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Abstract.    Meshfree methods are known to have the capability to overcome the strict regularization 
requirements and numerical instabilities that encumber the finite element method (FEM) in large 
deformation problems. They are also more naturally suited for problems involving material perforation and 
fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a 
coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation 
is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary 
fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the 
material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate 
both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. 
To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass 
control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to 
make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown 
for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses 
demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings 
of concrete structures was able to be realistically captured by the coupled formulation. 
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1. Introduction 
 

Since its origination (Courant 1942), the finite element method (FEM) has been widely 
documented in the literature and a number of implicit and explicit FEM solvers, such as ANSYS, 
LS-DYNA, DYNA3D and ADINA, have been developed. The discretization of the problem 
domain in FEM is achieved by using elements, typically with very simple shape functions and 
high order quadrature rules. FEM has been proved itself to be a robust analysis method for 
numerous varieties of engineering and scientific problems. However, in applications, FEM is 
known to have difficulties with problems involving large deformations and moving discontinuities, 
such as the extremely large deformations incurred in some manufacturing processes, or the growth 
of cracks with arbitrary and complex paths present in failure (fragmentation) processes. For these 
kinds of problems, the finite element solution is highly mesh-dependent. 
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Meshfree methods, on the other hand, discretize the problem domain by a set of particles or 
nodes, which are not connected to form any sort of mesh or element. The meshfree approximation 
is performed completely in terms of these discrete particles and the meshfree shape functions 
associated with each particle exhibit a compact support (i.e., cover only a small portion of the 
domain). Thus, it has become possible to solve many types of problems that are difficult to handle 
with mesh-based methods (e.g., FEM) and avoid the regularity requirements caused by the mesh 
needed by these methods. Well known meshfree methods include the smoothed particle 
hydrodynamics (SPH) (Gingold and Monaghan 1977 and Monaghan 1988), the element-free 
Galerkin (EFG) (Belytschko et al. 1994, 1995), the material point method (MPM) (Bardenhagen 
and Kober 2004) and the reproducing kernel particle method (RKPM) (Liu et al. 1995, Chen et al. 
1996). 

The shape functions of the RKPM (Liu et al. 1995, Chen et al. 1996) are constructed solely 
based on the positions of the discrete particles used in discretizing the problem domain while no 
connectivity information is involved. The solution accuracy of this type of approximation has no 
strong dependence on domain discretization and there are no mesh distortion issues, which appear 
frequently in element based methods such as FEM for large deformation problems. Therefore, 
large deformation problems can be solved by the RKPM with a Lagrangian formulation (Chen et 
al. 1996). The Lagrangian RKPM has been applied in many solid mechanics problems such as 
rubber (Chen et al. 1998b), metal forming (Chen et al. 1998a) and geotechnical materials (Chen et 
al. 2001b, Wang et al. 2011) and even computational fluid dynamics (Liu et al. 1997). 

However, similar to FEM, the Lagrangian RKPM has some regularization requirements as well 
and was found ineffective for modeling extremely large deformation problems, such as earth 
bulldozing problems (Wu 2005). This is because the deformation gradient, which is required for 
mapping the current configuration and the reference configuration, loses positive definiteness and 
cannot provide a one-to-one mapping at some material points. Therefore, a semi-Lagrangian 
reproducing kernel approximation was developed (Wu 2005, Chen and Wu 2007). In the 
semi-Lagrangian formulation, the kernel function and its support are evaluated in the current 
configuration and all approximations are performed in this configuration, therefore, the 
deformation gradient is not required any more. The spatial and temporal stability of the 
semi-Lagrangian approach was established by Chen and Wu (2007) and Guan et al. (2009). 
Physical responses were obtained in the analyses of earth bulldozing (Guan et al. 2009) and high 
velocity fragment-impact problems (Guan et al. 2011, Wu et al. 2013) with the semi-Lagrangian 
formulation. 

There are two ways to integrate the RKPM weak form formulations. One is the traditional 
Gauss integration. With high order Gauss quadrature rules, RKPM formulations are able to 
effectively solve many solid mechanics problems (Chen et al. 1996, 1998a, 1998b and 2001b). 
However, Gauss integration was shown not to satisfy integration constraints (Chen et al. 2001a), 
which are essential for obtaining optimum convergence rates and accuracy. Therefore, a stabilized 
conforming nodal integration (SCNI) technique was developed by Chen et al. (2001a, 2002) to 
remedy this shortcoming. Unlike Gauss integration, which needs background grids, SCNI 
performs integration directly at nodal points. Thus, both its efficiency (convergence rate) and 
accuracy are high. The SCNI technique was also generalized to beam, plate and shell formulations 
by Wang and Chen (2004, 2006, 2008), Chen and Wang (2006), Wang and Wu (2008), Wang and 
Sun (2011) and Wang and Lin (2011). 

In this research, a coupled finite element – reproducing kernel (FE/RK) scheme is implemented 
into the DYNA3D code (Lin 2005) for modeling concrete fragmentation behaviors through the 
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post-failure regime. The primary objective of this coupling approach is to provide a more effective 
and accurate means to capture responses in highly distorted and damaged regions of the model (by 
RKPM), which may involve regions where the formation of shear band localization is occurring, 
cratering and ejecta caused by fragment impacts is of interest and other complex behaviors which 
are difficult for FEM. The weak form of the coupled formulation is integrated by Gauss integration. 
Viscous type hourglass control (Flanagan and Belytschko, 1981) is implemented to suppress 
hourglass modes when one-point quadrature rule is applied for hexahedral integration grids. 

