t
U

    (27) 

for resolutions less than 50 × 50 and a viscous diffusion condition-based constraint denoted as 

 20.125t Reh    (28) 

for higher resolutions. On the other hand, Shao and Lo (2003) used initial particle spacing instead 
of smoothing length, h, in the CFL condition and proposed a smaller constant of 0.1 leading to a 
stringent requirement. 

 
2.7 Solution algorithm 
 
The solution algorithm based on the above numerical schemes is described in the following 

steps  
1. Calculate auxiliary velocities using the momentum equation including the pressure gradient 

from previous time step and the body force term 

    * 2 2 1 1
1 21.5 0.5 1.5 0.5n n n n n n

i i i i i i it p C C              u u u u j  (29) 

The second order Adam-Bashforth scheme is applied to the viscous and body force terms to 
increase the accuracy. 

2. Calculate the mass residual 

 *
i iD u  (30) 

3. Assemble the SPH pressure Poisson equation (Eq. (19)) and solve for δp. 
4. Calculate pressure at the next time step 

 1n np p p    (31) 

5. Calculate the gradient of δpand use it to calculate the velocity at the next time step 

 1 *n
i i t p   u u  (32) 

6. Calculate the Laplacian of temperature and use it to update the temperature at the next time 
step 
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  1 2 2 1
3 1.5 0.5n n n n

i i i iC          (33) 

The second order Adam-Bashforth scheme is applied to the temperature Laplacian term to 
increase the accuracy. 

7. Update the position of the particle 

  1 11.5 0.5n n n n
i i i it    x x u u  (34) 

8. Apply particle shifting strategy to prevent tensile instability and correct field variables using 
Taylor expansion. 
 
 
3. Results and discussion 
 

3.1 Validation of the numerical scheme 
 
The Rayleigh-Bénard convection in a square enclosure was simulated in this study for 

validation purposes. The horizontal walls were in isothermal conditions. The presence of adiabatic 
lateral walls serves as a test bed for the implementation of the SPH boundary condition. Recently, 
benchmark solutions for this case at various Rayleigh numbers were proposed by Ouertatani et al. 
(2008). They used a finite volume multigrid method and a fine mesh to simulate the case. Their 
results were used to validate the developed numerical scheme. Following Ouertatani et al. (2008), 
the reference temperature, Tref, is defined as 

 
2.0

H C
ref

T T
T


   (35) 

 
 

 
Fig. 1 Schematic of the domain and boundary conditions for the Rayleigh-Bénard convection in 
a square enclosure 
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Using the definition of reference temperature in Eq. (36), the isothermal hot and cold boundary are 
given by 

 0.5H   and 0.5C    

The schematic layout of the system is presented in Fig. 1. The Prandtl number was taken as 0.71 
similar to the air property. A time step of 10−3 was used for all simulated Rayleigh numbers. 

A particle number independence study was conducted to determine how the solution will 
behave with increasing number of particles and to establish the number of particles that will be 
used in the validation study. A Rayleigh number of 105 was chosen for the study. The results of the 
particle number independence study are presented in Fig. 2 in terms of the local Nusselt number 
profile at the bottom wall. It is interesting to note that in this case the solution obtained using a 
smaller number of particles does not show a significant difference compared to the one obtained 
using a larger number of particles except at corners of the domain. 

Simulations were carried out at Ra = 104, 105, and 106. The evolution of Rayleigh-Bénard 
convection at Ra = 105 is depicted in Figs. 3(a)-(c). Streamlines and isotherms of the results are 
presented in Figs. 4-5, respectively. The streamlines show that the corner vortices become larger 
with increasing Rayleigh number. Horizontal and vertical velocity profiles at the mid plane are 
presented in Figs. 6-7, respectively. The velocity profiles show that results from the ISPH method 
are in good agreement with the benchmark solutions. Local Nusselt number profiles at the bottom 
boundary are presented in Fig. 8. For the local Nusselt number profiles, results predicted by the 
ISPH method are in good agreement with the benchmark solutions except for the slight 
discrepancy at higher Rayleigh number. Table 3 depicts the comparison of average Nusselt 
numbers at the bottom boundary due to varying Ra. The average Nusselt numbers obtained are 
also in good agreement with the benchmark solution. 