To enable the coupled FEM/RKPM scheme to model concrete behaviors physically, the K&C 
concrete (KCC) model (Malvar et al. 1997) was extended to work with the meshfree discretization. 
The internal damage variable of the KCC model was selected as the criteria for triggering the 
conversion (evolution) from FE approximation to RK approximation. Compared with other 
approaches such SPH (Rabczuk and Eibl 2003) in modeling concrete fragmentation, this 
evolutionary coupling approach allows for only those parts of the FEM mesh that are badly 
distorted to be converted, which afforded an overall faster solution since meshfree solvers are 
much slower. Meanwhile, the concrete constitutive law employed in this study is widely accepted. 
Results from several analyses are presented to demonstrate the application of the coupled 
formulations, including concrete results for quasi-static responses and fragmentation responses 
induced by blast and impact loads. 

The organization of this paper is: Section 2 describes the coupled formulations; Section 3 
briefly introduces the K&C concrete (KCC) model; Section 4 presents the numerical applications 
of the coupled schemes; and the last section concludes the current study. 
 
 
2. Coupled finite element / reproducing kernel approximation 
 

Due to its simple shape functions (usually, piece-wise linear), the FEM has high efficiency but 
low accuracy (because of low order shape functions). On the other hand, due to its high order 
consistency, the RKPM has high accuracy but low efficiency (to deal with high order shape 
functions). To take advantage of both FE and RK formulations (i.e., high efficiency of FEM and 
high accuracy of RKPM), several methods were developed and evaluated for coupling FEM and 
RKPM discretizations, which are discussed by Guo et al. (2004), Crawford et al. (2005), Chen et 
al. (2006), Wang et al. (2009) and Wu et al. (2013). In this research, a coupled FE and RK 
technique is implemented under the DYNA3D (Lin 2005) framework to model concrete 
fragmentation processes by discretizing the highly damaged regions with RKPM and other regions 
with FEM. Therefore, better accuracy (than pure FEM) and higher efficiency (than pure RKPM) 
are obtained. 

Gauss integration, which is widely applied in many FEM codes, is employed in the domain 
integration in DYNA3D. Satisfactory accuracy is achieved even with low order quadrature rules 
(such as one-point integration) in explicit calculations, which is very efficient. Therefore, to assure 
the efficiency of the coupled simulation, Gauss integration is also applied to integrate RKPM 
domains and the integration cells for the RKPM domains are exactly the same elements used in 
finite element discretization. By doing so, state variable transition is not required when the FEM 
domain is converted to an RKPM domain since the state variables are stored at the same 
integration points before and after conversion. In addition, a minor advantage of Gauss integration 
over nodal based integration (e.g., SCNI or direct nodal integration) is that no special treatment is 
needed for the stiffness of interface nodes between various materials since the stiffness is 
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evaluated at integration points rather than nodal points in Gauss integration while each integration 
cell belongs to only one material. On the other hand, the stiffness of interface nodes between 
various materials needs to be approximated by such means as interpolation or averaging in a nodal 
based integration. 
 

2.1 Coupling scheme 
 
The coupled simulation starts with FEM for the entire domain and then the FEM nodes are 

dynamically converted to RKPM nodes based on a user defined triggering mechanism (explained 
later). Since the same quadrature rule (Gauss) is applied for both FEM and RKPM domains, the 
FEM – RKPM conversion is performed directly (i.e., the only change being the use of the RK 
shape function to replace the FE shape function when the conversion is carried out). Therefore, the 
FE and RK shape functions are first constructed at all the integration points respectively and then 
they are coupled according to 

       1I I IR N R    x x x
                    

(1) 

where  I x  is the coupled shape function of node I  evaluated at integration point x ; 
 IN x  is the standard FE shape function;  I x  is the RK shape function (introduced in the 

next sub-section);  0 1R R   is the coupling function. The coupled shape function  I x  
satisfies partition of unity automatically since the FE and RK shape functions satisfy partition of 
unity respectively. 

The scheme for the coupling is graphically illustrated in Fig. 1. The coupling function R  
starts with zero for all integration points so that the whole domain is approximated by FE 
formulation. When the triggering criteria is satisfied, R  is set to unity at the specific integration 
point and the coupled shape function is defined according to Eq. (1). For example, when the 
damage at integration point 0x  (i.e., at the center of the integration cell or element if one-point 
integration is used) satisfies the triggering criteria, R  at 0x  is set to unity and then: the nodes 
within the region covered by the sphere (or a circle in two dimensions) with radius of 1d  (usually 

1d  is bigger than the maximum support size of all the nodes in the specific element) are converted 
to RKPM nodes; the nodes outside the region covered by the sphere of 2d  are kept as FEM 
nodes; and the nodes between the two spheres with radii of 1d  and 2d  are defined as coupled 
FEM/RKPM nodes with    2 2 1/R d d d d   , where d  is the distance to point 0x  and the 
coupled shape functions are constructed for these nodes according to Eq. (1). The linear variation 
of R  ensures the transition between FE approximation and RK approximation to be smooth. 

 
2.2 Lagrangian reproducing kernel shape function 
 
The Lagrangian finite element (FE) approximation of an arbitrary function  u X , denoted by 
 hu X , can be written as 

   
1

NEM
h

I I
I

u N u


 X X
                           

(2) 
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x0x0

d1

d2
R=1.0 (RK)

R=0.0 (FE)

0<R<1 (Coupled)

 
Fig. 1 FE/RK coupling scheme 

 
 

where  IN X  is the finite element (FE) shape function of node I  evaluated at point X , Iu  
is the coefficient of the approximation at node I  and NEM  is the number of nodes in the 
element. 

Similar to the FE approximation, the Lagrangian reproducing kernel (RK) approximation of an 
arbitrary function  u X , can be expressed as 

   
1

NP
h

I I
I

u d


 X X
                           

(3) 

where NP  is the number of particles that are employed in the discretization of the problem 
domain, Id  is the coefficient of the approximation at node I  and  I X  is the RK shape 
function evaluated at point X . The RK shape function is constructed by a multiplication of the 
correction function and the kernel function as follows (Liu et al. 1995 and Chen et al. 1996) 

     ;I I a IC    X X X X X X
                    

(4) 

where  a I X X  is the kernel function that defines the smoothness and locality of the 
approximation with a compact support I  (see Fig. 2) measured by a . A commonly used 
kernel function is the cubic B-spline function (Eq. (5)), which gives C2 continuity (smoothness). 

 

2 3

2 3

2 / 3 4 4 1/ 2

4 / 3 4 4 4 / 3 1/ 2 1 /

0 1
a I I

z z for z

z z z for z z a

for z

   


         
 

X X X X
    

(5) 

The compact support a  defines the unique small region (or, the so-called domain of influence 
-DOI) pertaining to node K  where its shape function is non-zero. The union of all the kernel 
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Fig. 2 Meshfree domain discretization and domain of influence 
 
 

supports should cover the entire problem domain (i.e., K
K

    as shown in Fig. 2). Each 

black dot in Fig. 2 represents a node and the rectangle (brick in three-dimension) centered at the 
node denotes its support. The kernel support is truncated at the geometric boundary of the problem 
domain. The support size a  must be big enough so that the DOIs overlap each other and every 
point in the whole domain is covered by a sufficient number of kernels to ensure that the moment 
matrix (expressed later in Eq. (11)) is invertible. 

The term  ; IC X X X  in Eq. (4) is often called the correction function (Chen et al. 1996). 
This function determines the completeness and consistency of the meshfree approximation. The 
correction function  ; IC X X X  is usually constructed from a linear combination of 
monomials (Liu et al. 1995) 

             1 1 2 2 3 3
0

; , , 0
n

i j k T
I I I I ijk I

i j k

C X X X X X X b i j k
  

       X X X X H X X b X
  

(6) 

with the basis function  IH X X  being defined as 

   1 1 2 2 3 31
nT

I I I IX X X X X X      H X X 
         

(7) 

   000 100 010 00nb b b bb X 
                      

(8) 

where n  is the order of the complete monomial basis, which also defines the completeness of the 
approximation.  ijkb X  are unknown coefficients and are determined by imposing the 
reproducing conditions (Chen et al. 1996). The n-th order reproducing conditions are the 
conditions such that the approximation can reproduce polynomials up to n-th order and can be 
expressed as 

  1 2 3 1 2 3
1

0, ,
NP

i j k i j k
I I I I

I

X X X X X X i j k n


     X 
             

(9) 
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In matrix notation, the following system equation can be obtained after the n-th order 
reproducing conditions are imposed  

     M X b X H 0
                            (10) 

with the moment matrix M(X) being defined as 

       
1

NP
T

I I a I
I

    M X H X X H X X X X
           

(11) 

Therefore, the unknown coefficients  ijkb X  can be solved and the correction function 
 ; IC X X X  and the RK shape function  I X  can be obtained subsequently. 

       1; T
I IC   X X X H 0 M X H X X

            
(12) 

         1T
I I a I

    X H 0 M X H X X X X
        

(13) 

Constructed with the correction function (Eq. (12)) based on the n-th order complete monomial 
basis function (Eq. (7)), the RK approximation can reproduce polynomials up to n-th order 
completely and consistently. 

It should be pointed out that the RK shape function does not possess the Kronecker delta 
property, therefore special strategies are required to enforce essential boundary conditions. Many 
approaches have been developed in the past years. For instance, Belytschko et al. (1994) used the 
Lagrange multiplier method for static problems; Lu et al. (1994) applied a modified variational 
principle; Chen et al. (1996 and 1998c) developed a transformation method; Belytschko and 
Tabbara (1996) employed the point collocation method; Zhu et al. (1998) used a penalty method; 
Wagner and Liu (2000) employed a corrected collocation method; Chen et al. (2003) proposed a 
modified reproducing kernel approximation with nodal interpolation properties; and 
Fernandez-Mendez and Huerta (2004) introduced a coupled FEM and EFG method for essential 
boundary conditions. In fact, in the coupled (FEM with EFG or RKPM) algorithm, if the essential 
boundary is purposely discretized by finite element approximation, then the essential boundary 
conditions can be applied directly and this is the approach applied in this research. 
 

2.3 Discrete equation of motion by coupled approximation 
 
Similar to a pure finite element or meshfree approximation, the coupled approximation for the 

incremental displacement is expressed as 

     ,i I iI
I

u t d t   x x

                    
(14) 

where  xI~  is the coupled shape function,  tdiI  is the coefficient of the approximation. 
Accordingly, the coupled approximation for the incremental strain in matrix notation can be 

cast as 
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Fig. 3 Hourglass modes in cube compression without hourglass control 
 
 

   I I
I

  e x B x d
                          

(15) 

with the coupled gradient matrix being defined as 

 

 
 

 
   

   
   

,1

,2

,3

,2 ,1

,3 ,2

,3 ,1

0 0
0 0
0 0

0
0

0

I

I

I
I

I I

I I

I I

 
  

 
  
  
 
   

x
x

x
B x

x x
x x

x x







 
 

 

                    
(16) 

where the derivatives of the coupled shape functions are calculated by 

       , , ,1 1, 2,3I i I i I iR N R i     x x x

               
(17) 

The derivatives for the FE shape function are computed using the standard FEM procedure, 
while the derivatives of the RK shape function are  

         

       

       

1
, ,

1
,

1
,

1, 2,3

T
I i i I a I

T
i I a I

T
I a i I

i







  

  

 

x H 0 M x H x - x x - x

H 0 M x H x - x x - x

H 0 M x H x - x x - x
          

(18) 

The spatial derivatives (in the current configuration, represented by x ) of the coupled shape 
function is obtained using the chain rule 
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      1 , 1,2,3
X X X

jI I I
ji

i j i j

X
F i j

x X x X
  

  
   

X X X  

         
(19) 

where 
 X

I

iX




X
 are the derivatives of the coupled shape function to the reference configuration 

(represented by X ). The derivatives of the FE and RK shape functions with respect to the 
reference configuration are calculated and saved at the very beginning of the simulation. 