 
 

x

N
u

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Ouertatani  et al. (2008)
3364 particles
6561 particles
11236 particles
33124 particles

 
Fig. 2 Grid independence study using local Nusselt number profile at the bottom wall 
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Fig. 3 The isothermal evolution of Rayleigh-Bénard convection at Ra = 105. Particles are colored 
by dimensionless temperature 

 

Fig.4 Streamlines of the Rayleigh-Bénard convection case for all simulated Rayleigh numbers 
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Fig. 5 Isotherms of the Rayleigh-Bénard convection case for all simulated Rayleigh numbers 
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Fig. 6 Horizontal velocity profiles at the middle plane in the Rayleigh-Bénard convection case 
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Fig. 7 Vertical velocity profiles at the middle plane in the Rayleigh-Bénard convection case 
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Fig. 8 Profiles of local Nusselt number along the bottom boundary in the Rayleigh-Bénard 
Convection case 

 
Table 3 Average Nusselt numbers at the cylinder surface of the natural convection in a square enclosure from  
a heated cylinder 

 Ra = 104 Ra = 105 Ra = 106 

Moukalled and Acharya (1996) 2.071 3.825 6.107 
Shu and Zhu (2002) 2.080 3.790 6.110 
Peng et al. (2003) 2.080 3.790 5.960 

Angeli et al. (2008) 2.225 3.733 6.267 
Present study 2.099 3.823 6.133 
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Fig. 9 Schematic of the domain and boundary conditions for the natural convection in a 
square enclosure from a heated cylinder 

 
 
3.2 Natural convection from a heated cylinder inside a square enclosure 
 
The phenomenon of natural convection from a heated cylinder placed at the centre of a square 

enclosure was simulated. The system consists of a square enclosure filled with air. Isothermal 
boundary conditions were given at all of the walls and a cylinder was placed at the centre of the 
enclosure whose surface was also in an isothermal condition but at a hotter temperature. This case 
was first studied numerically by Moukalled and Acharya (1996) using a finite volume method and 
a body fitted mesh. They used the steady state formulation of the governing equations and solved 
one-half of the domain arguing for the symmetric nature of the flow around the vertical axis. They 
performed numerical simulations for three different diameters of cylinder to enclosure width ratio 
and four different values of Rayleigh number ranging from 104 to 107. 

Later, Shu and Zhu (2002) developed a differential quadrature method to simulate this problem. 
Using the differential quadrature method, they could obtain accurate solutions using relatively 
coarse grids. They also adopted the steady state formulation of the governing equations. The 
simulations were performed for Rayleigh numbers ranging from 104 to 106 and aspect ratios 
between 1.67 and 5.0. The results were validated against Moukalled and Acharya (1996). Another 
study was carried out by Peng et al. (2003) using the lattice Boltzmann method. The simulations 
were performed at the same ranges of Rayleigh numbers and aspect ratios as in Shu and Zhu (2002) 
and the results were also validated against Moukalled and Acharya (1996). Recently, Angeli et al. 
(2008) revisited the problem and studied not only the steady flow-field and heat transfer 
predictions but also the long-term behaviour of the flow regimes using the direct numerical 
simulation. 

In the present study, the ratio of cylinder diameter to enclosure width is set as 0.2. The 
simulations were performed at Ra = 104, 105, and 106. The schematic of the convection problem is 
depicted in Fig. 9. The Prandtl number was taken equal to 0.7 in this problem. A dimensionless 
time step of 10−3 was selected for all simulations in this problem. 
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(a) Ra = 104 

            
(b) Ra = 105                                        (c) Ra = 106 

Fig. 10 Streamlines of the natural convection in a square enclosure from a heated cylinder for all 
simulated Rayleigh numbers 

 

 
Fig. 11 Streamlines of the natural convection in a square enclosure from a heated cylinder for 
allsimulated Rayleigh numbers 
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Fig. 12 Isothermal profiles at the middle plane of the natural convection in a square 
enclosure from a heated cylinder for all simulated Rayleigh numbers 

 
 
Streamlines and isotherms of the results are presented in Figs. 10-11. The isotherms show that 

at low Rayleigh number, conduction dominates the heat transfer mechanism. Heat is transferred 
radially from the surface of the cylinder to the boundaries of the enclosure. At higher Rayleigh 
numbers, the density variation becomes significant, causing a substantial upward movement of the 
fluid, i.e. the so-called thermal plume. This upward movement is compensated by entrainments 
below the cylinder. Hence, convection becomes a dominant heat transfer mechanism. 