By substituting the coupled approximation of the incremental displacement and strain into the 
weak form of the equation of motion, the discrete equation for a dynamic event can be written as 

intext  M d f f                            (20) 

where M  is the lumped mass and the external and internal forces are integrated by 

h x

ext
I I Id d

 
      f h b 

                   
(21) 

int

x

T
I I d


 f B Σ

                          
(22) 

with h  and b  representing, respectively, the surface tractions and body forces and the Cauchy 
stress vector Σ  being defined as:  11 22 33 12 23 31

T      Σ . 
 

2.4 Triggering criteria for coupling 
 
The resulting FE/RK coupling approach provides an efficient algorithm that can generate a 

seamless evolution of particles as a response to excessive distortion being incurred in the FEM 
portion of the problem domain. To effectuate the evolution from FEM to RKPM, a triggering 
criteria needs to be selected to allow the evolution to occur automatically. The triggering criteria 
can be based on any combination of field or state variables that are indicative of the sort of 
responses causing problems to the FEM solver. For example, limits on the magnitude of pressure 
or velocity might be useful for conversion of areas of the model affected by shockwaves, while 
criteria based on limiting the magnitude of the effective plastic strain for the FEM portion of the 
model might be useful for metal materials. Metrics involving combinations of field and state 
variables computed by the constitutive laws may provide the most effective form of triggering 
criteria for utilizing the evolutionary coupling approach. 

There are two groups of triggering criteria that might be considered. One is based on 
deformation, such as the deformation gradient and strain energy density criteria introduced by Lu 
and Chen (2002), the shear deformation, volumetric strain and unbalanced nodal distribution 
criteria developed by Hu et al. (2010) and the critical strain criteria proposed by Zhou et al 
.(1996). The other one is based on results computed by the material constitutive model such as the 
equivalent plastic strain and maximum shear stress criteria proposed by Batra and Lear (2004)  
and the material damage criteria introduced by Wu et al. (2013) and it is used in this research as 
well since the focus of this work is predicting the responses of concrete structures. The effective 
plastic strain provided by plasticity models can also be used as the triggering criteria. As the  
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Fig. 4 Flow chart of coupled FEM/RKPM analysis 

 
 
triggering criteria, the internal damage variable defined in the KCC model is discussed in detail in 
Section 3. 
 

2.5 Hourglass control 
 
As was mentioned earlier, Gauss quadrature is used as the domain integration techniqure for the 

weak form of the coupled approximation. Unlike SCNI, hourglass modes might occur when 
one-point Gauss quadrature rule is applied with hexahedral integration grids. Fig. 3 shows the sorts 
of hourglass modes occurred in the analysis of a concrete cube compression problem without 
application of any hourglass control scheme, while the weak form formulation is integrated by 
one-point Gauss integration with hexahedral grids. Therefore, hourglassing must be controled 
carefully. 

In this study, hexahedral elements are used in finite element discretization and as the 
integration grids for meshfree discretization and only one-point integration is allowed for the 
material constitutive laws. Therefore, hourglass control schemes are needed to prevent the 
formation of hourglass modes. DYNA3D provides viscous type and stiffness type (Flanagan and 
Belytschko, 1981) of hourglass controls for FEM analyses. However, they are not readily 
applicable to meshfree calculations. The viscous type with exact volume integration was modefied 
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in this effort to be available for use with the coupled formulation and it is applied to all the 
analyses presented in this paper. 

 
2.6 Code implementation 
 
DYNA3D is an explicit finite element program for solving structural / continuum mechanics 

problems and is specially efficient in solving transient dynamic problems. The flow chart of the 
DYNA3D version coupled FEM / RKPM code is shown in Fig. 4. 

First, the FE, RK and coupled shape functions and their derivatives are constructed and saved 
at the beginning of a time step. Next, the external force is integrated for the current time step, after 
which, the incremental strains are evaluated and stresses calculated according to the various 
material constitutive laws involved for the updated strain state. The coupled shape function and its 
derivatives are updated for the step as well using the coupling function R defined in the previous 
load step. Subsequently, the coupling function R is reevaluated and internal force is integrated 
based on the updated stress state. Finally, the acceleration is computed, essential boundary 
conditions are enforced and velocity and geometry (nodal coordinates) are updated and then the 
calculation proceeds to the next time step. 
 
 

3. Constitutive modeling of concrete 
 
The K&C concrete (KCC) model was implemented into DYNA3D in 1997 by Malvar et al. 

(1997) for application with FEM codes, particularly for one-point integrated solid elements. The 
KCC material model employs a three-surface plasticity formulation using an internal damage 
variable to compute the evolution of the plasticity surface. The KCC model has proven effective at 
modeling concrete and reinforced structures subjected to a variety of dynamic loadings (Crawford 
et al. 2011). It provides an ideal means to demonstrate the application of the coupled formulation. 

 
3.1 Failure surface 
 
The KCC model is a three-invariant plasticity model with the failure surface γ defined by 

interpolation between two of the three independent strength surfaces using the internal damage  
variable  , which is a function of effective plastic strain. The failure surface γ is calculated by 
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      
 

      

           
                    

(23) 

where 1I  is the first invariant of the stress tensor, which reveals volumetric responses. 2J  and 

3J  are the second and third invariants of the deviatoric stress tensor and they stand for deviatoric 
responses. m  is the maximum strength surface, y  is the yield strength surface and r  
is the residual strength surface. 

    is a predefined nonlinear function that determines the interpolation of the failure surface. 
It ranges from zero to unity for m   and from unity to zero when m   with 
  1.0m   . This procedure corresponds to the failure surface migrating from yield surface 
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Fig. 5 Default damage function 
 

 

(a) Strength surfaces (b) Failure surface 

Fig. 6 Strength and failure surfaces of the K&C concrete model 
 
 

( 0, 0   ) to maximum surface ( , 1.0m    ) and then to residual surface 
( , 0    ). Strain hardening and softening behaviors are efficiently modeled by formulating 
the failure surface in Eq. (23). The     damage function enables the KCC model to reproduce 
hardening until the maximum surface m  is reached where the failure surface is interpolated 
between the yield and maximum surface (  0, m  ) and then softening until the residual 
surface r  is reached where the failure surface is interpolated between the maximum and 
residual surface (  ,m   ). The default damage function (i.e.,  ,   pairs) for the KCC 
model’s generic concrete fit (Crawford et al. 2011) is shown in Fig. 5. 

As defined in Eq. (23), the failure surface   is a function of the third invariant 3J , via the 
function, r , which takes the form of the formulation proposed by William and Warnke (Chen 
1982). By using this function, the brittle-ductile transition for concrete from low confinement to 
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high confinement can be effectively modeled. 
 

3.2 Strength surfaces 
 

Concrete is a pressure dependent material, therefore, its strength surfaces are defined as 
functions of pressure. In the KCC model, a simple function is used to express the effect of 
pressure ( 1 / 3p I  ) in the strength surfaces (shown in Fig. 6(a)). Each of the strength surface is 
defined by three parameters 0ia , 1ia  and 2ia  (therefore, 9 parameters total for the three 
surfaces and they are calibrated from test data). Denoting the strength surfaces by i  and they 
can be expressed as 

0
1 2

i i
i i

p
a

a a p
  

                         

(24) 

i  stands for m , y  and r , corresponding to maximum, yield and residual surface respectively. 
Fig. 6(b) shows an illustration of a typical axial stress difference (i.e., failure surface) versus 

net axial strain response for a concrete specimen subjected to triaxial compression (TXC) loading. 
Stress difference is defined by total stress minus confinement pressure and net axial strain is 
defined as total axial strain minus the axial strain induced by confinement pressure. Subsequent to 
hydrostatical loading (Point 0), sample behaves linearly up to roughly 35-65% of its peak strength 
(Point 0 to Point 1) and then strain hardening occurs until its peak strength (Point 2) is reached. 
Afterwards, strain-softening is observed until it reaches the residual strength whose value depends 
on the level of confinement (Point 3). The figure suggests that certain confinement exists in the 
test since otherwise the residual strength would be zero. 

 
3.3 Damage evolution and triggering 
 
The yield function of the KCC model is defined as (Malvar et al. 1997) 

   1 2 3 2 1 3, , , 3 , ,f I J J J I J   
                    

(25) 

and the flow potential function is defined as 

   1 2 3 2 1 3, , , 3 , ,g I J J J I J   
                  

(26) 

where ω is the parameter of associativity (0.0 for non-associative and 1.0 for full associative). 
The internal damage variable γ is accumulated as a function of the effective plastic strain using 

primarily two damage accumulation parameters: 1b  and 2b  (calibrated from test data), where 

1b  controls compressive and 2b  governs tensile damage evolution, respectively. From the flow 
rule and the yield function, the increment of the internal damage λ can be derived as 
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pd h d
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(27) 
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where d  is the consistency parameter of plasticity. The hardening parameter  h σ  is defined 

as 
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(28) 

Here, strain rate effect is enhanced through inputting a dynamic increasing factor (DIF) curve 
in the KCC model and fr  is the DIF at the current strain rate interpolated from the curve. tf  is 
the tensile strength of the concrete. Finally, the internal damage   can be updated as 

1n n d         
                     

(29) 

The internal damage   provides a straightforward and simple means to evaluate the 
deformation status of a material point for use in triggering the evolution from FEM to RKPM for 
concrete materials in the coupled formulation. For simplicity, a normalized form of the damage 
variable is employed 

 2 / m      
                        

(30) 

Here, m  is an input parameter which satisfies   1.0m   . Therefore,   ranges from 0.0 
(pre-yielding), to 1.0 (indicating that the maximum strength of the material has been reached)  
and then to 2.0 when the material has completely softened to the residual strength surface and no 
longer has any cohesion. Since the focus of the current research is the response of concrete, this 
variable is used as the triggering criteria. It is set to 1.995 for mesh conversion in the numerical 
applications shown unless a pure RKPM simulation is performed. This criteria indicates that 
meshfree discretization is only used in the most highly distorted regions of the model where the 
concrete reaches its residual strength surface. 

 
 

4. Numerical results 
 

Results are shown for the coupled formulation described above, which are from analyses of 
concrete structures subjected to the sorts of loads that would emanate from situations involving 
forms of loading, such as quasi-static, high frequency impulsive and high velocity impact. Both 
plain concrete and reinforced concrete structures are considered. The concrete is modeled with  
one-point integrated (Gauss) hexahedral elements and the KCC model; the reinforcement is 
modeled with beam or truss elements using a strain rate dependent isotropic elastic-plastic material 
model. To save computational cost, a normalized support size of 1.01 is used in all the examples 
for meshfree approximation. The hourglass control technique described in Section 2.5 is applied in 
all the analyses, otherwise, unphysical responses will be obtained or the simulation will be 
terminated prematurely due to hourglass modes.  
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Fig. 7 Load – deflection curve for cube compression 

 

 

 
Fig. 8 Mesh advance during cube compre ssion 

 
 