Temperature profiles along the horizontal direction at the mid plane are presented in Fig. 12. At 
low Rayleigh number, temperature decreases monotonically with increasing distance from the 
cylinder surface. The phenomenon of temperature inversion emerges at higher Rayleigh numbers. 
At higher Rayleigh numbers, temperature drops rapidly in the vicinity of the cylinder surface and 
then increases slowly before it decreases again near the cold surface of the enclosure. It is like that 
a thermal boundary layer is formed near the wall boundaries. The figure also shows that the results 
from the ISPH method are in good agreement with the results from Moukalled and Acharya 
(1996). 

Vertical velocity profiles along the horizontal direction at the middle plane are presented in Fig. 
13. The profiles are steeper in the region adjacent to the cylinder surface than those in the region 
adjacent to the cold boundaries because the density stratification is higher in the vicinity of the 
cylinder than other regions in the domain. Since Moukalled and Acharya (1996) used a different 
velocity scale (U L ) in the non-dimensionalization process, the velocity from the present 
study must be rescaled before a comparison is made. The formula for rescaling is denoted as 

 2 1

Ra
u u

Pr
   (36) 

where u2 denotes the non-dimensional velocity when U L  and u1 denotes the 
non-dimensional velocity when U g TL  . The comparison shows that generally the results  
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Fig. 13 Vertical velocity profiles at the middle plane of the natural convection in a square 
Enclosure from a heated cylinder for all simulated Rayleigh numbers 

 
Table 4 Drag coefficient, recirculation length, and average Nusselt number at the cylinder surface for the  
forced convection from a circular cylinder in an unbounded uniform flow 

 CD lw uN  

Kim and Choi (2004) - - 3.23 
Pan (2006) 1.51 2.18 3.23 

Pacheco-Vega et al. (2007) 1.53 2.28 3.62 
Noor et al. (2009) 1.51 2.26 - 

Present study 1.504 2.155 3.16 
 
 
from the ISPH method and the results from Moukalled and Acharya (1996) are in good agreement. 

Average Nusselt numbers at the cylinder surface for all simulated Rayleigh Numbers are 
presented in Table 4 along with results from previous studies. On average, the relative error of the 
results from the present study compared to the previous studies is about 1.57%. The relative errors 
at low Rayleigh number (Ra = 104) are generally higher (2.21 % in average) compared to relative 
errors at higher Rayleigh Numbers. 

 
3.3 Mixed convection in a square enclosure from a heated and rotating cylinder 
 
A heated and rotating cylinder is also considered in this work. The rotation of the cylinder 

introduces forced convection to the system. While the natural convection induces symmetric flow 
around the cylinder, the forced flow generated by the rotation of the cylinder is unidirectional in 
the azimuthal direction. It is interesting to study the heat transfer phenomena under the varying 
ratio of buoyancy force to inertia force. 

Ghaddar and Thiele (1994) studied a similar problem in a vertical rectangular enclosure using a 
spectral element method with a body fitted mesh. The cylinder was placed in the center of the 
lower half of the rectangular enclosure. The walls were in constant heat flux conditions. The ratio 
of the diameter of cylinder to the enclosure width was 0.2. Simulations were carried out for  
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Fig. 14 Schematic of the domain and boundary conditions for the mixed convection in a 
squareenclosure from a heated and rotating cylinder 

 
 

2
DRa Re  ranging from 0.4 to 250. They concluded that the heat transfer was significantly 

enhanced at low Ra. They also stated that at the Reynolds number of 100.0 the flow became 
unsteady. 

In the present study, we consider a square enclosure with the same cylinder diameter as in 

Ghaddar and Thiele (1994). We investigate a regime where 2 1DRa Re  . In this regime, the 
strength of buoyancy force is comparable to the inertia force. Simulations were carried out at Pr = 
0.71 and ReD = 100. Rayleigh number is varied from 104 to 106. The cylinder and enclosure walls 
are in isothermal conditions. The schematic layout of the domain and boundary conditions can be 
seen in Fig. 14. A dimensionless time step of 10−3 is chosen. 

Steady streamlines and isotherms of the results at Ra = 104 − 106 are presented in Figs. 15-16. 

For Ra = 104 or 2 1DRa Re  , forced convection dominates the heat transfer process. The 
isotherms are circular and concentric similar to the case of a stationary cylinder at same Rayleigh 
number. The streamlines at this Rayleigh number are also circular and concentric indicating that 
the forced rotation dominates the flow phenomenon. 