4.1 Unconfined uniaxial compression of plain concrete cube 
 
A plain concrete cube is used to simulate the response obtained in a quasi-static unconfined 

uniaxial compression (UUC) test. The cube has a side length of 150 mm and the compressive 
strength of the concrete is 39.9 MPa. The bottom of the cube is fixed and the top is laterally 
constrained and pushed downward axially with a velocity of 25.4 mm/sec. Strain rate effects are 
ignored since this is a quasi-static test. 
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Fig. 9 Model of triaxial compression and boundary conditions 
 

 
Fig. 10 Response of triaxial compression 

 
 
Fig. 7 shows the axial load – deflection curve for the UUC test, where positive represents  

compression. It is seen that the yielding, hardening (up to peak) and post-peak softening behaviors 
of the concrete material are properly captured by the model. The changes in mesh as the  
compression is increased, that are depicted in Fig. 8 indicate the extent of severe damage since the 
mesh conversion is triggered by damage. In the figure, the dots represent meshfree particles and 
the elements (i.e., solids) represent the FEM portion of the model. It may be observed that as time 
goes on (i.e., compression increases), more and more regions are converted to meshfree, which 
indicates that the triggering mechanism works properly. In addition, the CPU cost due to the usage 
of meshfree approximation is increased about 120% (were pure FE approximation used). 

188



 
 
 
 
 
 

Concrete fragmentation modeling using coupled finite element - meshfree formulations 

(a) Slab 

 
(b) Rebar 

Fig. 11 Reinforced concrete slab subjected to impulsive load 
 
 
4.2 Triaxial compression (TXC) of plain concrete cylinder 

 
In this study, a plain concrete cylinder with diameter of 152.4 mm and height of 304.8 mm is 

used, which is shown in Fig. 9. The compressive stregnth of the concrete is 45.4 MPa. The bottom  
of the cylinder is fixed and the top is laterally constrained and pushed downward axially with a 
velocity of 76.2 mm/sec after confinement pressure is applied in the first 50 ms. Strain rate effects 
are not enforced since this is a quasi-static test. The simulations presented in this section are 
performed using only RKPM since the damage in most of these TXC tests (except the 
non-confined case) are very low due to the confinement. 

The net axial strain – axial stress difference relationships for the TXC tests with various 
confinement pressures are presented in Fig. 10. The axial strain is defined as the axial  
displacement at the top surface divided by its original height and the net axial strain is the total  
axial strain minus the axial strain induced by the confinement pressure. The axial stress is 
calculated by the applied force divided by its original cross-sectional area and the axial stress 
difference is computed as the axial stress minus the confinement pressure. “STR” on the legend  
stands for numerical results and “Data” represents test results (Crawford et al. 2011). Overall, the 
numerical results match test data well. The yielding, hardening (up to peak) and post-peak 
softening behaviors of concrete are clearly simulated by the model and the brittle-ductile transition 
with increasing confinement is realized as well. 
 

4.3 Reinforced concrete slab subjected to impulsive load 
 

In this problem, as shown in Fig. 11, a 1219.2 mm by 1219.2 mm by 152.4 mm steel reinforced 
concrete (RC) slab is subjected to high frequency triangular impulsive loads over its central region 
(of 203.2 mm by 203.2 mm area, the black region in Fig. 11a). The slab is reinforced by #8 rebar  

189



 
 
 
 
 
 

Youcai Wu, Hyung-Jin Choi and John E. Crawford
 

 

 

 

 

 
Fig. 12 Damage evolution / mesh advance in RC slab (rebar not shown) 

 
 

(diameter of 25.4 mm, ASTM Grade 60 steel) at a space of 76.2 mm on center each way on each 
face, as shown in Fig. 11b. The peak pressure of the load is 345 MPa and its duration is 1.0 msec 
The concrete has an unconfined compressive strength of 34.5 MPa and the edges of the slab are 
clamped. 

The damage evolution / mesh advance (note that mesh converion occurs when damage reaches 
1.995) is shown in Fig. 12 up to 5.0 ms. For clarity, only half of the slab is plotted and rebar is not 
shown. It is seen that more and more of the FE mesh is converted to meshfree particles as the  
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(a) Isometric view 

 
(b) Side view 

Fig. 13 Model of high velocity impact 
 
 
simulation continues; and cracking and separation of the slab along its tension side is apparent. 
These observations imply that the triggering algorithm works properly and that the fragmentation 
of the concrete material can be well simulated. 
 

4.4 High velocity penetration on RC slab 
 

In this analysis, a 1219.2 mm by 1219.2 mm by 101.6 mm steel reinforced concrete (RC) slab 
is impacted by a big projectile shaped fragment striking its central region, as shown in Fig. 13. The 
slab is reinforced by #6 rebar (diameter of 19 mm, ASTM Grade 60 steel) at a space of 152.4 mm 
on center each way on each face. The fragment has a mass of 16 kg and runs at 1000 m/sec (at 15° 
to the vertical line, Fig. 13) towards the center of the slab and it is modeled by elastic material. The 
interaction between the fragment and the slab is defined through sliding with separation and 
friction contact. The concrete has an unconfined compressive strength of 41.4 MPa and the edges 
of the slab are clamped. 

Fig. 14 shows the damage evolution / mesh advance (occurs when damage reaches 1.995) in 
this high velocity impact preblem. Again, for clarity, only half of the slab is plotted and rebar is not 
shown. It is observed that the fragment penetrates through the slab and the slab is broken into 
small pieces at the impact region. These results once again shows that the coupled formulation is 
able to capture fragmentation of concrete structures. Compared with pure FEM simulation, 
tremendous CPU cost increasing (400%) was found in this simulation. 
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Fig. 14 Mesh advance in high velocity impact problem 
 
 
5. Conclusions 

 
An evolutionarily coupled finite element – reproducing kernel (FE/RK) formulation was 

implemented under the framework of DYNA3D. The coupling scheme allows automatic 
conversion from finite element discretization to meshfree discretization when the triggering 

192



 
 
 
 
 
 

Concrete fragmentation modeling using coupled finite element - meshfree formulations 

criteria is satisfied. In this coupling approach, FE and RK shape functions are coupled through a 
linear coupling function so that a smooth transition between finite element approximation and 
meshfree approximation is obtained. 

Gauss integration is used for the finite element domain integration (i.e., in DYNA3D). To 
minimize computational operations when mesh conversion is performed, Gauss integration (with 
the integration cells exactly same as the elements used in finite element discretization) is also 
applied for the domain integration of meshfree discretization. This greatly facilitates the 
conversion process since the state variables transition is not required when finite element 
approximation is converted to the meshfree approximation because state variables are still stored at 
the same integration points rather than nodal points for the meshfree discretization. Thus, the 
efficiency of the scheme is assured. 

To more effectively model the fragmentation phenomena associated with concrete structures 
stroke by high velocity projectiles, the finite element version KCC model was modified to work 
with the meshfree formulation and hence, the coupled approximation. The internal damage 
variable defined by the KCC model was chosen as the triggering criteria for the coupled approach 
when it is employed in analyzing the responses of concrete structures subjected to extreme loads. 

Numerical results from quasi-static tests show that the basic behaviors of concrete are captured 
properly by the coupled formulation with the KCC model. Analyses of blast effects and impact 
loads show that fragmentation of concrete structures can be captured by the coupled FE/RK 
formulation. 

 
 
References 
 
Bardenhagen, S.G. and Kober, E.M. (2004), “The meneralized interpolation material point method”, 

Comput. Modeling Eng. Sci., 5(6), 477-496. 
Batra, R.C. and Lear, M.H. (2004), “Simulation of brittle and ductile fracture in an impact loaded prenotched 

plate”, Int. J. Fracture, 126(2), 179-203. 
Belytschko, T. and Tabbara, M. (1996), “Dynamic fracture using element free Galerkin methods”, Int. J. 

Numer. Meth. Eng., 39(6), 923-938. 
Belytschko, T., Lu, Y.Y. and Gu, L. (1994), “Element-free Galerkin methods”, Int. J. Numer. Meth. Eng., 

37(2), 229-256. 
Belytschko, T., Lu, Y.Y. and Gu, L. (1995), “Element-free Galerkin methods for static and dynamic 

fracture0”, Int. J. Solids Struct., 32(17-18), 2547-2570. 
Chen, J.S. and Wang, D. (2006), “A constrained reproducing kernel particle formulation for shear 

deformable shell in Cartesian coordinates”, Int. J. Numer. Meth. Eng., 68(2), 151-172. 
Chen, J.S. and Wu, Y. (2007), “Stability in Lagrangian and semi-Lagrangian reproducing kernel 

discretizations using nodal integration in nonlinear solid mechanics”, Compu.Meth. Appl. Mech. Eng., 
(Eds. V. M. A. Leitao, C.J.S. Alves, C. A. Duarte), Springer, 55-77 

Chen, J.S., Crawford, J.E. and Wu, Y. (2006), “Development of meshfree methods for fragment impact 
problems”, TR 06 58.1, Karagozian & Case, Burbank, CA. 

Chen, J.S., Han, W., You, Y. and Meng, X. (2003), “A reproducing kernel method with nodal interpolation 
property”, Int. J. Numer. Meth. Eng., 56, 935-960. 

Chen, J.S., Pan, C. and Wu, C.T. (1998c), “Application of reproducing kernel particle method to large 
deformation contact analysis of elastomers”, Rubber Chem. Tech., 71, 191-213. 

Chen, J.S., Pan, C. and Wu, C.T. (1998b), “Large deformation analysis of rubber based on a reproducing 
kernel particle method”, Comput. Mech., 22, 289-307. 

Chen, J.S., Pan, C., Roque, C.M.O.L. and Wang, H. (1998a), “A Lagrangian reproducing kernel particle 

193



 
 
 
 
 
 

Youcai Wu, Hyung-Jin Choi and John E. Crawford
 

method for metal forming analysis”, Comput. Mech., 22, 289-307. 
Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), “Reproducing kernel particle methods for large 

deformation analysis of nonlinear structures”, Compu.Meth. Appl. Mech. Eng., 139, 195-227 
Chen, J.S., Wu, C.T., Chi, L.C. and Huck, F. (2001b), “A Lagrangian meshfree formulation for geotechnical 

material”, J. Eng. Mech., 127, 440-449. 
Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001a), “A stabilized conforming nodal integration for Galerkin 

meshfree methods”, Int. J. Numer. Meth. Eng., 50, 435-466, 2001. 
Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2002), “Nonlinear version of stabilized conforming nodal 

integration for Galerkin meshfree methods”, Int. J. Numer. Meth. Eng., 53, 2587-2615. 
Chen, W.F. (1982), “Plasticity in Reinforced Concrete”, McGraw Hill, New York 
Courant, R. (1942), “Variational methods for the solution of problems of equilibrium and vibrations”, 

Transaction of American Mathematical Society, 1-23. 
Crawford, J.E., Chen, J.S., Choi, H.J. and Wu, Y. (2005), “Description of meshfree methods developed for 

fragment impact, penetrations and other problems”, TR-05-71.1, Karagozian & Case, Burbank, CA. 
Crawford, J.E., Magallanes, J.M., Lan, S. and Wu, Y. (2011), User’s manual and documentation for release 

III of the K&C concrete material model in LS-DYNA, TR-11-36-1, Technical report, Karagozian & Case, 
Burbank, CA. 

Fernandez-Mendez, S. and Huerta, A. (2004), “Imposing essential boundary conditions in mesh-free 
methods”, Compu.Meth. Appl. Mech. Eng., 193, 1257-1275. 

Flanagan, D.P. and Belytshcko, T. (1981), “A uniform strain hexahedron and quadrilateral with orthogonal 
hourglass control”, Int. J. Numer. Meth. Eng., 17, 679-706. 