At Ra = 5×104, the effect of buoyancy begins to emerge at the right hand side of the cylinder 
where the direction of the cylinder rotation is parallel to flow induced by the buoyancy force. At 
Ra = 105, a saddle point can be readily seen in the streamlines on the vicinity of the cylinder. In the 
region inside the saddle point, the forced rotation is dominant. In the region outside the saddle 
point, buoyancy induced flow is dominant. The saddle point moves closer to the cylinder surface 
with increasing Rayleigh number and the layer where the forced rotation is dominant becomes 
thinner. At the left hand side of the cylinder, the velocity profile reverts sharply in the radial 
direction. This phenomenon poses a problem of stability to the method at higher Rayleigh number. 
At Ra = 106, a distinct thermal plume can be seen to rise from the cylinder. The rotation convects 
the plume to the top left corner of the enclosure. 
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(a) Ra = 104 (b) Ra = 5×104 (c) Ra = 105 

  
(d) Ra = 5×105                                                     (e) Ra = 106 

Fig. 15 Streamlines of the mixed convection in a square enclosure from a heated and rotating cylinder at 
ReD = 100 for all simulated Rayleigh numbers 
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(d) Ra = 5×105                                                     (e) Ra = 106 

Fig. 16 Isotherms of the mixed convection in a square enclosure from a heated and rotating cylinderat ReD = 
100 for all simulated Rayleigh numbers 
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Fig. 18 The variation of average Nusselt number at the cylinder surface with increasing Reynolds 
number at Re = 105 

 
 
Fig. 17 depicts a comparison of average Nusselt number at the cylinder surface between the 

stationary and rotating cylinders. The figure shows that, for a square enclosure, the average 
Nusselt numbers of the rotating cylinder are lower than the stationary cylinder. The variation of 
average Nusselt number at the cylinder surface with respect to constant Rayleigh number at Ra = 
105 is presented in Fig. 18. It is shown in the figure that the average Nusselt number drops when 

the Reynolds number increases. All of the results presented above indicate that at 2 1DRa Re  , the 
forced rotation does not enhance the heat transfer process. 
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Table 5 Drag coefficient, recirculation length, and average Nusselt number at the cylinder surface for the 
forced convection from a circular cylinder in an unbounded uniform flow 

 CD lw uN  

Kim and Choi (2004) - - 3.23 
Pan (2006) 1.51 2.18 3.23 

Pacheco-Vega et al. (2007) 1.53 2.28 3.62 
Noor et al. (2009) 1.51 2.26 - 

Present study 1.504 2.155 3.16 
 
 
3.4 Forced convection from a cylinder in a uniform flow 
 

We simulate the forced convection from a hot isothermal circular cylinder in an unbounded 
uniform flow at Re = 40. At Re = 40, the flow is laminar with steady separation. A pair of steady 
counter rotating vortices is formed in the near wake. The time history of the recirculation length 
obtained in the present work compared to previous works is depicted in Fig. 19. The comparison 
of drag coefficient, recirculation length and average Nusselt number at the cylinder surface in the 
steady state with previous works is listed in Table 5. We can see from those comparisons that the 
results obtained by current ISPH method are in good agreement with previous results. 
 
 
4. Conclusions 
 

In the present study, an incompressible SPH method based on incremental pressure correction 
has been developed. The pressure Poisson equation resulting from the decomposition process is 
solved with a homogenous Neumann boundary condition. Rayleigh-Bénard convection in a square 
enclosure is simulated to validate the proposed method. The comparison of the results with the 
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benchmark solution obtained by the finite volume multigrid method shows that the present ISPH 
method is able to achieve a comparable accuracy with a well-established numerical model. In this 
case, the SPH method is also able to reveals the detailed features of the flow phenomenon, i.e., like 
the corner vortices. 

The application of the ISPH method to the natural convection problem in a square enclosure 
from a heated cylinder shows the promising capability of the method to model a complex 
geometry without mesh generation. The results obtained are in good agreement with results from 
the previous studies which are based on alternative numerical method. 

The study of mixed convection from a heated and rotating cylinder at using the ISPH method 
shows that in a confined space the addition of kinetic energy to the system in the form of rotation 
does not enhance the heat transfer process. 

Using a simple method for inlet and outlet treatment, current incompressible SPH method is 
capable of simulating forced convection in external flow without having to prescribe any boundary 
condition for the lateral boundaries. 
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