Gingold, R.A. and Monaghan, J.J. (1972), “Smooth particle hydrodynamics: theory and application to 
non-spherical stars”, Monthly Notices of the Royal Astronomical Society, 181, 375-389. 

Guan, P.C., Chen, J.S., Wu, Y., Teng, H., Gaido,s J., Hofstetter, K. and Alsaleh, M. (2009), 
“Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations”, 
Mech. Mater., 41, 670-683. 

Guan, P.C., Chi, S.W., Chen, J.S., Slawson, T.R. and Roth, M.J. (2011), “Semi-Lagrangian reproducing 
kernel particle method for fragment-impact problems”, Int. J. Impact Eng., 38, 1033-1047. 

Guo, Y., Wu, C.T., Botkin, M.E. and Wang, H.P. (2004), “Coupled FEM/Meshfree shear-deformable shells 
for nonlinear analysis of shell structures”, Proceedings of WCCM VI in conjunction with APCOM 04, 
September, Beijing, China. 

Hu, W., Wu, C.T. and Saito, K. (2010), “LS-DYNA meshfree interactive adaptivity and its application”, 11th 
international LS-DYNA Users Conference, Detroit, MI. 

Lin, J.I. (2005), DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and 
structural mechanics, User Manual, UCRL-MA-107254, Methods Development Group, Lawrence 
Livermore National Laboratory. 

Liu, W.K., Jun, S. and Zhang, Y.F. (1995), “Reproducing kernel particle methods”, Int. J. Numer. Meth. 
Fluids, 20, 1081-1106. 

Liu, W.K., Jun, S., Sihling, D.T., Chen, Y. and Hao, W. (1997), “Multiresolution reproducing kernel particle 
method for computational fluid dynamics”, Int. J. Numer. Meth. Fluids, 24(12), 1391-1415. 

Lu, H. and Chen, J.S. (2002), “Adaptive meshfree particle method”, Lecture Notes Comput. Sci. Eng., 26, 
251-267. 

Lu. Y.Y., Belytschko, T. and Gu, L. (1994), “A new implementation of the element free galerkin methods”, 
Compu. Meth. Appl. Mech. Eng., 113, 397-414. 

Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), “A plasticity concrete material model 
for DYNA3D”, Int. J. Impact Eng., 19, 847-873. 

Monaghan, J.J. (1988), “An introduction to SPH”, Comput. Physic. Commun., 48, 89-96. 
Puso, M.A., Chen, J.S., Zywicz, E. and Elmer, W. (2008), “Meshfree and finite element nodal integration 

method”, Int. J. Numer. Meth. Eng., 74, 416-446. 
Rabczuk, T. and Eibl, J. (2003), “Simulation of high velocity concrete fragmentation using SPH/MLSPH”, 

Int. J. Numer. Meth. Eng., 56, 1421-1444. 

194



 
 
 
 
 
 

Concrete fragmentation modeling using coupled finite element - meshfree formulations 

Wagner, G.J. and Liu, W.K. (2000), “Application of essential boundary conditions in mesh-free methods: a 
corrected collocation method”, Int. J. Numer. Meth. Eng., 47, 1367-1379. 

Wang, D. and Chen, J.S. (2008), “A Hermite reproducing kernel approximation for thin plate analysis with 
sub-domain stabilized conforming integration”, Int. J. Numer. Meth. Eng., 74, 368-390 

Wang, D. and Lin, Z. (2011), “Dispersion and transient analyses of Hermite reproducing kernel Galerkin 
meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures”, 
Comput. Mech., 48, 47-63. 

Wang, D. and Sun, Y. (2011), “A Galerkin meshfree formulation with stabilized conforming nodal 
integration for geometrically nonlinear analysis of shear deformable plates”, Int. J. Comput. Meth., 8, 
685-703. 

Wang, D. and Wu, Y. (2008), “An efficient Galerkin meshfree analysis of shear deformable cylindrical 
panels”, Interact. Multiscale Mech., 1, 339-355. 

Wang, D. and Chen, J.S. (2004), “Locking-free stabilized conforming nodal integration for meshfree 
Mindlin-Reissner plate formulation”, comput. Meth. Appl. Mech. Eng., 193, 1065-1083. 

Wang, D. and Chen, J.S. (2006), “A locking-free meshfree curved beam formulation with the stabilized 
conforming nodal integration”, Comput. Mech., 39(1), 83-90. 

Wang, D., Li, Z., Li, L. and Wu, Y. (2011), “Three dimensional efficient meshfree simulation of large 
deformation failure evolution in soil medium”, Sic. China-Tech. Sci., 54, 573-580. 

Wang, H.P., Wu, C.T., Botkin, M. and Guo, Y. (2009), “A coupled meshfree/finite element method for 
automotive crashworthiness simulations”, Int. J. Impact Eng., 36(10-11), 1210-1222. 

Wu, Y. (2005) “A stabilized semi-Lagrangian Galerkin meshfree formulation for extremely large 
deformation analysis”, Ph.D. Dissertation, UCLA. 

Wu, Y., Magallanes, J.M., Choi, H.J. and Crawford, J.E. (2013), “An evolutionarily coupled finite element - 
meshfree formulation for modeling concrete behaviors under blast and impact loadings”, ASCE J. Eng. 
Mech., 139(4), 525-536. 

Zhou, M., Ravichandran, G. and Rosakis, A.J. (1996), “Dynamically propagating shear bands in 
impact-loaded prenotched plates – 2. Numerical Simulations”, J. Mech. Physic Solid, 44(6), 1007-1032. 

Zhu, T., Zhang, J.D. and Atluri, S.N. (1998), “A meshless local boundary integral equation (LBIE) method 
for solving nonlinear problems”, Comput. Mech., 22, 174-186. 

195




